
HAL Id: cea-03469725
https://cea.hal.science/cea-03469725

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary linear ECCs optimized for bit inversion in
memories with asymmetric error probabilities

Valentin Gherman, Samuel Evain, Bastien Giraud

To cite this version:
Valentin Gherman, Samuel Evain, Bastien Giraud. Binary linear ECCs optimized for bit inver-
sion in memories with asymmetric error probabilities. DATE 2020 - 2020 Design, Automation
& Test in Europe Conference & Exhibition, IEEE, Mar 2020, Grenoble, France. pp.298-301,
�10.23919/DATE48585.2020.9116531�. �cea-03469725�

https://cea.hal.science/cea-03469725
https://hal.archives-ouvertes.fr

 1

Binary Linear ECCs Optimized for Bit Inversion in

Memories with Asymmetric Error Probabilities

Valentin Gherman†, Samuel Evain†, Bastien Giraud‡
†Paris-Saclay Campus, Nano-INNOV

91191 Gif sur Yvette, France
‡CEA-Leti, Minatec Campus,

Grenoble, France

Abstract—Many memory types are asymmetric with respect to
the error vulnerability of stored 0’s and 1’s. For instance,
DRAM, STT-MRAM and NAND flash memories may suffer
from asymmetric error rates. A recently proposed error-
protection scheme consists in the inversion of the memory words
with too many vulnerable values before they are stored in an
asymmetric memory. In this paper, a method is proposed for the
optimization of systematic binary linear block error-correcting
codes in order to maximize their impact when combined with
memory word inversion.

Keywords—memory word inversion; asymmetric error rates

I. INTRODUCTION

The majority of memory technologies have strong asym-
metries with respect to the error rates that affect stored 0’s and
1’s. For instance, in DDR4 memories, the difference between
the error rates may go up to 2 decades at 30°C and 4 decades
at 60°C [6]. In 2-bit NAND flash memories, the first bit pro-
grammed in a storage cell is more vulnerable to retention er-
rors when it is equal to 0 [1]. In STT-MRAM memories,
stored 1’s are more vulnerable to write and retention errors
than stored 0’s. The resulting error rate difference may reach
3 orders of magnitude [3][8].

A mitigation technique used to address the error rate asym-
metry consists in the inversion before storage, via the logical
not operator, of the memory words with too many vulnerable
values. This solution enables significant error rate reductions
despite the addition of one bit per memory word to indicate its
inversion state [6].

This paper is focused on the optimal selection of error-
correcting codes (ECC) in conjunction with memory word in-
version. The objective is the evaluation of the uncorrectable
error rate improvement and the impact of considering the vul-
nerable values among the check-bits when taking the decision
of inverting a code word.

II. SYSTEMATIC BINARY LINEAR BLOCK ECCS

Linear block ECCs can be defined with the help of a
parity-check matrix or H-matrix. Any code word 𝑣 of an ECC
should satisfy the following relation [7]:

𝐻 ∙ 𝑣 = 0 (1)

where 𝑣 is a column vector. In binary ECCs, the H-matrix
and code words contain only binary values.

Error correction and detection properties are ensured via
an appropriate selection of the H-matrix columns. For exam-
ple, single-error correction is enabled if each H-matrix column
is unique and different from the all-0 vector [4]. Double-error
detection can be achieved if an additional check-bit is used to
impose a fixed parity to all code words [2].

In systematic ECCs, one can make the distinction between
data-bits and check-bits. The H-matrix of an ECC with k data-
bits and r check-bits, can be structured as follows [2]:

𝐻 = [𝑃, 𝐼] (2)

where P is an r×k matrix and Ir is the r×r identity matrix.

Each line of the P-matrix can be used to compute one
check-bit. For example, consider the H-matrix below:

Any code word v = (d1, d2, d3, c1, c2, c3) should satisfy (1)
and its check-bits can be calculated as follows:

𝑐 = 𝑑 + 𝑑
𝑐 = 𝑑 + 𝑑
𝑐 = 𝑑 + 𝑑 + 𝑑

 (3)

where the symbol ‘+’ stands for the modulo-2 sum.

According to (3), if all data-bits are inverted the check-bits
c1 and c2 will preserve their values while c3 will be inverted.
This is due to the fact that c3 depends on an odd number of
data-bits while c1 and c2 depend on an even number of data-
bits. Generally, if all data-bits are inverted a check-bit is in-
verted if and only if it depends on an odd number of data-bits.

