
HAL Id: cea-03452247
https://cea.hal.science/cea-03452247

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Integration of Reliability and Security
Mechanisms to Enhance the Fault Resilience of Neural

Networks
Nikolaos Deligiannis, Riccardo Cantoro, Matteo Sonza Reorda, Marcello

Traiola, Emanuele Valea

To cite this version:
Nikolaos Deligiannis, Riccardo Cantoro, Matteo Sonza Reorda, Marcello Traiola, Emanuele Valea. To-
wards the Integration of Reliability and Security Mechanisms to Enhance the Fault Resilience of Neural
Networks. IEEE Access, 2021, pp.10.1109/ACCESS.2021.3129149. �10.1109/ACCESS.2021.3129149�.
�cea-03452247�

https://cea.hal.science/cea-03452247
https://hal.archives-ouvertes.fr

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

Towards the Integration of Reliability and
Security Mechanisms to Enhance the
Fault Resilience of Neural Networks
NIKOLAOS I. DELIGIANNIS1, (Member, IEEE), RICCARDO CANTORO 1, (Member, IEEE),
MATTEO SONZA REORDA 1, (Fellow, IEEE), MARCELLO TRAIOLA 2, (Member, IEEE), AND
EMANUELE VALEA 3, (Member, IEEE),
1Department of Control and Computer Engineering, Politecnico di Torino, Corso Castelfidardo 39, 10129 Torino TO, Italy
(e-mail: nikolaos.deligiannis|riccardo.cantoro|matteo.sonzareorda@polito.it)
2Univ. Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, France. (e-mail: marcello.traiola@ec-lyon.fr)
3Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France. (e-mail: emanuele.valea@cea.fr)

Corresponding author: Nikolaos I. Deligiannis

This work has been supported by computational resources provided by HPC@PoliTO, a project of Academic Computing managed by the
Department of Control and Computer Engineering of the Politecnico di Torino.

ABSTRACT Nowadays, many electronic systems store valuable Intellectual Property (IP) information
inside Non-Volatile Memories (NVMs). Encryption mechanisms are widely used by designers in order to
enhance the integrity of such IPs and protect them from any kind of unauthorized access or modification.
At the same time, often such IPs are critical from a reliability standpoint. Thus, dedicated techniques are
employed to detect possible reliability threats (e.g., transient faults affecting the NVM content). The weights
of a neural network (NN) model (e.g., integrated into an object detection system for autonomous driving
or robotics) are a typical example of precious IP from both security and reliability standpoints. Indeed, NN
weights often constitute proprietary data, stemming from an extensive and costly training process; moreover,
their correctness is key for the NN to work reliably. In this article, we explore the capability of encryption
mechanisms to ensure protection from both security and reliability threats. In particular, we applied several
encryption mechanisms to two neural network applications to secure their weights and we assessed, via
extensive fault injection campaigns, the fault detection that they provide. Experimental results show that
by cleverly choosing the proper encryption scheme it is possible to achieve very high fault detection rates
(greater than 99%) with respect to Multiple Bit Upsets. The gathered results pave the way to the integration
of reliability and security mechanisms to achieve better results with lower costs.

INDEX TERMS Artificial Neural Network, Convolutional Neural Network, Encryption, Fault Detection,
Fault Injection Campaign, Non-Volatile Memories, Reliability, Security

I. INTRODUCTION

INFORMATION technology is a major aspect of the mod-
ern society. Digital systems have become widespread,

considerably changing the way people interact with com-
puting machines. The design process and the architectures
of electronic systems have evolved considerably since their
emergence several decades ago. Nowadays, designers must
take into consideration several constraints, including those
related to reliability, and follow standards such as DO-254
for avionics and ISO-26262 for automotive in order to meet
certain criteria and thresholds. These constraints derive from

the needs of safety-critical systems. Indeed, these systems
must be able to detect a sufficiently high percentage of faulty
conditions that could compromise their correct operation,
thus avoiding incurring critical failures, which in turn could
endanger human lives or cause large economical losses.

