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Abstract—Many memory types are asymmetric with respect to 
the error vulnerability of stored 0’s and 1’s. For instance, 
DRAM, STT-MRAM and NAND flash memories may suffer 
from asymmetric error rates. A recently proposed error- 
protection scheme consists in the inversion of the memory words 
with too many vulnerable values before they are stored in an 
asymmetric memory. In this paper, a method is proposed for the 
optimization of systematic binary linear block error-correcting 
codes in order to maximize their impact when combined with 
memory word inversion. 
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I. INTRODUCTION 

The majority of memory technologies have strong asym-
metries with respect to the error rates that affect stored 0’s and 
1’s. For instance, in DDR4 memories, the difference between 
the error rates may go up to 2 decades at 30°C and 4 decades 
at 60°C [6]. In 2-bit NAND flash memories, the first bit pro-
grammed in a storage cell is more vulnerable to retention er-
rors when it is equal to 0 [1]. In STT-MRAM memories, 
stored 1’s are more vulnerable to write and retention errors 
than stored 0’s. The resulting error rate difference may reach 
3 orders of magnitude [3][8].  

A mitigation technique used to address the error rate asym-
metry consists in the inversion before storage, via the logical 
not operator, of the memory words with too many vulnerable 
values. This solution enables significant error rate reductions 
despite the addition of one bit per memory word to indicate its 
inversion state [6]. 

This paper is focused on the optimal selection of error- 
correcting codes (ECC) in conjunction with memory word in-
version. The objective is the evaluation of the uncorrectable 
error rate improvement and the impact of considering the vul-
nerable values among the check-bits when taking the decision 
of inverting a code word. 

II.  SYSTEMATIC BINARY LINEAR BLOCK ECCS 

Linear block ECCs can be defined with the help of a 
parity-check matrix or H-matrix. Any code word 𝑣 of an ECC 
should satisfy the following relation [7]: 

𝐻 ∙ 𝑣 = 0              (1) 

where 𝑣  is a column vector. In binary ECCs, the H-matrix 
and code words contain only binary values.  

Error correction and detection properties are ensured via 
an appropriate selection of the H-matrix columns. For exam-
ple, single-error correction is enabled if each H-matrix column 
is unique and different from the all-0 vector [4]. Double-error 
detection can be achieved if an additional check-bit is used to 
impose a fixed parity to all code words [2]. 

In systematic ECCs, one can make the distinction between 
data-bits and check-bits. The H-matrix of an ECC with k data-
bits and r check-bits, can be structured as follows [2]:  

𝐻 = [𝑃, 𝐼 ]             (2) 

where P is an r×k matrix and Ir is the r×r identity matrix. 

Each line of the P-matrix can be used to compute one 
check-bit. For example, consider the H-matrix below: 

  

 

 

Any code word v = (d1, d2, d3, c1, c2, c3) should satisfy (1) 
and its check-bits can be calculated as follows:  

𝑐 = 𝑑 + 𝑑           
𝑐 = 𝑑 + 𝑑           
𝑐 = 𝑑 + 𝑑 + 𝑑

               (3) 

where the symbol ‘+’ stands for the modulo-2 sum.  

According to (3), if all data-bits are inverted the check-bits 
c1 and c2 will preserve their values while c3 will be inverted. 
This is due to the fact that c3 depends on an odd number of 
data-bits while c1 and c2 depend on an even number of data-
bits. Generally, if all data-bits are inverted a check-bit is in-
verted if and only if it depends on an odd number of data-bits. 

In the following, it will be assume that an extra bit is in-
serted in each code word to indicate its inversion state [6]. 
During the ECC encoding and decoding operations, the inver-
sion bit is treated as a data-bit. 

III. CODE WORD INVERSION 

Definition 1: In a systematic binary linear block ECC, a 
P-matrix line is called odd (even) if it contains an odd (even) 
number of entries equal to 1. Equivalently, an odd (even)  
check-bit depends on an odd (even) number of data-bits.  