In the following, it will be assume that an extra bit is in-
serted in each code word to indicate its inversion state [6].
During the ECC encoding and decoding operations, the inver-
sion bit is treated as a data-bit.

III. CODE WORD INVERSION

Definition 1: In a systematic binary linear block ECC, a
P-matrix line is called odd (even) if it contains an odd (even)
number of entries equal to 1. Equivalently, an odd (even)
check-bit depends on an odd (even) number of data-bits.

 𝐻 =
 0 1 1
 1 0 1
 1 1 1

1 0 0
0 1 0
0 0 1

𝑃 𝐼

 2

Definition 2: A binary ECC is called inversion invariant if the
inversion of all bits in a code word results in another code
word.

Theorem: A systematic binary linear block ECC is inversion
invariant if and only if all its check-bits are odd. (An informal
demonstration is given at the end of Section II.)

There are systematic binary linear block ECCs that cannot
be made inversion invariant. For example, it is impossible to
find an inversion invariant ECC with code words that have an
odd number of bits and a fixed overall parity. This is due to
the fact that inverting an odd number of bits will change their
overall parity. It can be shown that a systematic binary linear
block ECC with such properties contains at least one even
check-bit. This results from the fixed overall parity of the code
words that requires the existence of a linear combination of H-
matrix lines equal to an all-1 vector [2]. This implies that at
least one H-matrix line contributes to this linear combination
with an odd number of 1’s since the all-1 vector has an odd
number of bits, just like the code words. Consequently, the
systematic form of the H-matrix (2) will contain at least one
line with an odd number of 1’s which corresponds to an even
P-matrix line and an even check-bit.

When inverting a code word that belongs to an ECC which
is not inversion invariant, the even check-bits need to be kept
unchanged in order to get another code word. In this way, the
capability to perform error detection and correction on in-
verted words is preserved.

In order evaluate the impact of code word inversion, con-
sider that the number of vulnerable values in a code word (cw)
is decomposed as follows:

𝑐𝑤 = + 𝑖 + 𝑙 + 𝑗 (4)

where:

 k is the number of data-bits per code word except for the
inversion bit,

 k is assumed to be an even number,

 + 𝑖 represents the number of vulnerable values among

the data-bits − ≤ 𝑖 ≤ ,

 l and j stand for the number of vulnerable values among
the even and odd check-bits, respectively.

In (4), it is implicitly assumed that a non-inversion state of
a code word is indicated by a non-vulnerable value assigned
to the inversion bit. Recalling that the inverted version of a
code word is obtained by inverting all bits with the exception
of the even check-bits, the number of vulnerable values in the
inverted version of a code word (𝑐𝑤) can be decomposed as
follows:

𝑐𝑤 = − 𝑖 + 1 + 𝑙 + 𝑟 − 𝑠 − 𝑗 (5)

where:

 1 stands for the vulnerable value taken by the bit used to
indicate the code word inversion status,

 r represents the number of check-bits and s the number
of even check-bits (0 ≤ 𝑙 ≤ 𝑠 ≤ 𝑟),

 r-s stands for the number of odd check-bits(0 ≤ j ≤ r-s).

When the number of vulnerable values in a code word (cw)
is larger than in its inverted version (𝑐𝑤), the inverted version
will be stored and the maximum number of vulnerable values
per code word (𝑚𝑎𝑥) can be computed as follows:

𝑐𝑤 ≥ 𝑐𝑤 (6)

𝑖 + 𝑗 ≥ (7)

𝑚𝑎𝑥 ≤ (8)

where (8) results from the combination of (5) and (7) and from
the fact that l is smaller than or equal to s. No assumption is
made on whether the vulnerable bit value is equal to 0 or 1.
Similarly, it can be shown that (8) holds in the case when a
code word has less vulnerable values than its inverted version.
The same result is achieved if the non-inversion state of a code
word is indicated by a vulnerable value assigned to the inver-
sion bit.