In the last years, also the interest towards security-oriented
techniques to prevent possible attacks to such systems has
been exponentially growing. These attacks aim to either
change the behavior of the systems or extract private and/or
precious information (Intellectual Property or IP) from them
[1]. Some of these IP data items are stored into Non-Volatile

VOLUME X, 2021 1

Memories (NVMs) that are an attractive target for malicious
users due to the persistence of the data [2]. Studies has been
conducted to evaluate and mitigate the security threats for
NVMs [3]. NVMs are also prone to faults, caused by, for
example, radiation effects. In order to harden the memories
with respect to faults, designers typically adopt redundancy
solutions (e.g., Error Correction Codes, or ECCs) able to
detect the occurrence of single- and multiple-bit errors and
to possibly correct some of them [4], [5], [6]. On the other
side, when the content of a memory represents a valuable IP,
designers protect it against possible attacks via encryption [7].

A prime example of a system where both safety and
security play a crucial role is an autonomous system [8]
that employs Machine Learning (ML) technology [9], [10].
Machine learning is a widely adopted technology in various
sectors such as healthcare [11], automotive [12], [13], [14]
and aerospace [15]. In these scenarios, the weights of the ML
model represent a valuable asset [16] for the system since they
are strongly linked to the application’s overall functionality.
Furthermore, the weights are the result of a typically long
(hence, expensive), non-intuitive training process of the model.
As a result, the weights of a ML model represent a valuable IP
for the system and are typically stored into NVMs that shall
not be compromised or tampered with.

At the moment, existing solutions to protect the NVM
content are not designed to provide protection from faults
and from malicious attacks at once. In fact, reliability experts
decide about the former ones, while security experts deal
with the latter, often with limited interactions between the
two groups. This work originates from the observation that
encryption mechanisms may also offer some interesting fault
detection capabilities, since in some cases they tend to amplify
the effect of faults, making them more manifest, and thus
detectable. Hence, studying the reliability features of different
encryption solutions becomes attractive. This enables taking
also reliability into account when selecting the most suitable
encryption mechanism for a given system. Indeed, we believe
that designers needing to adopt encryption mechanisms in
their systems may benefit from the intrinsic fault-detection
capability of such mechanisms. This, in turn, facilitates the
achievement of the target reliability goals for the system.

In this work, we experimentally evaluate the positive
effects that data encryption may have in terms of reliability
enhancements with respect to the effects of possible transient
faults. In particular, we focus on systems having NVMs
already provided with the encryption/decryption mechanisms
to protect the stored data from malicious attacks. As case
studies, we resort to an Artificial Neural Network (ANN)
and a Convolutional Neural Network (CNN), whose weights
represent the IP, encrypted and stored in the NVM. In our
experiments, we inject faults in the encrypted weights and
analyze their effects on the Neural Network behavior and
the system fault detection capabilities with and without
encryption. We perform various experiments with different
ciphers and extensive fault injection campaigns to evaluate
the effect of the encryption on the system fault detection

capabilities. The gathered experimental results show that by
carefully selecting a cryptographic algorithm, we can achieve
a very high rate of fault detection, in particular with respect
to Multiple Bit Upsets (MBUs). Hence, this work paves the
way to a more clever selection of an encryption mechanism
not only protecting the stored memory content with respect
to malicious attacks, but also providing a sufficiently high
reliability degree.

In this article, we integrate and extend the results of the
work presented in [17]. In particular, the major contributions
of this work are the following.

1) A thorough analysis of the fault tolerance capabilities of
different operational modes of the Advanced Encryption
Standard (AES), widely employed for memory encryp-
tion.

2) Extensive experimental validation of AES fault tolerance
capabilities on a new case study, a Convolution Neural
Network (CNN). To the best of our knowledge, this is the
first work studying the AES fault tolerance capabilities
in the context of a CNN.