       𝐻 =
 0 1 1
 1 0 1
 1 1 1

    
1 0 0
0 1 0
0 0 1

  

𝑃 𝐼  
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Definition 2: A binary ECC is called inversion invariant if the 
inversion of all bits in a code word results in another code 
word. 

Theorem: A systematic binary linear block ECC is inversion 
invariant if and only if all its check-bits are odd. (An informal 
demonstration is given at the end of Section II.) 

There are systematic binary linear block ECCs that cannot  
be made inversion invariant. For example, it is impossible to 
find an inversion invariant ECC with code words that have an 
odd number of bits and a fixed overall parity. This is due to 
the fact that inverting an odd number of bits will change their 
overall parity. It can be shown that a systematic binary linear 
block ECC with such properties contains at least one even 
check-bit. This results from the fixed overall parity of the code 
words that requires the existence of a linear combination of H-
matrix lines equal to an all-1 vector [2]. This implies that at 
least one H-matrix line contributes to this linear combination 
with an odd number of 1’s since the all-1 vector has an odd 
number of bits, just like the code words. Consequently, the 
systematic form of the H-matrix (2) will contain at least one 
line with an odd number of 1’s which corresponds to an even 
P-matrix line and an even check-bit. 

When inverting a code word that belongs to an ECC which 
is not inversion invariant, the even check-bits need to be kept 
unchanged in order to get another code word. In this way, the 
capability to perform error detection and correction on in-
verted words is preserved. 

In order evaluate the impact of code word inversion, con-
sider that the number of vulnerable values in a code word (cw) 
is decomposed as follows: 

𝑐𝑤 = + 𝑖 + 𝑙 + 𝑗                     (4) 

where: 

 k is the number of data-bits per code word except for the 
inversion bit, 

 k is assumed to be an even number, 

 + 𝑖 represents the number of vulnerable values among 

the data-bits − ≤ 𝑖 ≤ , 

 l and j stand for the number of vulnerable values among 
the even and odd check-bits, respectively. 

In (4), it is implicitly assumed that a non-inversion state of 
a code word is indicated by a non-vulnerable value assigned 
to the inversion bit. Recalling that the inverted version of a 
code word is obtained by inverting all bits with the exception 
of the even check-bits, the number of vulnerable values in the 
inverted version of a code word (𝑐𝑤) can be decomposed as 
follows: 

𝑐𝑤 = − 𝑖 + 1 + 𝑙 + 𝑟 − 𝑠 − 𝑗            (5) 

where: 

 1 stands for the vulnerable value taken by the bit used to 
indicate the code word inversion status, 

 r represents the number of check-bits and s the number 
of even check-bits (0 ≤ 𝑙 ≤ 𝑠 ≤ 𝑟), 

 r-s stands for the number of odd check-bits(0 ≤ j ≤ r-s). 

When the number of vulnerable values in a code word (cw) 
is larger than in its inverted version (𝑐𝑤), the inverted version 
will be stored and the maximum number of vulnerable values 
per code word (𝑚𝑎𝑥) can be computed as follows: 

𝑐𝑤 ≥ 𝑐𝑤             (6) 

𝑖 + 𝑗 ≥                        (7)    

𝑚𝑎𝑥 ≤              (8) 

where (8) results from the combination of (5) and (7) and from 
the fact that l is smaller than or equal to s. No assumption is 
made on whether the vulnerable bit value is equal to 0 or 1. 
Similarly, it can be shown that (8) holds in the case when a 
code word has less vulnerable values than its inverted version. 
The same result is achieved if the non-inversion state of a code 
word is indicated by a vulnerable value assigned to the inver-
sion bit. 

According to (8), in the presence of selective code word 
inversion, the maximum (worst-case) number of vulnerable 
values per code word increases linearly with s i.e. the number 
of even check-bits. Consequently, among ECCs with the same 
error detection and correction capability, a maximum error 
rate improvement can be achieved by an ECC with a minimal 
number of even check-bits. In inversion invariant ECCs, the 
number of even check-bits is equal to zero. When the inver-
sion invariance cannot be achieved, one should select an ECC 
with a single even check-bit. Our experience shows that it is 
relatively easy to find linear ECCs with single-error correction 
(SEC) or double-error correction (DEC) and a minimal num-
ber of even check-bits. 

