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ABSTRACT

Context. We examine the dynamics of low-frequency gravito-inertial waves (GIWs) in differentially rotating deformed radiation zones
in stars and planets by generalising the traditional approximation of rotation (TAR). The TAR treatment was built on the assumptions
that the star is spherical (i.e. its centrifugal deformation is neglected) and uniformly rotating. However, it has been generalised in our
previous work by including the effects of the centrifugal deformation using a non-perturbative approach. In the meantime, TAR has
been generalised in spherical geometry to take the differential rotation into account.
Aims. We aim to carry out a new generalisation of the TAR treatment to account for the differential rotation and the strong centrifugal
deformation simultaneously.
Methods. We generalise our previous work by taking into account the differential rotation in the derivation of our complete analytical
formalism that allows the study of the dynamics of GIWs in differentially and rapidly rotating stars.
Results. We derived the complete set of equations that generalises the TAR, simultaneously taking the full centrifugal acceleration
and the differential rotation into account. Within the validity domain of the TAR, we derived a generalised Laplace tidal equation for
the horizontal eigenfunctions and asymptotic wave periods of the GIWs, which can be used to probe the structure and dynamics of
differentially rotating deformed stars with asteroseismology.
Conclusions. A new generalisation of the TAR, which simultaneously takes into account the differential rotation and the centrifugal
acceleration in a non-perturbative way, was derived. This generalisation allowed us to study the detectability and the signature of the
differential rotation on GIWs in rapidly rotating deformed stars and planets. We found that the effects of the differential rotation in
early-type deformed stars on GIWs is theoretically largely detectable in modern space photometry using observations from Kepler
and TESS.
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1. Introduction

Understanding how angular momentum and chemicals are trans-
ported in the interiors of stars (and planets) along their evo-
lution is one of the key challenges of modern stellar (and
planetary) astrophysics. Indeed, rotation modifies their structure,
their chemical stratification, their internal flows and magnetism,
and their mass losses and winds (e.g. Maeder 2009; Mathis et al.
2013; Aerts et al. 2019, and references therein). In this quest,
asteroseismology has bought a fundamental breakthrough by
demonstrating that all stars are the seat of a strong extraction
of angular momentum during their evolution in comparison with
the predictions by stellar models taking the rotation into account
following the standard rotational transport and mixing theory
(Eggenberger et al. 2012; Marques et al. 2013; Ceillier et al.
2013; Cantiello et al. 2014; Ouazzani et al. 2019). This was first
obtained thanks to mixed pulsation modes splitted by rotation
propagating in evolved low- and intermediate-mass stars (Beck
et al. 2012, 2014, 2018; Mosser et al. 2012; Deheuvels et al. 2012,
2014, 2015, 2020; Di Mauro et al. 2016; Triana et al. 2017; Gehan
et al. 2018; Tayar et al. 2019). Then, observations of oscillation

modes in F- and A-type stars (Kurtz et al. 2014; Saio et al. 2015;
Bedding et al. 2015; Keen et al. 2015; Van Reeth et al. 2015, 2016,
2018; Schmid & Aerts 2016; Murphy et al. 2016; Sowicka et al.
2017; Guo et al. 2017; Saio et al. 2018, 2021; Mombarg et al.
2019; Li et al. 2019, 2020; Ouazzani et al. 2020) and in B-type
stars (Pápics et al. 2015, 2017; Triana et al. 2015; Moravveji et al.
2016; Kallinger et al. 2017; Buysschaert et al. 2018; Szewczuk
& Daszyńska-Daszkiewicz 2018; Pedersen et al. 2021; Szewczuk
et al. 2021) provided us new Rosetta stones to constrain the trans-
port of angular momentum in the whole Hertzsprung-Russell
diagram. More particularly, this pushes gravity- and gravito-
inertial mode pulsators such as γ-Doradus and SPB stars at the
forefront of this research. For instance, recent theoretical devel-
opments have demonstrated how it is possible to probe stellar
internal rotation in γ-Doradus stars from their surface to their
convective core (Ouazzani et al. 2020; Saio et al. 2021). These
stars are rapid rotators for a large proportion of them. Therefore,
it is necessary to study gravito-inertial modes. These modes are
gravity modes, which propagate only in stably stratified stellar
radiation zones under the action of the restoring buoyancy force
in the absence of rotation, which are modified by rotation. If their
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frequency is super-inertial (i.e. above the inertial frequency 2Ω,
Ω being the stellar angular velocity), they are propagating in stel-
lar radiation zones and evanescent in convective regions. If their
frequency is sub-inertial (below 2Ω) they propagate in an equa-
torial belt in radiation zones and they become propagative iner-
tial waves in convective regions (e.g. Dintrans & Rieutord 2000;
Mathis et al. 2014). The challenge of studying these waves is
that the equation describing their dynamics are intrinsically bi-
dimensional and non-separable (Dintrans et al. 1999; Prat et al.
2016, 2018; Mirouh et al. 2016). This makes the development of
seismic diagnosis difficult analytically (Prat et al. 2017) or expan-
sive in computation time when using 2D oscillation and stellar
structure codes (e.g. Ouazzani et al. 2017; Reese et al. 2021) in
the general case.

In this framework, the traditional approximation of rotation
(TAR), which has been first introduced in geophysics (Eckart
1960) to treat the propagation of gravito-inertial waves (GIWs)
in the case where the Coriolis acceleration can be neglected
in front of the buoyancy force in the direction of the entropy
and chemical stable stratifications, is very useful. Indeed, it
allows one to consider that the velocity of gravito-inertial waves
are mostly horizontal and to neglect the latitudinal component
of the rotation vector in the momentum equation. That leads
to decoupling the vertical and horizontal directions by keep-
ing the non-perturbative action of the Coriolis acceleration in
the latitudinal and azimuthal directions and neglecting it along
the vertical one. Propagation equations become separable as in
the non-rotating case (e.g. Bildsten et al. 1996; Lee & Saio
1997). In addition, the derivation of powerful and flexible seis-
mic diagnostics using the period spacing between consecutive
high radial order gravito-inertial modes becomes possible in
uniformly rotating spherical stars (Bouabid et al. 2013). These
period spacing provide constrains on properties of the chemi-
cal stratification and the rotation rate (through their slope) near
the interface between the convective core and the radiative enve-
lope in rapidly rotating intermediate-mass γ-Doradus (e.g. Van
Reeth et al. 2015, 2016, 2018; Ouazzani et al. 2017; Christophe
et al. 2018; Li et al. 2019, 2020; Saio et al. 2021) and SPB stars
(e.g. Pápics et al. 2015, 2017; Moravveji et al. 2016; Szewczuk
& Daszyńska-Daszkiewicz 2018; Pedersen et al. 2021), thanks
to the high precision of space-based photometric observations
(e.g. Aerts et al. 2019; Aerts 2021, and references therein). This
allows us to build intensive forward modelling of g-mode pul-
sating stars to constrain their internal structural and dynamical
properties.