Experimental results show that a particular AES mode – the
Propagating Cipher FeedBack (PCBC) encryption mechanism
with padding – allows achieving nearly 100% fault detection
for both considered Neural Networks with respect to the
Single Event Upset (SEU) faults model and the Multiple Bit
Upset (MBU) faults model with multiplicity varying from 10
to 500.

The remainder of the article is organized as follows. Section
II reports an overview on the state-of-the-art work on NVM
reliability and provides a preliminary background on memory
encryption. Section III illustrates the study that we conducted.
Section IV details both case studies along with the experi-
mental setup. Section V illustrates the obtained experimental
results and, finally, Section VI draws the conclusions.

II. STATE-OF-THE-ART AND BACKGROUND
NVMs (e.g., flash memories) are being widely used as a stor-
age medium for numerous devices since they are characterised
by high performances with low power consumption and large
storage density. They are used by designers in various business
sectors e.g., the mobile-phone industry and the automotive
industry. However, there is a notable difference between
the two aforementioned domains. In the latter, the memory
design criteria are strongly influenced by safety standards
(e.g., ISO-26262), since the memory is meant to be used in
safety-critical systems on board of the vehicle. Conversely,
when realizing systems which can hardly endanger human
lives (such as a mobile-phone), the design constraints tend
to be more relaxed. For example, the data retention rate in
an embedded flash memory that is planned to be used in a
car spans from 10 to 20 years; in the case of a mobile phone,
the stored data last for a maximum of 5 years. Moreover,
devices expected to be in the field for a long period of time
are prone to error accumulation primarily due to aging of
the hardware components. Furthermore, designers have to
consider that NVMs are prone to errors due to radiation effects

2 VOLUME X, 2021

[18], [19] and to error accumulation. A recent study [20]
reports an unexpected error explosion phenomenon in flash
memories, where multiple errors occur in flash blocks over
several operation cycles that exceed the ECCs detection and
correction capabilities.

The reliability of NVMs has been extensively studied [21].
Also, numerous design methodologies, based on ECCs, have
emerged over the years in order to enhance the resilience of
NVMs to (soft and hard [22]) errors. As prominent examples,
we can mention the IBM’s Chipkill used in combination with
dynamic bit-steering [23] and the Intel’s Lockstep [24]. The
security of NVMs has been also thoroughly studied [25], [26].

Typically, reliability and security are two aspects that
are accounted for separately and independently. The main
objective of our work is to pave the way to new approaches
combining the two aspects. To do so, we analyze the inherent
fault-tolerance features of a prominent and widely-used
security mechanism, i.e. the encryption.

In the next subsection, we report an extensive background
on memory encryption.

A. MEMORY ENCRYPTION

NVMs are particularly sensitive in terms of security. Their
ability to permanently retain the stored information makes
them easily exploitable by invasive attacks. Through chip
decapsulation an attacker can obtain direct access to the NVM
surface and perform several kinds of attacks. One common
threat is IP stealing. This is achieved by reading out the
content of the NVM, which normally contains application
code and data that represent a valuable IP for the company
producing the target system. Another threat stems from the
possibility for the attacker to tamper with the NVM content
and provoke malfunctions in the processing elements that
could ultimately result in privilege escalation on the system.
A famous example is the code reuse attack and its variants,
such as Return-oriented Programming (ROP) [27], [28] and
Jump-oriented Programming (JOP) [29].

In this article, we focus on machine learning applications
based on neural networks for safety-critical systems. In this
context, the weights of the neural network stem from a long
and expensive training process making them a valuable asset.
Moreover, in many safety-critical applications the computing
systems are deployed in close proximity to the user, making
them easily accessible for the purpose of the aforementioned
physical attacks.