During a memory write operation, the decision of invert-
ing a code word should be taken based on the evaluation of 

either (6) or (7). If one adds    to both sides of (7) and discard 
the situation when the operands are equal, one obtains: 

+ 𝑖 + 𝑗 >                       (9) 

which means that the decision of inverting a code word can be 
taken based on the comparison between a constant and the 
number of vulnerable values among its data-bits and odd 
check-bits. 

The evaluation of (9) can only be performed after the cal-
culation of the odd check-bits and this may have an impact on 
the latency of memory write operations. This latency overhead 
can be avoided if the decision of inverting a code word is 
based on only the number of vulnerable values among the 
data-bits according to the expression below: 

+ 𝑖 >                                  (10) 

where the right-hand side is a constant. 
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According to (10), the code words in which  data-bits are 
vulnerable do not have to be inverted. As the number of such 
code words is usually very high, in some of them all check-
bits will have a vulnerable value. Accordingly, the maximum 
number of vulnerable values per code word (max) becomes: 

𝑚𝑎𝑥 ≤                (11) 

In the case of code words with fixed parity, the number of 
vulnerable values per code word is either even or odd and max 
should be even or odd, respectively. For example, if the vul-
nerable value is equal to 1 then max should be the largest even 
number that fulfills either (9) or (11).   

IV. SIMULATION RESULTS 

This section is focused on the impact of considering the 
vulnerable values among the check-bits when taking the deci-
sion of inverting a code word. Only ECCs with a maximum 
number of odd check-bits are considered. 

The first investigated metric is the uncorrectable bit error 
rate (UBER). When the stored 0’s and 1’s have different error 
rates, the UBER can be computed as follows [5]: 

𝑈𝐵𝐸𝑅 =
1

𝑘
1 −

𝑁
𝑗

𝑅𝐵𝐸𝑅 (1 − 𝑅𝐵𝐸𝑅 ) ×  

×
𝑁
𝑖 − 𝑗

𝑅𝐵𝐸𝑅 (1 − 𝑅𝐵𝐸𝑅 ) ( )       (12) 

where: 

 k is the number of data-bits per code word, 

 corr stands for the maximum number of correctable er-
rors per code word, 

 i is iterated over the numbers of correctable erroneous 
bits in a code word, 

 j and i-j represent numbers of correctable erroneous bits 
initially programmed to vulnerable and non-vulnerable 
values, respectively, 

 𝑁  and 𝑁  stand for the numbers of vulnerable and non-
vulnerable values in a code word, 

 𝑅𝐵𝐸𝑅  and 𝑅𝐵𝐸𝑅  represent the raw bit error rates of 
the vulnerable and non-vulnerable values. 

Each term of the sum operator used in (12) represents a 
combination of correctable errors among vulnerable and non-
vulnerable values such that, finally, UBER is defined by the 
occurrence probability of all possible uncorrectable errors. 

The worst-case UBER corresponds to the maximum num-
ber of vulnerable values per stored word. In the absence of any 
kind of inversion, all bits in a stored code word may be equal 
to a vulnerable value if (a) the vulnerable bit value is equal to 
0 or (b) the ECC is inversion invariant. Both conditions are 
due to the fact that a linear ECC contains the all-0 code word. 
In the following, the less critical situation will be assumed in 
which the vulnerable bit value is equal to 1. 

The reduction of the worst-case UBER achieved through 
the addition of an inversion bit and selective code word inver-
sion is reported in the inv columns of Table I and Table II. The 
decision of inverting or not a code word is based only on the 
number of vulnerable values among the data-bits according to 
(10). The inv+ columns give the additional reduction that can 
be obtained if the decision of inverting a code word is based 
on (9). The reduction reported in the inv+ columns is calcu-
lated with respect to the UBER values obtained after the first 
reduction given in the inv columns.  