This approximation, in its standard version, is only applica-
ble for low-frequency GIWs propagating in strongly stably strat-
ified zones of uniformly rotating spherical stars. In this case a
set of assumptions should be verified: (i) the buoyancy force is
stronger than the Coriolis acceleration (i.e. 2Ω � N, where N is
the Brunt–Väisälä frequency) in the direction of stable entropy
or chemical stratification, (ii) the Brunt–Väisälä frequency is
larger than the frequency of the waves in the rotating frame ω
(ω � N), (iii) the rotation is assumed to be uniform and (iv) the
star is assumed to be spherical, in other words, the centrifugal
deformation of the star is neglected (i.e. Ω � ΩK ≡

√
GM/R3,

where ΩK is the Keplerian critical (breakup) angular velocity,
and G, M, and R are the universal constant of gravity, the mass
of the star, and the stellar radius, respectively).

Recently, the TAR has been examined in deformed stars.
First, Mathis & Prat (2019) have included the centrifugal accel-
eration for slightly deformed stars using a first-order pertur-
bative approach. Then, this perturbative framework has been
optimised for practical applications to one-dimensional stellar

structure models by Henneco et al. (2021). Second, in Dhouib
et al. (2021, hereafter Paper I), we have used a non-perturbative
approach to include the centrifugal acceleration for strongly
deformed stars and planets by studying the dynamics of low-
frequency GIWs in a general spheroidal coordinate system
defined by Bonazzola et al. (1998) which follows the shape of
a deformed star. It is important to note that in these studies the
rotation was assumed to be uniform. These semi-analytical stud-
ies demonstrated that centrifugal effects’ signatures are poten-
tially detectable. Moreover, their results are in good qualitative
agreement with direct computations of gravito-inertial modes in
centrifugally deformed stellar models using 2D oscillation codes
that take into account the full Coriolis and centrifugal accelera-
tions such as the Toulouse Oscillation Program (TOP) (Ballot
et al. 2010, 2012) and the adiabatic code of oscillation includ-
ing rotation (ACOR) code (Ouazzani et al. 2012, 2015, 2017).
In the case where the centrifugal acceleration is treated as a per-
turbation, but where the full Coriolis acceleration was taken into
account, we can refer to the Tohoku oscillation code (Lee & Saio
1987; Lee & Baraffe 1995). The chosen coordinate system is
used in ACOR, TOP and in the Evolution STEllaire en Rota-
tion (ESTER) code (Espinosa Lara & Rieutord 2013) that com-
putes the structure and the stationary internal hydrodynamics
of (differentially-)rotating early-type stars such as the observed
gravito-inertial modes pulsators we are studying.

However, the solid-body rotation assumption has to be poten-
tially abandoned along the evolution of real stars (and planets)
where gradients of angular velocity can develop, both in the
radial and in the latitudinal directions. They can be triggered by
the redistribution of angular momentum induced by stellar winds
(e.g. Zahn 1992), structural adjustments (Maeder & Meynet
2000; Decressin et al. 2009), and by transport processes (Mathis
et al. 2013). First, as shown in Charbonnel et al. (2013) and
Gallet & Bouvier (2015), early main sequence low-mass stars
are potentially subject to a strong differential rotation. Moreover,
Aerts et al. (2019) and references therein (we refer the reader to
those provided in the first paragraph for F, A, and B-type stars)
pointed out that the radiative envelope of intermediate-mass stars
are the seat of a weak differential rotation for those observed
with a small difference of rotation between the stellar surface
and the core. This is also predicted by numerical simulations
and models of different transport mechanisms like internal grav-
ity waves (Rogers et al. 2013; Rogers 2015) or meridional flows
(Maeder & Meynet 2000; Decressin et al. 2009; Rieutord et al.
2016; Ouazzani et al. 2019). In this framework, Ogilvie & Lin
(2004) and Mathis (2009) have generalised the TAR by includ-
ing the effects of general differential rotation on low-frequency
GIWs propagating in spherical stars (and planets). This new for-
malism has been successfully applied to gravito-inertial mode
pulsators observed by the Kepler (Borucki et al. 2009) space
telescope. Indeed, Van Reeth et al. (2018) have applied it to
derive the variation of the asymptotic period spacing in the case
of a weak radial differential rotation. They evaluated the sensi-
tivity of GIWs period spacing to the effect of such a radial shear
in spherical stars and they demonstrated that they can be poten-
tially detected if observing several modes.

Since both effects of the centrifugal deformation and dif-
ferential rotation are potentially observable, we generalise here
these previous works, treating the case of a general differ-
ential rotation in deformed stars (and planets). We begin in
Sect. 2 with the derivation of the system of linearised hydro-
dynamic equations for GIWs in spheroidal coordinates which
follows the shape of a differentially rotating deformed body.
We choose again the coordinate system that was introduced by
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Bonazzola et al. (1998) which is used in 2D numerical models of
rotating stars and pulsation codes. In Sect. 3, we build the gen-
eralised TAR in this set of equations by adopting the adequate
assumptions. In Sect. 4, we rewrite the oscillation equations in
the form of a generalised Laplace tidal equation and deduce the
asymptotic frequencies of low-frequency GIWs. In Sect. 5, we
carry out a numerical exploration of the eigenvalues and Hough
eigenfunctions of the generalised Laplace tidal equation within
the domain of validity of the TAR. We model early-type stars
with 2D ESTER models (Espinosa Lara & Rieutord 2013). In
Sect. 6, we quantify the differential rotation and the centrifugal
deformation combined effects on the asymptotic period spacing
pattern and we discuss their detectability. Finally, we discuss and
summarise our work and results in Sect. 8.

2. Hydrodynamic equations in differentially rotating
deformed stars

2.1. Spheroidal geometry

As in Paper I, here, we use the spheroidal coordinate system
(ζ, θ, ϕ) proposed by Bonazzola et al. (1998), where ζ is the
pseudo-radial coordinate, θ the colatitude and ϕ the azimuth. Fol-
lowing Espinosa Lara & Rieutord (2013), this new coordinate
system, illustrated in Fig. 1, can be linked to the usual spherical
one (r, θ, ϕ) via the following mapping

r(ζ, θ) = aiξ∆ηi +Ri(θ)+ Ai(ξ) (∆Ri(θ) − ai∆ηi) , ηi ≤ ζ ≤ ηi+1,

(1)

in the ith subdomain Di∈~0,n−1� ∈ [Ri(θ),Ri+1(θ)] of the
spheroidal domain D where Ri∈~0,n�(θ) are series of functions,
such that Rn(θ) = Rs(θ) is the outer boundary and R0(θ) = 0
is the centre. Additionally, ηi = Ri(θ = 0) are the polar radii
of the interfaces between the subdomains, ∆ηi = ηi+1 − ηi,
∆Ri(θ) = Ri+1(θ) − Ri(θ) and ξ = (ζ − ηi)/∆ηi. The func-
tions Ai∈~1,n−1�(ξ) = −2ξ3 + 3ξ2 and A0(ξ) = −1.5ξ5 + 2.5ξ3

