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Summary: This paper addresses the problem of target localization in sonar signal in a  2D (range-azimuth) scene. The aim is 

to propose an approach based on an artificial neural network that outputs a binary occupancy grid. A  dataset is generated using 

a sonar simulator and used to train and validate a deep neural network based on a U-net architecture. A pre-processing chain 

converts analog data to a form that can be passed through the neural network, in this case a (range-azimuth) 2D map with 

power received. Finally, the performances of the network are compared to those of an approach built around on a CFAR-based 

range estimation and a MUSIC-based direction of arrival estimation. The results show that the network is able to provide at 

least similar performances than the reference approach, without the algorithmic calibration currently required by the latter. 
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1. Introduction 
 

When it comes to autonomous driving and robotic 

navigation in general, knowing where the agents can 

move without touching an obstacle is a crucial matter. 

This information can be displayed as a 2D occupancy 

grid (OG) of the environment indicating the 

probability for a region of space to be free or occupied 

(i.e. containing an obstacle). An example is provided 

in fig. 1. These grids – here called ”probabilistic” – are 

popular due to their ability to quantify uncertainty and 

the possibility to fuse sensor measurements [1][2]. The 

sensors whose measurements are used to build OG can 

be separated into two categories according to their  

field-of-view  (FOV), i.e. the area of space where they 

are able to detect obstacles. A sensor is considered to 

have either a narrow FOV, that we model as a line, or 

a large one. In this case a large part of the environment 

is seen, that we can model as being between two 

boundaries forming a cone. These notions are 

illustrated in fig. 2. 

 

 

Fig. 1 Building an occupancy grid from sensor 

measurements in an automotive context [1] 

 If both explicit and efficient methods already 

allow to compute OG for narrow FOV sensors[1], 

problems arise when the FOV is large [3]. It is a 

problem since sensors with large FOV can bring 

significant advances in autonomous driving and 

robotic navigation. A first advantage is the larger area 

covered by a sensor measurement. Another advantage 

is the fact that the main sensors having a narrow FOV 

are Lidar ones, and suffer from a heavy cost and 

inefficiency in scenes presenting optical occlusion. 

Radar can be seen as a potential answer [4], as well as 

sonar in certain scenarios. These large FOV sensors 

present several similarities in the principles behind 

their signal processing techniques [5]. For these 

reasons, alongside others, multimodal sensor fusion is 

seen as a key component for autonomous driving and 

efficient methods computing OG from large FOV 

sensors are needed. The existing methods, based on 

bayesian filtering, are currently either too costly to 

compute or relying on restrictive hypothesis. To deal 

with these latter scenarios, the use of deep neural 

networks has been recently proposed in the literature 

[6]. Neural networks may provide a suitable 

approximation of an OG computation model at a 

reasonable cost. 

 

 

Fig. 2 An illustration of the difference between narrow 

(left) and large (right) field of view sensors. The blue dots 

represent the sensor’s field of view. The circles are targets 

and the ones in green are seen by the sensor. 
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Taking benefit from an analogy between 2D range-

azimuth maps, OG and images, networks initially 

intended for image segmentation problems were used 

for building OG. To do so, the previous works as in [6] 

use U-net architectures [7] for this type of task. These 

networks convert the output of the sensor signal 

processing chain into an OG. The original work used a 

radar that has a beam too narrow to match our work, 

even though it produced probabilistic OG. Others have 

been applied to radar post target detection data (the 

range and azimuth, as depicted in fig. 3) with ternary 

OG (the cell can be “free”, “occupied” but also 

“unknown”) [8][9]. 

All these works use metrics that do not give a clear 

indication of the accuracy of the targets localization. 

This metric, the Intersection-over-Union (IoU) is the 

reference in image segmentation. Yet it does not give 

a direct estimation of the localization accuracy. On top 

of that, these approaches use “high level” data that 

have gone through several signal processing 

algorithms (like those given in fig. 3 as references) that 

already realize localization tasks. These algorithms 

have limitations like the need of a complex calibration 

for the CFAR used as reference [5][10]. Other 

references of radar target localization using deep 

learning exist. They addressed this problem in terms of 

accuracy for the range, azimuth and elevation 

estimations[11]. However, they do not output 

occupancy grids. 

This work is a continuation of these approaches 

[6][8][9], using a sonar as a large FOV sensor. A neural 

network has been trained to generate an OG from sonar 

signal before target detection. As a preliminary work, 

the OG only contains binary states: occupied or free. 

In the mono-target case, accuracy of the target’s range 

and azimuth estimates is evaluated and compared with 

the estimation accuracy of a reference approach, based 

on MUSIC and CFAR [10]. 