Memory encryption is a powerful mechanism for counter-
acting such threats. If the NVM content is fully encrypted, an
attacker that obtains the physical access to the memory is not
able to perform the aforementioned attacks. In fact, even if the
attacker is able to read out the memory, the encryption makes
the understanding of its content impossible. Moreover, encryp-
tion makes tampering-based attacks much more complex: an
attacker would have to modify the encrypted data so that the
decryption mechanism transforms them into data causing the
desired corrupt behavior.

However, encryption alone is not capable of exhaustively
detecting memory corruptions. More powerful techniques
based on integrity primitives (e.g., authenticated encryption)
are capable of protecting computing systems against most
kinds of perturbations (i.e., fault attacks) that involve the
memory content [30] [31]. In this article, we do not deal
with artificial faults induced by an attacker, but we focus on
natural faults coming from environmental sources instead.
Although many similarities exist between artificial and natural
faults, these are two problems that are traditionally dealt with
very different technologies. In fact, protection mechanisms
against fault attacks are based on security techniques possibly
based on cryptographic primitives (e.g., the already mentioned
authenticated encryption), while natural faults are dealt with
memory hardening techniques (e.g., error correcting codes). In
this article, we introduce the possibility of dealing with natural
faults relying on techniques belonging to the security domain.
We consider very simple memory encryption techniques,
without the additional cost of the data integrity primitives, and
we evaluate their properties in aiding the processing system at
detecting natural faults that can possibly affect the data stored
into the NVM.

We consider a memory encryption implementation where
data are loaded into the NVM already encrypted. When
data are read by the processing element (in our case, a
general-purpose CPU) they are streamed through a hardware
decryption module that is interposed between the NVM and
the CPU. The encryption algorithm is based on a symmetric
cryptography primitive, where the same secret key is used for
both encryption and decryption. In the memory decryption
scenario, the secret key must be stored inside the decryption
module, possibly hardwired inside the module logic in order
to avoid easy access through invasive attacks.

On the same architecture, we evaluate several encryption
algorithms, all based on the Advanced Encryption Standard
(AES), which can be implemented according to different
modes of operation. The common element is a pseudo-random
permutation (PRP) that processes a 128-bit block of plaintext
in order to generate a 128-bit block of ciphertext. The PRP is
conceived in order to have the following characteristics:

1) The permutation is dependent on the secret key. This
implies that if the key is not known, the permutation
looks like a random transformation, hence it is unfeasible
to derive the corresponding plaintext only by knowing a
ciphertext.

2) The permutation is invertible. This allows to build the
decryption function using the same key.

3) The permutation has confusion and diffusion properties.
This means that each bit of the output is dependent on all
the 128 bits of the input. For the fault detection purpose,
this is a very important property because the corruption
of one bit on the input block results in the corruption of
the whole output block. In the following, we will refer
to this property as fault spreading, that is related to the
multiplicity and to the location of the errors stemming
from a single bit error on the input message.

VOLUME X, 2021 3

cipher

iciphertext i

key

plaintext

ciphertext i-1

ciphertext i+1
cipher

i+1
plaintext

to ciphertext
i+2

key

(a) CBC.pdf

ciphertext i-1
cipher

ciphertext

i+1

key

iplaintext

i+1plaintextciphertext

i

to ciphertext
i+2

key
cipher

(b) CFB

ciphertext i plaintext i

cipher

key

ciphertext i+1 plaintexti+1

ciphertext i+2
cipher

key

plaintexti+2

to ciphertext
i+3

cipher

key

(c) PCBC

cipher

ciphertext plaintext

key
0x000002

counter

ii

cipher

ciphertext plaintext

key
0x000001

counter

i-1i-1

cipher

ciphertext plaintext

key
0x000003

counter

i+1i+1

(d) CTR

cipher

ciphertext plaintext

key
IV

i-1i-1

cipher

ciphertext plaintext

key

ii

cipher

ciphertext plaintext

key

i+1i+1

(e) OFB

Plain bit not impacted by a fault

Plain bit possibly impacted by the effect of a fault

Encrypted bit not impacted by a fault

Encrypted bit impacted by a fault

FIGURE 1: Decryption process of different AES modes of operations and their related fault spreading property

The AES basic PRP, also called block cipher, allows to build
several types of ciphers with different characteristics (i.e.,
different modes of operation).