and the constants ai = 1 are chosen to satisfy the bound-
ary conditions between the different subdomains. We recall
also the spheroidal base (aζ , aθ, aϕ) defined using the mapping
(Eq. (1)) (Rieutord et al. 2005; Lignières et al. 2006; Reese et al.
2006)

aζ =
ζ2

r2 er

aθ =
ζ

r2rζ
(rθer + reθ)

aϕ =
ζ

rrζ
eϕ

, (2)

where rζ ≡ ∂ζr, rθ ≡ ∂θr, (er, eθ, eϕ) is the usual spherical base,
ε = 1−Rpol/Req is the flatness, Rs(θ), Req and Rpol are the surface,
the equatorial and the polar radii, respectively.

2.2. Linearised hydrodynamic equations in spheroidal
coordinates

To treat the wave dynamics in differentially rotating, strongly
deformed stars and planets, we derive the complete adiabatic
inviscid system of equations in spheroidal coordinates. First, the
linearised momentum equation for an inviscid fluid is written as

(∂t + Ω∂ϕ)
[
ζ2rζ
r2 vζ +

ζrθ
r2 v

θ

]
= 2Ω

ζ sin θ
r

vϕ

−
1
ρ0
∂ζP′ +

ρ′

ρ2
0

∂ζP0 − ∂ζΦ
′, (3)

Fig. 1. Spheroidal coordinate system with n = 13 subdomains used to
compute the equilibrium model of a star rotating at 60% of its break-up
velocity corresponding to the case of the 3 M� ESTER model (with the
central fraction in hydrogen Xc = 0.7) studied in Sect. 5. ζ and θ are the
pseudo-radius and the colatitude, respectively. ηi and ∆Ri(θ) are defined
in our mapping (Eq. (1)).

(∂t + Ω∂ϕ)

 ζ2rθ
r2 vζ +

ζ
(
r2 + r2

θ

)
r2rζ

vθ

 = 2Ω
ζ (rθ sin θ + r cos θ)

rrζ
vϕ −

1
ρ0
∂θP′

+
ρ′

ρ2
0

∂θP0 − ∂θΦ
′, (4)

ζ

rζ
(∂t + Ω∂ϕ)vϕ = −2Ω

ζ2 sin θ
r

vζ − 2Ω
ζ (rθ sin θ + r cos θ)

rrζ
vθ

−
1

ρ0 sin θ
∂ϕP′ −

ζ sin θ
rζ

(
ζ∂ζΩuζ + ∂θΩuθ

)
−

1
sin θ

∂ϕΦ′, (5)

where vζ , vθ, and vϕ are the contravariant components of the
velocity field u = viai and Ω = Ω(ζ, θ)(cos θer − sin θeθ) is the
differential angular velocity of the star. ρ, Φ and P are the fluid
density, gravitational potential and pressure, respectively. Each
of these scalar quantities has been expanded as

X(r, θ, ϕ, t) = X0(r, θ) + X′(r, θ, ϕ, t),

where X0 is the hydrostatic component of X and X′ the wave’s
associated linear fluctuation. Following Cowling (1941), we
neglect the fluctuation of the gravitational potential.

Next, the linearised continuity equation is obtained

(∂t + Ω∂ϕ)ρ′ = −
ζ2∂ζρ0

r2rζ
vζ −

ζ∂θρ0

r2rζ
vθ

−
ζ2ρ0

r2rζ

∂ζ
(
ζ2vζ

)
ζ2 +

∂θ
(
sin θvθ

)
ζ sin θ

+
∂ϕv

ϕ

ζ sin θ

 · (6)

Then, the linearised energy equation in the adiabatic limit is
derived

(∂t + Ω∂ϕ)
(

1
Γ1

P′

P0
−
ρ′

ρ0

)
=

N2∥∥∥geff

∥∥∥2 u · geff , (7)
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where Γ1 = (∂ ln P0/∂ ln ρ0)S (S being the macroscopic entropy)
is the adiabatic exponent, geff = −∇Φ0 + 1

2 Ω2∇(r2 sin2 θ) =
∇P0/ρ0 is the background effective gravity which includes the
centrifugal acceleration and N2 the squared Brunt–Väisälä fre-
quency (or buoyancy frequency) given by

N2(ζ, θ) = geff ·

(
−

1
Γ1

∇P0

P0
+
∇ρ0

ρ0

)
· (8)

Finally, we expand the wave’s velocity and fluctuations on
Fourier series both in time and in azimuth

u(ζ, θ, ϕ, t) ≡
∑
ωin,m

{
u(ζ, θ) exp[i(ωint − mϕ)]

}
, (9)

X′(ζ, θ, ϕ, t) ≡
∑
ωin,m

{
X̃(ζ, θ) exp[i(ωint − mϕ)]

}
, (10)

where m is the azimutal order and ωin is the wave frequency in
an inertial reference frame. In a differentially rotating region, the
waves are Doppler-shifted due to the differential rotation so we
can define the wave frequency ω in the rotating reference frame
as

ω(ζ, θ) = ωin − mΩ(ζ, θ). (11)

3. Generalised TAR

3.1. Approximation on the stratification profile:
N2(ζ, θ) ≈N2(ζ)

As in Paper I, in order to obtain a separable system of equa-
tions when applying the TAR, we assume here that the Brunt–
Väisälä frequency N2 depends mainly on the pseudo-radius ζ.
This implies also that the hydrostatic pressure P0 and the hydro-
static density ρ0 depend mainly on ζ. We present the validity
domain of this approximation in Sect. 5.1 using two-dimensional
ESTER stellar models.