 

2. Reference sonar signal processing chain 

 
This work aims to evaluate the precision of the 

target localization performed by the network in a 2D 

context. A target has two main characteristics : its 

range in the sensor centered referential (in this work in 

cm) and its azimuthal orientation (in degrees). The 

comparison is limited to mono-target scenarii. This 

avoids problems such as occlusion that would 

complicate the evaluation. Concerning the approach 

used as reference, the range is obtained using a CFAR 

detection [10] and time-of-flight calculation. An Order 

Statistic (OS) CFAR [10], a common version of the 

algorithm, is implemented and calibrated. This 

algorithm is the reference when it comes to target 

detection in radar and sonar, but it suffers some flaws. 

One of them is the range resolution: if two targets are 

too closed, it is not possible to separate them. Another 

is the complicated calibration of the algorithm which 

is to be used in a specific configuration of noise. As for 

the direction of arrival (DOA) estimation, the MUSIC 

algorithm is chosen due to its high resolution [10]. 

Note that MUSIC needs a priori knowledge of the 

number of targets present in the scene. The goal is to 

compare the network’s performances to those of the 

reference. Since the network products OG as output, 

the range and azimuth are extracted from this OG using 

image processing tools as depicted in fig. 3. For this 

purpose, a binary OG is sufficient. 

 

3. Deep Learning based processing chain 

  
The network’s architecture is described in this 

section, followed by the dataset generation. 

 

3.1 Neural network architecture 

 
Similarly with [6][8][9], the network’s architecture 

is a U-net due to its performances in general image 

segmentation problems. The loss used is the standard 

binary crossentropy. The network, depicted in fig. 4, 

acts as an encoder-decoder. A first half extracts 

features from the input signal and the second converts 

the feature maps extracted into a signal with the same 

dimensions as the input one. More specifically, the 

network is composed of 5 “levels” – not to be confused 

with “layers” – that can be represented so that it has the 

“U” shape that gives it its name. The four first levels 

are present in both encoder and decoder halfs while the 

5th is the feature map. An encoder block, as well as the 

feature map, is composed of two convolutions layers 

and a max pooling. The same goes for the decoder 

except that it also comprises a concatenation layer 

connected to the output of the last convolution layer of 

Fig. 3 A typical sonar signal processing chain and the one used in this work 

 

 

Fig. 4 The workflow of the DL-based approach. Each 

rectangle represents 2 convolution layers and a max pooling 

one. The numbers of convolution kernels for each layer are 

given in the corresponding rectangles. 
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the encoder block in the same level in order to “remap” 

the features at the right pixels. This way, each pixel of 

the output image is a cell of the grid associated to the 

class “free” or “occupied”.  

 

3.2 Dataset generation 

 

The perception task that this work is tackling 

consists in converting a sonar signal into a 

representation of the environment in front of the 

sensor. The training of the network needs an input and 

the output that the network is supposed to produce 

given such input. It is a supervised learning handling 

an image segmentation problem [12]. Considering this, 

the dataset must consist of a sonar signal and the 

occupancy grid of the environment that induced this 

signal as groundtruth. It is the output that we expect the 

network to produce given this sonar signal. 

A dataset has to be generated since there is no –to 

the best of our knowledge- public dataset suitable for 

the problem addressed in this paper. Automotive 

datasets already tend to rarely contain radar data [13]. 

Existing datasets containing radar data are however not 

fit for this work. The main problem is that the data 

available only contain signals that have passed through 

a CFAR detector [14]. This would not allow to test the 

potential of replacing the algorithm with a neural 

network. Considering the need of fine tuning the 

scenes for an evaluation accuracy purpose, simulation 

is chosen for providing a sufficient dataset with a 

reasonable cost. 

A sonar simulator is used to compute the signal 

received by the sensor after propagation within a scene 

containing arbitrarily positioned obstacles. In order to 

focus on the localization and since it is to be performed 

on an OG, the targets are as large as a cell and placed 

so that they perfectly fit into one. The region of interest 

(ROI) is the 80x240cm rectangle in front of the sensor 

(with it at the center of the x-axis). This rectangle is 

partitioned into a grid with the same dimensions (each 

cell is a 1cm square). A scene consists of between one 

and three 1cm wide planes. The planes are randomly 

placed on cells considering a margin of 10 cells on the 

x-axis and between 35 and 220 cm. 3000 scenes are 

generated. A problem arises with  groundtruth grids 

computation. It is difficult for a neural network to 

output an image with a segmentation of only one pixel. 

Thus, the targets on the groundtruths are not 

represented as a single cell but rather as a 7x7 square 

as shown in fig. 5. The square’s center of mass 

represents the coordinates of the detected target. 