According to (8), in the presence of selective code word
inversion, the maximum (worst-case) number of vulnerable
values per code word increases linearly with s i.e. the number
of even check-bits. Consequently, among ECCs with the same
error detection and correction capability, a maximum error
rate improvement can be achieved by an ECC with a minimal
number of even check-bits. In inversion invariant ECCs, the
number of even check-bits is equal to zero. When the inver-
sion invariance cannot be achieved, one should select an ECC
with a single even check-bit. Our experience shows that it is
relatively easy to find linear ECCs with single-error correction
(SEC) or double-error correction (DEC) and a minimal num-
ber of even check-bits.

During a memory write operation, the decision of invert-
ing a code word should be taken based on the evaluation of

either (6) or (7). If one adds to both sides of (7) and discard
the situation when the operands are equal, one obtains:

+ 𝑖 + 𝑗 > (9)

which means that the decision of inverting a code word can be
taken based on the comparison between a constant and the
number of vulnerable values among its data-bits and odd
check-bits.

The evaluation of (9) can only be performed after the cal-
culation of the odd check-bits and this may have an impact on
the latency of memory write operations. This latency overhead
can be avoided if the decision of inverting a code word is
based on only the number of vulnerable values among the
data-bits according to the expression below:

+ 𝑖 > (10)

where the right-hand side is a constant.

 3

According to (10), the code words in which data-bits are
vulnerable do not have to be inverted. As the number of such
code words is usually very high, in some of them all check-
bits will have a vulnerable value. Accordingly, the maximum
number of vulnerable values per code word (max) becomes:

𝑚𝑎𝑥 ≤ (11)

In the case of code words with fixed parity, the number of
vulnerable values per code word is either even or odd and max
should be even or odd, respectively. For example, if the vul-
nerable value is equal to 1 then max should be the largest even
number that fulfills either (9) or (11).

IV. SIMULATION RESULTS

This section is focused on the impact of considering the
vulnerable values among the check-bits when taking the deci-
sion of inverting a code word. Only ECCs with a maximum
number of odd check-bits are considered.

The first investigated metric is the uncorrectable bit error
rate (UBER). When the stored 0’s and 1’s have different error
rates, the UBER can be computed as follows [5]:

𝑈𝐵𝐸𝑅 =
1

𝑘
1 −

𝑁
𝑗

𝑅𝐵𝐸𝑅 (1 − 𝑅𝐵𝐸𝑅) ×

×
𝑁
𝑖 − 𝑗

𝑅𝐵𝐸𝑅 (1 − 𝑅𝐵𝐸𝑅) () (12)

where:

 k is the number of data-bits per code word,

 corr stands for the maximum number of correctable er-
rors per code word,

 i is iterated over the numbers of correctable erroneous
bits in a code word,

 j and i-j represent numbers of correctable erroneous bits
initially programmed to vulnerable and non-vulnerable
values, respectively,

 𝑁 and 𝑁 stand for the numbers of vulnerable and non-
vulnerable values in a code word,

 𝑅𝐵𝐸𝑅 and 𝑅𝐵𝐸𝑅 represent the raw bit error rates of
the vulnerable and non-vulnerable values.

Each term of the sum operator used in (12) represents a
combination of correctable errors among vulnerable and non-
vulnerable values such that, finally, UBER is defined by the
occurrence probability of all possible uncorrectable errors.

The worst-case UBER corresponds to the maximum num-
ber of vulnerable values per stored word. In the absence of any
kind of inversion, all bits in a stored code word may be equal
to a vulnerable value if (a) the vulnerable bit value is equal to
0 or (b) the ECC is inversion invariant. Both conditions are
due to the fact that a linear ECC contains the all-0 code word.
In the following, the less critical situation will be assumed in
which the vulnerable bit value is equal to 1.

The reduction of the worst-case UBER achieved through
the addition of an inversion bit and selective code word inver-
sion is reported in the inv columns of Table I and Table II. The
decision of inverting or not a code word is based only on the
number of vulnerable values among the data-bits according to
(10). The inv+ columns give the additional reduction that can
be obtained if the decision of inverting a code word is based
on (9). The reduction reported in the inv+ columns is calcu-
lated with respect to the UBER values obtained after the first
reduction given in the inv columns.