3.2. The TAR with centrifugal acceleration in differentially
rotation stars

By assuming the following frequencies hierarchy imposed by the
TAR: ω � N and 2Ω � N (we verify this hierarchy in Sect. 7)
which leads to a mostly horizontal velocity equation because of
the strong buoyancy restoring force action in the vertical direc-
tion (|uζ | � {|uθ|, |uϕ|}), the approximation N2(ζ, θ) ≈ N2(ζ), the
Cowling approximation (Φ′ = 0), and the anelastic approxima-
tion (acoustic waves are filtered out), we can rewrite accordingly
the energy equation (Eq. (7)) and the three components of the
momentum equation (Eqs. (3)–(5)). First, we rewrite the energy
equation as

ρ̃

ρ0
=

1
iω

N2

geff

ζ2

r2rζ
uζ , (12)

where we neglect the term (1/Γ1)P′/P0 in Eq. (7) using the
anelastic approximation and we simplify the expression of the
squared Brunt–Väisälä frequency (Eq. (8)) using the approxi-
mation (3.1). Then, we simplify the radial momentum equation
(Eq. (3)) to

iω∂ζW̃ + N2ζ2Auζ = 0, (13)

where we neglect the term (P′/ρ2
0)∂ζρ0 thanks to the anelastic

approximation and the vertical component of the acceleration

and of the Coriolis acceleration, which are dominated by the
buoyancy term since we assume that ω � N and 2Ω � N
within the TAR. Subsequently, the latitudinal component of the
momentum equation (Eq. (4)) reduces to

iωζBuθ − 2ΩζCuϕ + ∂θW̃ = 0, (14)

where we neglect the terms involving the vertical wave velocity
since |uζ | � {|uθ|, |uϕ|} because of the strong stable stratifica-
tion. Finally, the azimuthal component of the momentum equa-
tion (Eq. (5)) simplifies, for the same reasons, into

iωζDuϕ +

(
2ΩζC +

sin θ
rζ

∂θΩ

)
uθ −

im
sin θ

W̃ = 0. (15)

The coefficients A, B, C, and D are defined in Table 1 and
W̃ = P̃/ρ0 is the normalised pressure. We thus obtain a system
of equations which has the same mathematical form as in the
case of: (i) spherically symmetric uniformly rotating (Bildsten
et al. 1996; Lee & Saio 1997) and differentially rotating (Mathis
2009) stars, (ii) weakly deformed uniformly rotating (Mathis &
Prat 2019) stars and (iii) strongly deformed uniformly rotating
(Paper I) stars. We thus still manage to partially decouple the
vertical and horizontal components of the velocity. By solving
the system formed by Eqs. (14) and (15) we can express uθ and
uϕ as a function of W̃ as follows

uθ(ζ, x) = Lθ
ωinm

[
W̃(ζ, x)

]
= −i

1
ζ

1
ω(ζ, x)

1
B(ζ, x)

1
√

1 − x2

×

[(
1 − x2

) (
1 +

ν2(ζ, x)C2(ζ, x)/B(ζ, x) + F (ζ, x)
E(ζ, x)B(ζ, x) − F (ζ, x)

)
∂x

+m
ν(ζ, x)C(ζ, x)
E(ζ, x) − F (ζ, x)

]
W̃, (16)

uϕ(ζ, x) = L
ϕ

ωinm

[
W̃(ζ, x)

]
=

1
ζ

1
ω(ζ, x)

1
E(ζ, x) − F (ζ, x)

1
√

1 − x2

×

[(
1 − x2

) (ν(ζ, x)C(ζ, x)
B(ζ, x)

+
F (ζ, x)

ν(ζ, x)C(ζ, x)

)
∂x + m

]
W̃,

(17)

where E and F are defined in Table 1, x = cos θ is the reduced
latitudinal coordinate and

ν(ζ, θ) =
2Ω(ζ, θ)
ω(ζ, θ)

, (18)

is the spin parameter.
The structure of the new equations that we obtain in the

spheroidal differentially rotating case is similar to the one with
uniform rotation (Paper I). But we can point out two major dif-
ferences. First, the wave frequency ω and the spin parameter ν
are no longer uniform but they now depend on the pseudo-radius
ζ and the reduced latitudinal coordinate x. That is why it is more
convenient to index the operators and the variables by ωin (inde-
pendent of ζ and θ) instead of using the spin parameter ν as in
Paper I. Second, a new coefficient F is involved in the derivation
of the dynamics of GIWs that models the action of differential
rotation.
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Table 1. Terms involved in the derivation of the generalised Laplace
tidal equation in the general case of spheroidal geometry and in the
particular case of spherical geometry with differential rotation.

Terms Spheroidal Spherical

A
1

r2rζ

1
ζ2

B
r2 + (1 − x2)r2

x

r2rζ
1

C
−(1 − x2)rx + rx

rrζ
x

D
1
rζ

1

E D −
ν2C2

B
1 − ν2x2

F −
ν

ω

CD

B
(1 − x2)∂xΩ −

νx
ω

(1 − x2)∂xΩ

4. Dynamics of low-frequency gravito-inertial waves

We now derive the generalised Laplace tidal equation for the nor-
malised pressure W̃, which allows us to compute the frequencies
and periods of low-frequency GIWs and to build the correspond-
ing seismic diagnostics. Applying the anelastic approximation
and the approximation N2(ζ, θ) ≈ N2(ζ) in the continuity equa-
tion (Eq. (6)) simplifies it into

ζ∂ζρ0uζ + ρ0

∂ζ
(
ζ2uζ

)
ζ

+
1

sin θ
∂θ(sin θuθ) −

im
sin θ

uϕ
 = 0. (19)

4.1. JWKB approximation

Under the assumption thatω�N, each scalar field and each com-
ponent of u can be expanded using the two-dimensional Jeffreys-
Wentzel-Kramers-Brillouin JWKB approximation (Fröman &
Fröman 1965). In this case, the spatial structure of the waves
can be described by the product of a rapidly oscillating plane-
like wave function in the pseudo-radial direction multiplied by
a slowly varying envelope:

W̃(ζ, θ) =
∑

k

wωinkm(ζ, θ)
Aωinkm

k1/2
V;ωinkm

exp
[
i
∫ ζ

kV;ωinkmdζ
] , (20)

u j(ζ, θ) =
∑

k

û j
ωinkm(ζ, θ)

Aωinkm

k1/2
V;ωinkm

exp
[
i
∫ ζ

kV;ωinkmdζ
] , (21)

with j ≡ {ζ, θ, ϕ}, k is the index of a latitudinal eigenmode (cf.
Sect. 4.4) and Aωinkm is the amplitude of the wave. Substituting
the expansion given in Eqs. (20) and (21) into Eqs. (13), (16)
and (17), the final pseudo-radial, latitudinal and azimuthal com-
ponents of the velocity are obtained:

ûζ
ωinkm(ζ, x) =

kV;ωinkm(ζ)
N2(ζ)

ωkm(ζ, x)
ζ2A(ζ, x)

wωinkm(ζ, x), (22)

ûθ
ωinkm(ζ, x) = Lθ

ωinm

[
wωinkm(ζ, x)

]
, (23)

ûϕ
ωinkm(ζ, x) = L

ϕ

ωinm

[
wωinkm(ζ, x)

]
. (24)

4.2. Approximation: A(ζ, θ) ≈ A(ζ)

As in Paper I, to be able to introduce the eigenvalues Λωinkm
which depends only on ζ and derive the generalised Laplace
tidal equation, we have to do a partial separation between the
pseudo-radial and latitudinal variables in the pseudo-radial com-
ponent of the velocity (Eq. (22)). So, we have to assume that the
coefficientA depends mainly on the pseudo-radius ζ. The valid-
ity domain of this approximation is presented in Sect. 5.1 using
two-dimensional ESTER stellar models. Unlike the uniformly
rotating case (Paper I), this assumption alone is insufficient to
partially separate the variables in Eq. (22) in the differentially
rotating case, so it is mandatory to assume a third approxima-
tion.