As one might expect, the UBER reduction increases with 
the ratio between the RBERs of vulnerable and non- 
vulnerable values. The inv+ reduction increases with the rela-
tive check-bit ratio in a code word which gets higher as (a) the 
error-correction strength increases and (b) the data-bit number 
per code word decreases. For 32-bit data words, selective code 
word inversion may reduce the worst-case UBER by up to 
63% and 67% for single-error correction (SEC) and double-
error correction (DEC) codes, respectively. With a maximum 
number of odd check-bits, the consideration of the vulnerable 
values among the check-bits enables an additional reduction 
of the worst-case UBER of 26% and 53%, respectively. No 
additional reduction would have been possible with ECCs 
characterized by a minimum number of odd check-bits. 

The worst-case UBER is a pessimistic reliability metric as 
only code words with a maximum number of vulnerable val-
ues are taken into account. It is quite hard to imagine a soft-
ware application that involves only such code words. Never-
theless, this metric has the merit of providing the maximum 
possible UBER reduction. 

In order to get a more realistic evaluation of the potential 
reliability gains, we considered the impact on the mean UBER 
under the assumption that all possible code words of an ECC 
have the same storage probability. According to (12), two dif-
ferent code words may have different UBER values only if 
they have different numbers of vulnerable values. Therefore, 
in order to compute the UBER of a memory system under the 
assumption of uniform storage probability, it is sufficient to 
classify and count all code words according to the number of 
contained vulnerable values. 

Unfortunately, for binary ECCs with more than 32 data-
bits per code word, it may become infeasible to count one by 
one all code words with a given number of vulnerable values. 
In order to avoid this, a two-phase counting approach is used. 
In the first phase, all code words with at least 4 vulnerable or 
non-vulnerable values among the data-bits are counted one by 
one. This corresponds to the lowest counts of code words with 
a given number of vulnerable values among the data bits. The 
parameter 4 is a heuristic choice related to the minimum Ham-
ming distance of the ECCs used here. 

In a second phase, an approximate counting approach is 
used based on the probability of each check-bit to become 
equal to 1. For a given check-bit, this probability depends on 
(i) the number of 1’s in the P-matrix line that is used to calcu-
late it and (ii) the number of data-bits equal to 1. The check-
bit values are assumed to be independent random variables, 
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wherefrom the approximate nature of this method. In the case 
of ECCs with fixed code word parity, a restriction is imposed 
on the allowed combinations of check-bit values for a given 
number of data-bits equal to 1. It appears that the obtained es-
timates fit very well to the exact counts. 

The impact on the mean UBER of selective code word in-
version is reported in Table III and Table IV for the same 
ECCs as in Table I and Table II. As before, the inv+ columns 
give the additional reduction of the mean UBER that can be 
obtained if the decision of inverting a code word is based on 
(9). The improvement of the mean UBER increases with (a) 
the ratio between the RBERs of vulnerable and non-vulnera-
ble values and (b) the check-bit ratio in the code words. For 
32-bit data words, selective code word inversion may reduce 
the mean UBER by up to 20% and 26% for SEC and DEC 
codes, respectively. With an ECC that has a maximum num-
ber of odd check-bits, the consideration of the vulnerable val-
ues among the check- bits enables an additional reduction of 
3% and 7%, respectively. 

The encoders and decoders of the considered ECCs were 
implemented as combinational logic blocks sandwiched be-
tween two pipeline registers and synthesized with an ST 45nm 
standard cell library. In the case of the ECC decoders, the logic 
and latency overheads did not exceed 20%. The improvements 
reported in the inv+ require no modification of the ECC de-
coder and implicitly 0% logic or latency overhead.  