A sonar is then simulated in order to obtain an input 

signal to the network. The sensor consists of one 

emitter so that the emission beam is the widest 

possible. It also has 5 transducers for reception that 

allow direction of arrival (DOA) estimation for the 

echoes. This way, it is possible to estimate the azimuth 

of the detected targets. The sonar emits a sine pulse and 

the simulator computes the acoustic wave received at 

each transducer after reflection on target(s). The signal 

is amplified and converted into the digital domain. The 

common processing to both reference and deep 

learning approaches includes a signal demodulation 

followed by a matched filter. Since a 2D signal is 

required, a Digital Beamforming (DBF) algorithm is 

used for obtaining a 2D polar map representing the 

power received from each point of space in front of the 

sensor [15]. The process is illustrated in fig. 3. An 

example of input signal is also depicted in fig. 4. 

 

 

Fig. 5 In order to provide a groundtruth that allows 

to train the network, we represent each cell by a bigger 

square.  

4. Simulation results 

 
Both the reference and neural network’s 

implementations were evaluated in terms of range and 

azimuth accuracy using the Root Mean Squared Error 

(RMSE) as a metric: 

 

𝑅𝑀𝑆𝐸(𝑦, �̃�) = √
∑ (𝑦𝑖−�̃�𝑖)²
𝑁
𝑖=1

𝑁
         (1) 

 

Where 𝑦𝑖  is the groundtruth and �̃�𝑖 is the value 

predicted by the model for a validation test of 𝑁 

samples for vectors 𝑦 and �̃�. Since this metric is used 

for evaluating estimation, we do not count the cases 

where the target is not detected or where a non-existing 

target is, which can happen when the SNR drops too 

low.  Results obtained for each cell on the left half of 

the ROI (miss detections not taken into account) are 

displayed in table 1. 

 
Table 1. Performances of both approaches on the 

validation data (RMSE) 

Approach Range (cm) Azimuth (°) 

CFAR + MUSIC 4,463 0.424 

Neural network 0.820 1.465 

 

4.1 Results analysis 

 

The network achieved a better accuracy than the 

reference approach for the range estimation. On the 

contrary, MUSIC achieved a better result on azimuth 

estimation, even though the network provided 

encouraging results. An example of scene 

reconstruction (in a multi-target scenario) is given in 

fig. 4. In order to obtain a richer information than the 

global performance displayed in table 1, a set of 20 

simulations was run where the error is evaluated at 

every possible cell of the grid (this time, a miss 

detection gives a maximum error). Thanks to the 

symmetrical RMSE distribution over the x-axis, only 

the left half of the map was computed. It allows to draw 

an image containing in each pixel the RMSE for each 

corresponding cell in the grid. For each approach, an 

error map is drawn for each of the two estimated 
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parameters. The resulting maps are displayed in fig. 6. 

As expected, the  reference approach has trouble 

detecting targets that are at the extremities of the 

emission diagram, where it ensues failures. The 

phenomenom is less pronounced with the neural 

network, which suffers less miss detections in this area. 

This aside, the reference approach performs a pinpoint 

accuracy regarding the azimuth estimation on the rest 

of the region. The network has trouble with the 

extremities of the ROI, where the SNR drops. 

Oberving the grids computed for targets in this area 

show that the network does not draw perfect 7x7 

squares. This adds another source or error since the 

center of mass of the square does not correspond to the 

target location. This is not observed for range 

estimation, where the network keeps giving better 

results than CFAR and shows a pretty uniform error. 

Fig. 6 The errors observed for each approach 

estimations of range and azimuth. The errors above 12 

are caused by more or less frequent miss detections. 

4.2 Discussion 

 

These results must be regarded in the light of 

limitations in the possibilities offered by the simulator. 

The absence of reflective elements besides the targets 

clearly eases their localization and cannot be 

considered “realistic”. In a concrete sonar situation a 

lot of constraints such as clutter would considerably 

complicate the problem and thus reduce the 

implementations performances [5]. Nevertheless, this 

work aimed to provide a proof-of-concept for 

computing occupancy grids from low level sonar data 

with satisfying performances, which the results tend to 

infer. These results must now be consolidated by 

conducting experiments on real world data or more 

complex simulation scenarios. 

 

5. Conclusions 
 

A deep neural network converting  preprocessed 

sonar data into occupancy grids indicating the location 

of the targets has been successfully trained. To do so, 

simulated scenes and associated sonar outputs were 

used for training and testing the artificial neural 

network. This network has shown encouraging results 

for range and azimuth estimation on single target 

scenario. It holds the comparison with a CFAR and 

MUSIC combination. Future works shall focus on the 

robustness of this approach to more challenging 

conditions in terms of noise, by using real world data. 

Alongside a certain consolidation, it would also allow 

to study if it keeps performing well in situations where 

CFAR and MUSIC show their limitations. It is also 

intended to work on the generation of probabilistic 

occupancy grids for sensor fusion purposes. 
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