4.3. Approximation: Ω(ζ, θ) ≈ Ω(ζ)

The wave frequency in the rotating frame (Eq. (11)) depends
on ζ and θ. This dependency comes from the differential rota-
tion Ω(ζ, θ). Therefore, in order to preform the partial separa-
tion of variables in Eq. (22), the angular velocity Ω should have
a dependency only on ζ. We examine in detail the validity of
this approximation for two-dimensional ESTER stellar models
in Sect. 5.1.1.

4.4. Generalised Laplace tidal equation

Substituting the expansion given in Eqs. (20) and (21) into
Eqs. (13), (16) and (17), then replacing them into the continu-
ity equation (Eq. (19)) we obtain the generalised Laplace tidal
operator (GLTO)

Lωinm = ω∂x

[
1
ω

1
B(E − F )

(
E +

ν2C2

B

)
(1 − x2)∂x

]
−

mF
νC(E − F )

∂x + mω∂x

(
νC

ωB(E − F )

)
−

m2

(E − F )(1 − x2)
,

(25)

thus the generalised Laplace tidal equation (GLTE) for the nor-
malised pressure wωinkm is written as

Lωinm [wωinkm] = −Λωinkm(ζ)wωinkm, (26)

where Λωinkm are the eigenvalues deduced from the following
dispersion relation:

k2
V;ωinkm(ζ) =

N2(ζ)A(ζ)
ω2

km(ζ)
Λωinkm(ζ), (27)

and wωinkm the generalised Hough functions (eigenfunctions) of
the GLTE. We choose to define our latitudinal ordering number
k to enumerate, for each (ωin,m), the infinite set of solutions as
in Lee & Saio (1997), Mathis (2009) and Mathis & Prat (2019).

The GLTO (Eq. (25)) reduces to the Laplace tidal operator
in the case of a uniformly rotating deformed star (Paper I). In
this case, ω and ν are constants so we can take them out of the
derivatives and F = 0; thus we obtain

Lνm = ∂x

[
1
B

(
1 +

ν2C2

EB

)
(1 − x2)∂x

]
+

(
mν∂x

(
C

EB

)
−

m2

E(1 − x2)

)
. (28)

Furthermore, the GLTO (Eq. (25)) reduces to the Laplace tidal
operator derived by Mathis (2009) in the case of a spherical dif-
ferentially rotating star. In this case, we can replace coefficients
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A, B, C,D, and E by their analytical expressions in the particu-
lar case of a spherical geometry presented in Table 1 of Paper I,
so the new coefficient F defined here can be written in this par-
ticular case as

F (ζ, x) = −
νx
ω

(1 − x2)∂xΩ, (29)

thus we obtain

Lωinm = ω∂x

[
1 − x2

ωG
∂x

]
−

m∂xΩ

ωG
(1 − x2)∂x

+

(
mω∂x

(
νx
ωG

)
−

m2

G(1 − x2)

)
, (30)

with

G(ζ, x) = E(ζ, x) − F (ζ, x) = 1 − ν2x2 +
νx
ω

(1 − x2)∂xΩ. (31)

4.5. Asymptotic frequency and period spacing of
low-frequency GIWs

By substituting the dispersion relation (Eq. (27)) into the follow-
ing quantisation condition in the vertical direction defined by
Unno et al. (1989), Gough (1993), and Christensen-Dalsgaard
(1997) and used in Paper I∫ ζ2

ζ1

kV;ωinnkmdζ = (n + 1/2)π, (32)

where ζ1 and ζ2 are the turning points of the Brunt–Väisälä fre-
quency N and n is the radial order, we compute numerically
the asymptotic frequencies of low-frequency GIWs in deformed
differentially rotating stars in the inertial frame. We describe in
detail the used numerical method in Sect. 6. In the case of a weak
differential rotation, we can extract, analytically, the expression
of the asymptotic frequencies in the rotating frame

ωnkm =

∫ ζ2

ζ1
N(ζ)

√
A(ζ)Λωin

n km(ζ)dζ

(n + 1/2)π
, (33)

with

ωin
n = ωin

nkm = ωnkm + mΩav, (34)

where Ωav is here the averaged rotation. Then by applying a first-
order Taylor development following Bouabid et al. (2013), we
can generalise his expression of the corresponding period spac-
ing obtained in the spherical case

∆Pkm = Pnkm − Pn−1km ≈
2π2∫ ζ2

ζ1
N

√
AΛωin

n+1kmdζ (1 + α)
, (35)

with

α =
1
2

∫ ζ2

ζ1
N

√
AΛωin

n km
d ln Λ

ωin
n km

d lnωin dζ∫ ζ2

ζ1
N

√
AΛωin

n kmdζ
· (36)

5. Application to rapidly and differentially rotating
early-type stars

As in Paper I, we use here also ESTER models (Espinosa Lara
& Rieutord 2013) to implement our equations. We use 3 M� stel-
lar models with a hydrogen mass fraction in the core Xc = 0.7
rotating at the equator at [0%, 90%] of the Keplerian break-up
rotation rate.

5.1. Domain of validity of the generalised TAR

We study, within the framework of ESTER models, the validity
domain of the three approximations (3.1), (4.2) and (4.3) that are
necessary to build the TAR in the case of rapidly differentially
rotating deformed bodies:

N2(ζ, θ) ≈ N2(ζ), (37)
A(ζ, θ) ≈ A(ζ), (38)
Ω(ζ, θ) ≈ Ω(ζ). (39)

The validity of the approximations (37) and (38) is well dis-
cussed in Paper I (the N2 and A profiles are the same in
the uniformly and differentially rotating cases). Here, we focus
on determining the validity domain of the approximation (39)
by applying the same method used to evaluate the other two
assumptions that we recall here.