TABLE I.  REDUCTION OF WORST-CASE UBER BASED FOR CODE WORDS 
WITH 32 DATA-BITS  

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC 
(39, 32+1) 

SEC-DED 
(40, 32+1) 

DEC 
(45, 32+1) 

DEC-TED 
(46, 32+1) 

inv inv+ inv inv+ inv inv+ inv inv+ 

10 57.7% 21.8% 57.5% 14.8% 61.2% 46.2% 61.1% 39.7% 

102 62.8% 25.5% 62.8% 17.4% 66.3% 52.3% 66.3% 45.3% 

103 63.3% 25.9% 63.3% 17.7% 66.8% 52.9% 66.8% 45.9% 

TABLE II.  SAME AS IN TABLE I FOR 64 DATA-BITS PER CODE WORD 

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC 
(72, 64+1) 

SEC-DED 
(73, 64+1) 

DEC 
(79, 64+1) 

DEC-TED 
(80, 64+1) 

inv inv+ inv inv+ inv inv+ inv inv+ 

10 62.9% 12.5% 63.2% 12.2% 71.4% 34.1% 71.3% 29.7% 

102 67.9% 14.7% 67.2% 14.4% 76.1% 39.2% 76.1% 34.4% 

103 68.4% 15.0% 67.6% 14.6% 76.5% 39.7% 76.5% 34.9% 

TABLE III.  REDUCTION OF MEAN UBER UNDER THE ASSUMPTION THAT 
ALL CODE WORDS HAVE THE SAME OCCURRENCE 
PROBABILITY FOR CODE WORDS WITH 32 DATA-BITS  

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

SEC 
(39, 32+1) 

SEC-DED 
(40, 32+1) 

DEC 
(45, 32+1) 

DEC-TED 
(46, 32+1) 

inv inv+ inv inv+ inv inv+ inv inv+ 

10 15.0% 2.1% 14.6% 1.4% 19.7% 5.5% 19.3% 6.2% 

102 19.1% 2.6% 18.6% 1.7% 25.0% 7.0% 24.4% 7.8% 

103 19.5% 2.7% 19.0% 1.8% 25.6% 7.2% 25.0% 8.0% 

TABLE IV.  SAME AS IN TABLE III FOR 64 DATA-BITS PER CODE WORD  

𝑹𝑩𝑬𝑹𝑽

𝑹𝑩𝑬𝑹𝒏𝑽

 

SEC 
(72, 64+1) 

SEC-DED 
(73, 64+1) 

DEC 
(79, 64+1) 

DEC-TED 
(80, 64+1) 

inv inv+ inv inv+ inv inv+ inv inv+ 

10 12.2% 0.8% 12.1% 0.8% 16.9% 2.5% 16.6% 2.1% 

102 15.2% 1.0% 15.0% 0.9% 21.0% 3.2% 20.7% 2.7% 

103 15.6% 1.0% 15.3% 1.0% 21.4% 3.3% 21.1% 2.8% 

 
Concerning the ECC encoders, the logic overhead varied 

between 68% and 117% while the latency overhead was be-
tween 74% and 132%. The fact of counting the vulnerable val-
ues among the check-bits induced an additional logic over-
head between 15% and 48% while the additional latency over-
head varied between 3% and 32%. The encoders and decoders 
considered here are relatively small logic units that can be eas-
ily pipelined if the latency overhead becomes inacceptable. 

V. CONCLUSIONS 

A method is proposed for the optimization of systematic 
binary linear block ECCs in order to maximize their impact 
when combined with selective memory word inversion. This 
enables a reduction of the UBER when applied to memories 
that are asymmetric with respect to the error vulnerability of 
stored 0’s and 1’s. For example, in the case of 32-bit memories 
protected by a single-error correcting ECC without even 
check-bits, the worst-case UBER can be reduced by 26% if 
the check-bits are considered when taking the decision of in-
verting a code word. This improvement may reach 53% in the 
case of 32-bit memories protected by a double-error correc-
tion ECC. Similarly, under the assumption that all possible 
code words have the same storage probability, the mean 
UBER may be reduced by 3% and 7%, respectively. These 
improvements can be achieved without any storage overhead. 
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