As one might expect, the UBER reduction increases with
the ratio between the RBERs of vulnerable and non-
vulnerable values. The inv+ reduction increases with the rela-
tive check-bit ratio in a code word which gets higher as (a) the
error-correction strength increases and (b) the data-bit number
per code word decreases. For 32-bit data words, selective code
word inversion may reduce the worst-case UBER by up to
63% and 67% for single-error correction (SEC) and double-
error correction (DEC) codes, respectively. With a maximum
number of odd check-bits, the consideration of the vulnerable
values among the check-bits enables an additional reduction
of the worst-case UBER of 26% and 53%, respectively. No
additional reduction would have been possible with ECCs
characterized by a minimum number of odd check-bits.

The worst-case UBER is a pessimistic reliability metric as
only code words with a maximum number of vulnerable val-
ues are taken into account. It is quite hard to imagine a soft-
ware application that involves only such code words. Never-
theless, this metric has the merit of providing the maximum
possible UBER reduction.

In order to get a more realistic evaluation of the potential
reliability gains, we considered the impact on the mean UBER
under the assumption that all possible code words of an ECC
have the same storage probability. According to (12), two dif-
ferent code words may have different UBER values only if
they have different numbers of vulnerable values. Therefore,
in order to compute the UBER of a memory system under the
assumption of uniform storage probability, it is sufficient to
classify and count all code words according to the number of
contained vulnerable values.

Unfortunately, for binary ECCs with more than 32 data-
bits per code word, it may become infeasible to count one by
one all code words with a given number of vulnerable values.
In order to avoid this, a two-phase counting approach is used.
In the first phase, all code words with at least 4 vulnerable or
non-vulnerable values among the data-bits are counted one by
one. This corresponds to the lowest counts of code words with
a given number of vulnerable values among the data bits. The
parameter 4 is a heuristic choice related to the minimum Ham-
ming distance of the ECCs used here.

In a second phase, an approximate counting approach is
used based on the probability of each check-bit to become
equal to 1. For a given check-bit, this probability depends on
(i) the number of 1’s in the P-matrix line that is used to calcu-
late it and (ii) the number of data-bits equal to 1. The check-
bit values are assumed to be independent random variables,

 4

wherefrom the approximate nature of this method. In the case
of ECCs with fixed code word parity, a restriction is imposed
on the allowed combinations of check-bit values for a given
number of data-bits equal to 1. It appears that the obtained es-
timates fit very well to the exact counts.

The impact on the mean UBER of selective code word in-
version is reported in Table III and Table IV for the same
ECCs as in Table I and Table II. As before, the inv+ columns
give the additional reduction of the mean UBER that can be
obtained if the decision of inverting a code word is based on
(9). The improvement of the mean UBER increases with (a)
the ratio between the RBERs of vulnerable and non-vulnera-
ble values and (b) the check-bit ratio in the code words. For
32-bit data words, selective code word inversion may reduce
the mean UBER by up to 20% and 26% for SEC and DEC
codes, respectively. With an ECC that has a maximum num-
ber of odd check-bits, the consideration of the vulnerable val-
ues among the check- bits enables an additional reduction of
3% and 7%, respectively.

The encoders and decoders of the considered ECCs were
implemented as combinational logic blocks sandwiched be-
tween two pipeline registers and synthesized with an ST 45nm
standard cell library. In the case of the ECC decoders, the logic
and latency overheads did not exceed 20%. The improvements
reported in the inv+ require no modification of the ECC de-
coder and implicitly 0% logic or latency overhead.

TABLE I. REDUCTION OF WORST-CASE UBER BASED FOR CODE WORDS
WITH 32 DATA-BITS

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC
(39, 32+1)

SEC-DED
(40, 32+1)

DEC
(45, 32+1)

DEC-TED
(46, 32+1)

inv inv+ inv inv+ inv inv+ inv inv+

10 57.7% 21.8% 57.5% 14.8% 61.2% 46.2% 61.1% 39.7%

102 62.8% 25.5% 62.8% 17.4% 66.3% 52.3% 66.3% 45.3%

103 63.3% 25.9% 63.3% 17.7% 66.8% 52.9% 66.8% 45.9%

TABLE II. SAME AS IN TABLE I FOR 64 DATA-BITS PER CODE WORD

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC
(72, 64+1)

SEC-DED
(73, 64+1)

DEC
(79, 64+1)