5.1.1. Validity of Ω(ζ, θ) ≈ Ω(ζ)

To visualise the problem, first we illustrate in Fig. 2 the function
Ω(ζ, θ) computed with an ESTER model (3 M�, Xc = 0.7) rotat-
ing at the equator at Ω/ΩK = 20%. We can see that the angular
velocity is equal to 14.66 µHz at the core, and at the surface we
get 11.41 µHz at the pole and 12.22 µHz at the equator. Then, to
evaluate the committed error by adopting the approximation

Ω(ζ, θ) ≈ Ω(ζ), (40)

we represent in Fig. 3 the angular velocity profile as a function
of the pseudo-radius ζ for different values of the colatitude θf ,
at a fixed rotation rate at the equator Ω = 0.2ΩK. Visually, we
can notice that the latitudinal gradient of the angular velocity is
less important than the radial gradient. In order to confirm this
observation, we show, in the bottom panels, the corresponding
relative error ∆Ωθf (ζ) between the exact value Ω(ζ, θf) given by
the model and the approximated model Ωapprox(ζ) (the weighted
average of the exact value over the colatitude θ, Ω̄(ζ)). We define
these quantities as follows:

δΩθf (ζ) =
Ωapprox(ζ) −Ω(ζ, θf)

Ω(ζ, θf)
, (41)

with

Ωapprox(ζ) = Ω̄(ζ) =

∫ π/2
0 Ω(ζ, θ) sin θdθ∫ π/2

0 sin θdθ

=

∫ π/2

0
Ω(ζ, θ) sin θdθ, (42)

where θf is a fixed value of the colatitude θ and we used the
symmetry propriety of Ω with respect to the equator. We can
conclude that this approximation is valid with a level of con-
fidence of 90% for all pseudo-radii ζ and for all rotation rates
Ω/ΩK ∈ [0%, 90%] since the error rate is always lower than the
maximal error rate fixed to 10%. We also recall here that within
the physics treated in the ESTER code the differential rotation
results from the baroclinic meridional circulation (Zahn 1992;
Maeder & Zahn 1998; Mathis & Zahn 2004; Rieutord 2006) and
an isotropic viscous transport. A weaker dependence of Ω on
θ can be enforced by horizontal turbulent transport (Zahn 1992;
Maeder 2003; Mathis et al. 2004, 2018; Park et al. 2021) or mag-
netic fields (Mestel & Weiss 1987).
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Fig. 2. Angular velocity profile Ω(ζ, θ) of an ESTER model (3 M�, Xc =
0.7) rotating at the equator at Ω/ΩK = 20% (the isolines are represented
in black).

5.1.2. Validity domain of the TAR

We determine the validity domain of the three approximations
(37)–(39) as a function of the rotation rate and the pseudo-radius
by varying systematically the normalised rotation rate of the star
Ω/ΩK and by calculating for each case the associated maximum
relative error. Afterwards, we fix a maximum error rate equal
to 10% and we deduce the pseudo-radius limit ζlimit where the
maximum relative error exceeds this threshold and we decide
that the approximations become invalid. Physically, it means
that the variation of the structural properties and rotation pro-
file are weak in the latitudinal direction and vary mostly with the
pseudo-radius that allows us to build the TAR. The best method
in the future to improve the control of the adopted assumptions
would be to compute asymptotic frequencies using the latitudi-
nally averaged quantities within the TAR and to compare them
to frequencies computed using 2D oscillation codes applied to
deformed models (e.g. Ouazzani et al. 2015, 2017; Reese et al.
2021). In Fig. 4, we display the pseudo-radius limit ζlimit as a
function of the rotation rate Ω/ΩK for 3 solar masses ESTER
models with Xc = 0.7 and Xc = 0.2. This curve defines the
validity domains of the approximations (37)–(39) which conse-
quently define the validity domain of the TAR. We note that the
influence of the hydrogen mass fraction in the core Xc on the
validity domain of the TAR is very weak. It is therefore possible
to apply the generalised TAR to differentially rotating early-type
stars rotating up to 20% of the Keplerian critical angular veloc-
ity. This limit is the same as the one found in Paper I, so the
differential rotation have no influence on the validity domain of
the TAR. Chemical gradients created near the core along the evo-
lution are not treated in 2D ESTER models yet. Their treatment
can be foreseen by adding them ‘by hand’ to explore their effects

Fig. 3. Profile of the angular velocity Ω and the relative error δΩθf of the
approximation Ω(ζ, θ) ≈ Ω(ζ) as a function of ζ at different colatitudes
θf using an ESTER model rotating at the equator at 20% (above) and
90% (below) of the Keplerian break-up rotation rate (the light orange
area indicate the margin of error which we allow).

as this has been done for instance for acoustic glitches by Reese
et al. (2014, 2021).

5.2. Eigenvalues and Hough functions

We solve the GLTE for different pseudo-radii, wave frequency
in the inertial frame, and rotation rates within the scope of
the defined validity domain using an implementation based on
Chebyshev polynomials (Wang et al. 2016) as in Paper I. Here,
we are no longer able to calculate the spectrum of the GLTE as
a function of the spin parameter ν because in the differentially
rotating case, ν is no longer a constant value but it becomes a
function of ζ and θ. So to make the comparison between the new
results and our previous results clear, we define the weighted
average of the spin parameter

ν̄ =

∫ 1

0

∫ π/2

0
ν(ζ, θ) sin θdθdζ. (43)

Figure 5 shows the eigenvalues Λωinkm as a function of ωin

for m = 1 and ζ = ζlimit = 1 at Ω/ΩK = 0.2. Since Ω points
in the direction of θ = 0 and the oscillations are proportional
to ei(ωt−mϕ), a prograde (retrograde) oscillation correspond to a
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Fig. 4. Validity domain of the TAR within the framework of 3 M�, Xc =
0.7 (above) and 3 M�, Xc = 0.2 (below) ESTER models as a function
of the rotation rate Ω/ΩK and the pseudo-radius ζ (with 90% degree of
confidence).

positive (negative) value of the product mν which depends on
the spatial coordinates. This figure reveals that the differential
rotation of the star causes at ζ = 1 a modest gradual shift in the
eigenvalues. We recall here the two main families of eigenvalues.
The first one being gravity-like solutions (Λωinkm ≥ 0). They exist
for any value of ωin and we attach positive k’s to them. They
correspond to gravity waves (gmodes) modified by rotation. The
second one is Rossby-like solutions. They exist only for specific
values of wave frequency in the inertial reference frame (ωin ∈

[ωin
− , ω

in
+ ]) and we attach negative k’s to them. They appear only

in rotating stars and they correspond to Rossby modes (r modes)
if they are retrograde and have positive eigenvalues (Λωinkm > 0)
and to overstable convective modes if they are prograde and have
negative eigenvalues (Λωinkm < 0).

Contrary to the uniformly rotating case we obtain here eigen-
values which depend considerably on the pseudo-radius ζ as
shown in Fig. 6 where we represent the spectrum of the GLTE
as a function of the pseudo-radius at Ω/ΩK = 0.2, m = 1 and
ωin = 1.12 × 10−4 rad s−1. More precisely we can see that the
differential rotation influence especially the region close to the
convective core (0.153 ≤ ζ ≤ 0.35) where the rotation is maxi-
mal and the radial gradient of the angular velocity is the highest
(cf. Fig. 2). We can see that this dependency becomes very low

Fig. 5. Spectrum of the GLTE as a function of the wave frequency in the
inertial frame ωin at ζ = 1 and m = 1 for Ω = 0.2ΩK in the case of a uni-
formly rotating star (above) and of a differentially rotating star (below).
Blue (respectively, orange) dots correspond to even (respectively, odd)
eigenfunctions. The vertical lines correspond to the mean values of the
spin parameter ν̄.

in the external region 0.5 ≤ ζ ≤ 1 where we obtain eigenvalues
very close to the ones in the uniformly rotating case.

We focus now on the influence of the differential rotation
on the generalised Hough functions wkm which varies with the
pseudo-radius ζ and the horizontal coordinate x. This depen-
dence is illustrated in Fig. 7 at Ω/ΩK = 20% for prograde dipole
{k = 0,m = 1} modes with ωin = 10−4 rad s−1 and retrograde
Rossby {k = −2,m = −1} modes with ωin = −5.5 × 10−5 rad s−1

for four different cases: Fig. 7a represents our starting point
where the rotation is uniform (Paper I); in Fig. 7b, we take into
account the pseudo-radial differential rotation; in Fig. 7c, we
take into account the latitudinal differential rotation and Fig. 7d
represents our final point where we take into account the full
differential rotation profile. As the pseudo-radius decreases from
the surface (ζ = 1) to the edge of the radiative zone (ζ = 0.153),
Rossby-like solutions are slightly modified, whereas gravity-
like solutions considerably change. We can also see that the
major modification comes from the differential rotation gradi-
ent along the pseudo-radius ζ (Fig. 7b) while the differential
rotation according to the colatitude θ modifies marginally the
gravity-like solutions and has almost no impact on the Rossby-
like solution (Fig. 7c). On top of that, we can see that the Hough
functions at the surface are not too affected in all the cases and
that the strongest variation occur in the interior of the star where
the pseudo-radial gradient of the rotation is high.

Overall, we can see clearly in Fig. 7 that the differential rota-
tion strongly influences and modifies the eigenfunctions of the
GLTE by introducing a new dependency on the pseudo-radial
coordinate ζ, whereas in the spherically symmetric uniformly
rotating case they were only dependant on the latitudinal coor-
dinate θ while they were also slightly dependent on ζ in the uni-
formly rotating deformed case. In fact, the gravity-like and the
Rossby-like solutions shift as the distance from the border of
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Fig. 6. Spectrum of the GLTE as a function of the pseudo-radius for
m = 1 and ωin = 1.12 × 10−4 rad s−1 at Ω/ΩK = 0.2 in the case of a uni-
formly rotating star (above) and of a differentially rotating star (below).
Blue (respectively, orange) dots correspond to even (respectively, odd)
Hough functions.

the radiative zone of the star (ζ = 0.153) to its surface (ζ = 1)
increases. More specifically, we observe that the gravity-like
solutions migrate onwards, away from the equator (x = 0), caus-
ing a broadening of its shape. This corresponds to the modifica-
tion of the region of propagation of gravito-inertial waves by the
differential rotation (Mathis 2009; Mirouh et al. 2016; Prat et al.
2018). Indeed, since the angular velocity Ω(ζ) decreases with
the distance to the centre, the equatorial trapping of sub-inertial
(ν̄ > 1) gravito-inertial modes become less and less important.

6. Asymptotic seismic diagnosis

6.1. Asymptotic period spacing pattern

In order to compute the period spacing patterns, we adapt the
method developed in Henneco et al. (2021) and used in Paper
I. First, we calculate for each radial order n of a given mode
(k,m), the corresponding asymptotic frequencies in the inertial
frame ωin

nkm using Eqs. (11) and (33). Then, we can calculate the
asymptotic periods in the inertial frame (Pin

nkm = 2π/ωin
nkm) and

the corresponding period spacing which is shown in Fig. 8 for
{k = 0,m = 1}, {k = 1,m = 0}, and {k = 0,m = −1} modes. The
periods represented here are calculated for radial orders between
n = 5 and n = 50 but the Cowling approximation that we adopted
here to develop our formalism is valid only for high radial orders
(Bouabid et al. 2013; Ouazzani et al. 2017). That is why we
hatched the region with low radial order (n < 20), so we can
identify where the Cowling approximation is potentially invalid.
We find a net decrease in the period spacing ∆Pin

nkm caused by
the differential rotation. The centrifugal and the differential rota-
tion effects are moderately significant when assessed within the
validity domain of the generalised TAR nonetheless the global

characteristics of the period spacing pattern are conserved. This
is in good agreement with the results obtained by Ouazzani et al.
(2017). They computed gravito-inertial modes and their period
spacing (represented in Fig. 6 of their article) using the ACOR
2D oscillation code with deformed stellar models (see Ouazzani
et al. 2015 for details on their method), which take the cen-
trifugal acceleration into account following the method of defor-
mation of acoustic models by Roxburgh (2006). Ballot et al.
(2012) also studied the effect of the centrifugal acceleration on
the period spacing. They found, for a sectoral mode (k = 0), a
discrepancy between the period spacing (represented in Fig. 2 of
their article) computed using the spherical TAR and the complete
computations using TOP with spheroidal models. They demon-
strate that this discrepancy originates in the centrifugal distortion
of the 2D models. But for other modes, they do not see a consid-
erable effect of the centrifugal deformation on the period spacing
pattern in agreement with our results.

Even though the centrifugal deformation effects predicted by
the TAR are weak in intermediate-mass stars, they are theoret-
ically detectable for some radial orders of several modes using
observations from TESS (Transiting Exoplanet Survey Satellite;
Ricker et al. 2014) and Kepler (Paper I). This is why we do not
neglect them and we study the differential rotation and the defor-
mation effects simultaneously. To quantify the induced varia-
tion and evaluate its detectability, we compute the frequency
differences.

6.2. Detectability of the differential rotation effect

To evaluate the detectability of the differential rotation effect
with space-based photometric observations, we compute first the
frequency differences ∆ fcentrifugal between asymptotic frequen-
cies calculated in the standard TAR (TARs) and those calculated
in the generalised TAR with a uniform rotation (TARgu ) and a
differential rotation (TARgd ) through Eq. (33):

∆ f (n) = | fTARx (n) − fTARy (n)|, (44)

with x and y two parameters that allow us to choose the effect to
be evaluated:

(x, y) ≡


(gu, s) for the effect of the centrifugal acceleration;
(gu, gd) for the effect of the differential rotation;
(gd, s) for the two effects simultaneously.

Then, by comparing the obtained frequency differences with
the frequency resolutions ( fres = 1/Tobs) of Kepler and TESS
light curves covering quasi-continuously observation times of
Tobs = 4 years and Tobs = 351 days, respectively, we can
deduce the radial orders n’s for which the frequency differences
are expected to be theoretically detectable. In Fig. 9, we dis-
play these results for {k = 0,m = 1}, {k = 1,m = 0}, and
{k = 0,m = −1} modes rotating at 0.2 ΩK. In this figure, we
show the detectability of the centrifugal effect, the differential
rotation effect and of the two effects taken simultaneously into
account. Unlike the centrifugal effect, we can see clearly that the
effect of the differential rotation for these modes is, theoretically,
largely detectable for all radial order higher than 15 using TESS
and Kepler observations (not represented here because its obser-
vation time is larger than the one of TESS so the detectability
using Kepler is guaranteed). The detectability of the centrifugal
effect is discussed in details in Paper I.