DEC-TED
(80, 64+1)

inv inv+ inv inv+ inv inv+ inv inv+

10 62.9% 12.5% 63.2% 12.2% 71.4% 34.1% 71.3% 29.7%

102 67.9% 14.7% 67.2% 14.4% 76.1% 39.2% 76.1% 34.4%

103 68.4% 15.0% 67.6% 14.6% 76.5% 39.7% 76.5% 34.9%

TABLE III. REDUCTION OF MEAN UBER UNDER THE ASSUMPTION THAT
ALL CODE WORDS HAVE THE SAME OCCURRENCE
PROBABILITY FOR CODE WORDS WITH 32 DATA-BITS

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC
(39, 32+1)

SEC-DED
(40, 32+1)

DEC
(45, 32+1)

DEC-TED
(46, 32+1)

inv inv+ inv inv+ inv inv+ inv inv+

10 15.0% 2.1% 14.6% 1.4% 19.7% 5.5% 19.3% 6.2%

102 19.1% 2.6% 18.6% 1.7% 25.0% 7.0% 24.4% 7.8%

103 19.5% 2.7% 19.0% 1.8% 25.6% 7.2% 25.0% 8.0%

TABLE IV. SAME AS IN TABLE III FOR 64 DATA-BITS PER CODE WORD

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC
(72, 64+1)

SEC-DED
(73, 64+1)

DEC
(79, 64+1)

DEC-TED
(80, 64+1)

inv inv+ inv inv+ inv inv+ inv inv+

10 12.2% 0.8% 12.1% 0.8% 16.9% 2.5% 16.6% 2.1%

102 15.2% 1.0% 15.0% 0.9% 21.0% 3.2% 20.7% 2.7%

103 15.6% 1.0% 15.3% 1.0% 21.4% 3.3% 21.1% 2.8%

Concerning the ECC encoders, the logic overhead varied

between 68% and 117% while the latency overhead was be-
tween 74% and 132%. The fact of counting the vulnerable val-
ues among the check-bits induced an additional logic over-
head between 15% and 48% while the additional latency over-
head varied between 3% and 32%. The encoders and decoders
considered here are relatively small logic units that can be eas-
ily pipelined if the latency overhead becomes inacceptable.

V. CONCLUSIONS

A method is proposed for the optimization of systematic
binary linear block ECCs in order to maximize their impact
when combined with selective memory word inversion. This
enables a reduction of the UBER when applied to memories
that are asymmetric with respect to the error vulnerability of
stored 0’s and 1’s. For example, in the case of 32-bit memories
protected by a single-error correcting ECC without even
check-bits, the worst-case UBER can be reduced by 26% if
the check-bits are considered when taking the decision of in-
verting a code word. This improvement may reach 53% in the
case of 32-bit memories protected by a double-error correc-
tion ECC. Similarly, under the assumption that all possible
code words have the same storage probability, the mean
UBER may be reduced by 3% and 7%, respectively. These
improvements can be achieved without any storage overhead.

REFERENCES
[1] Y. Cai et al., “Error analysis and retention-aware error management for

nand flash memory,” Intel Technology Journal, Volume 17, Issue 1,
pp. 140–164, 2013.

[2] C.L. Chen and M.Y. Hsiao, "Error-correcting codes for semiconductor
memory applications: a state of the art review," Reliable Computer
Systems - Design and Evaluation, Digital Press, 2nd edition, pp. 124–
134, 1992.

[3] Y. Emre et al., "Enhancing the reliability of STT-RAM throught Circuit
and System Level Techniques," IEEE Workshop on Signal Processing
Systems, pp. 125–130, 2012.

[4] R.W. Hamming, "Error correcting and error detecting codes," Bell Sys.
Tech. Journal, Vol. 29, April 1950, pp. 147-160.

[5] JEDEC Standard, “Solid-state drive (SSD) requirements and endur-
ance test method,” JESD218A, February 2011.

[6] K. Kraft, D.M. Mathew, C. Sudarshan, M. Jung, C. Weis, N. When and
F. Longnos, "Efficient coding scheme for DDR4 memory subsystems,"
MEMSYS, pp. 148-157, 2018.

[7] S. Lin and D. J. Costello, "Error control coding: fundamentals and ap-
plications," Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[8] C. Yang et al., "Improving reliability of non-volatile memory
technologies through circuit level techniques and error control coding,"
EURASIP Journal on Advances in Signal Processing, 2012:211, 2012.