As we pointed out in Paper I, this is a formal evaluation
due to the presence of large correlations between the different
parameters of our stellar models. This will mask the effect of the
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Fig. 7. Generalised Hough functions (normalised) as a function of the horizontal coordinate x at different pseudo-radii from ζ = 0.153 (blue) to
ζ = 1 (yellow) at Ω/ΩK = 0.2 for gravity-like solutions {k = 0,m = 1} with ωin = 10−4 rad s−1 corresponding to ν̄ = 10.62 (the solid lines)
and Rossby-like solutions {k = −2,m = −1} with ωin = −5.5 × 10−5 rad s−1 corresponding to ν̄ = 6.48 (the dotted lines) in the case of a star:
(a) uniformly rotating, (b) differentially rotating according to the pseudo-radius, (c) differentially rotating according to the colatitude and (d)
differentially rotating according to the pseudo-radius and the colatitude.

centrifugal acceleration and the differential rotation in forward
asteroseismic modelling analyses, even when it is theoretically
detectable:

∆ fi > fres, i ≡ {centrifugal, differential}. (45)

7. Evaluation of the terms hierarchy imposed by the
TAR within differentially rotating deformed stars

The hierarchy of terms imposed by the TAR can be summarised
by the following frequency hierarchy:

2Ω � N, (46)
ω � N, (47)

which ensures the other hierarchies. Using the Brunt–Väisälä
frequency and rotation profiles from ESTER models and using
the asymptotic frequencies calculated in Sect. 6, we compare
these frequencies and we discuss whether the TAR is still valid
in differentially rotating deformed stars as in Paper I.

7.1. The strong stratification assumption: 2Ω � N

We evaluate the term N/2Ω using 3 M�, Xc = 0.7 ESTER mod-
els for rotation rates Ω/ΩK ∈ [0.1, 0.9]. As shown in Fig. 10,
the strong stratification assumption is valid only in the radiative
zone away from the border between the convective core and the
radiative envelope (ζ ≥ 0.2) at Ω/ΩK ≤ 0.2. Beyond this critical
value, the Brunt–Väisälä frequency and the frequency of rota-
tion have a close order of magnitude so the strong stratification
approximation is no longer valid.

7.2. The low frequency assumption: ω � N

We evaluate the term N/ω using the asymptotic frequencies for
{k = 0,m = 1}, {k = 1,m = 0}, and {k = 0,m = −1} modes
calculated in Sect. 6. As shown in Fig. 11, the low frequency
assumption is valid in all the space domain for the {k = 0,m = 1}
mode only for high radial orders (n > 20). Below this critical
value, the Brunt–Väisälä frequency and the wave frequency can

have a very close order of magnitude near the transition layer
between the convective core and the radiative envelope. But far
from this interface, the low frequency approximation is valid for
all the modes.

8. Discussion and conclusions

This work is a continuation of our previous study where we
generalised the TAR in the case of strongly deformed, rapidly
and uniformly rotating stars and planets. In this perspective,
we study the possibility of carrying out a new generalisation
of the TAR that abandons the assumption of uniform rotation
and takes into account the radial and latitudinal differential rota-
tion. We approached this exploration by deriving the generalised
Laplace Tidal equation in a spheroidal coordinate system. We
relied mainly on two assumptions that will define the validity
domain of the generalised TAR (Paper I). The equation that we
derive has a similar form to the one that is obtained when the
TAR is applied to weakly rotating spherical stars (Lee & Saio
1997), differentially rotating spherical stars (Mathis 2009; Van
Reeth et al. 2018), moderately rotating weakly deformed stars
(Mathis & Prat 2019; Henneco et al. 2021) and uniformly rotat-
ing strongly deformed stars (Paper I). So with this new formal-
ism, we can study GIWs in the radiative region of all types of
stars and planets.

We apply this general formalism to rapidly and differen-
tially rotating early-type stars using 2D ESTER models (M =
3 M�, Xc = 0.7) where we found that the signature of the dif-
ferential rotation effect in the period spacing patterns is stronger
than the signature of the centrifugal effect for the {k = 0,m = 1}
mode at Ω/ΩK = 20%, typically up to a factor twenty. This
is caused essentially by the presence of a strong pseudo-radial
Ω-gradients in stellar interior of early-type stars. This new gen-
eralisation of the TAR can be used to study the dissipation of
stellar and planetary tides induced by low-frequency GIWs in
rapidly and differentially rotating deformed stars and planets and
the angular momentum transport with a formalism that can be
directly implemented in ESTER models.

The next step will be the inclusion of the magnetic field in
a non-perturbative way within the generalised TAR formalism.
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Fig. 8. Period spacing pattern in the inertial frame computed for {k =
0,m = 1} (top) {k = 1,m = 0} (middle), {k = 0,m = −1} (bot-
tom) modes at Ω/ΩK = 20% in a spherical (red) and a deformed
(blue) star uniformly rotating (at the weighted mean of the rotation rate
Ω = 12.86 µHz) and in a deformed star differentially rotating (yellow).
The hatched pink area indicates where the Cowling approximation is
potentially invalid. (The fluctuations in the period spacing pattern are
caused by the numerical noise which is introduced by the numerical
derivatives of the mapping with respect to ζ and θ used in the resolution
of the GLTE.)

So far, Prat et al. (2019, 2020) and Van Beeck et al. (2020) have
focused on the case where magnetic fields are weak enough to
be treated within a perturbative treatment to study the effects of
a magnetic field on the seismic parameters of g modes which
become magneto-gravito inertial modes (Mathis & de Brye
2011, 2012). So a possible follow-up of this work (Paper III)
is to take into account the stellar magnetic fields and generalise
the TAR framework to the case of differentially rotating strongly
deformed magnetic stars.

Fig. 9. Detectable radial orders n for {k = 0,m = 1} (top) {k = 1,m = 0}
(middle), {k = 0,m = −1} (bottom) modes at a rotation rate Ω/ΩK =
20% based on the frequency resolution of TESS. Blue, yellow and red
dots represent respectively the centrifugal effect, the differential rotation
effect and the sum of the two effects (the hatched pink area indicates
where the Cowling approximation is potentially invalid).

Fig. 10. N/2Ω term as a function of the pseudo-radius ζ at different
rotation rates Ω/ΩK (the hatched area represents the convective region
of the star).
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Fig. 11. N/ω term as a function of the pseudo-radius ζ and the radial
order n for the {k = 0,m = 1} (top), {k = 1,m = 0} (middle) and
{k = 0,m = −1} (bottom) modes at Ω/ΩK = 20%.
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