III. ANALYSIS OF THE AES FAULT DETECTION
CAPABILITY
In this section, we detail the thorough analysis that we
performed on the fault detection capabilities of different
encryption mechanisms. In particular, we provide a definition
of the different AES modes highlighting their capability to
spread the fault effects.

A. AES MODES OF OPERATION AND THEIR FAULT
PROPAGATION PROPERTY
In the following, we detail the modes of operation that we
analyze in this article, highlighting their fault propagation
properties:

• Cipher Block Chaining (CBC) mode: in this mode
of operation, each block of plaintext is added to the
previous ciphertext block before being encrypted. This
way, each ciphertext block depends on all plaintext
blocks processed up to that point. In the decryption
function, each plaintext block is added to the previous
ciphertext after decryption. This implies that a 1-bit
corruption on the ciphertext block i is propagated to
the whole 128-bit plaintext block i, plus to 1 bit of the

plaintext block i + 1. This is due to the fact that the
addition operation (i.e., a bit-wise XOR) does not spread
the fault, but it simply transmits it to the corresponding
bit of the result (Figure 1a). Thus the fault spreading of
the CBC mode is equal to 1 block plus 1 bit of the next
block.

• Cipher Feedback (CFB) mode: in this mode of opera-
tion, each ciphertext block is computed as the sum of the
corresponding plaintext block plus the encryption of the
previous ciphertext block. In the decryption function,
each plaintext block is computed as the sum of the
corresponding ciphertext block and the encryption of
the previous ciphertext block. Here, the encryption of
the ciphertext block i is used as a keystream for both the
encryption and the decryption of the block i + 1. This
implies that a 1-bit corruption on the ciphertext block i
is transmitted to the corresponding bit of the plaintext
block i, and it is also spread over the entire block i+ 1
(Figure 1b). Thus the fault spreading of the CFB mode
is equal to 1 bit in the present block plus the entire next
block.

• Propagating CBC (PCBC) mode: in this mode of
operation, each block of plaintext is added to both the
previous plaintext block and the previous ciphertext
block before being encrypted. This leads to a similar
decryption behavior, i.e., each block of plaintext is added

4 VOLUME X, 2021

to both the previous plaintext block and the previous
ciphertext block after the decryption function. This
implies that a 1-bit corruption on the ciphertext block i
is spread over the plaintext block i, plus all the following
blocks up to the last one (Figure 1c). Thus the fault
spreading of the PCBC mode is equal to the number of
blocks that are present between the block where the fault
has happened and the last block of the encrypted data.

• Counter (CTR) mode: in this mode of operation, the
encryption function is applied to a sequence of values
that are generated by a counter initialized by a seed. The
resulting output blocks (i.e., the keystream) are added
to the plaintext blocks in order to obtain the ciphertext
blocks as result. The decryption operation is performed
generating the same keystream and adding it to the
ciphertext blocks in order to obtain the plaintext blocks.
This implies that a 1-bit corruption on a ciphertext block
is propagated to the same bit on the resulting plaintext
block (Figure 1d). Thus, the fault spreading of the CTR
mode is equal to 1 bit in the same encrypted block.

• Output Feedback (OFB) mode: in this mode of opera-
tion, a keystream is generated starting from an initializa-
tion value that is passed through the encryption function
multiple times. The ciphertext block is obtained as the
sum between the plaintext block and the corresponding
keystream block. In the decryption operation, the same
keystream is generated (i.e., starting from the same
initialization value) and this is added to the ciphertext
blocks to compute the corresponding plaintext blocks.
This implies that a 1-bit corruption on a ciphertext block
is propagated to the same bit on the resulting plaintext
block (Figure 1e). Thus the fault spreading of the OFB
mode is equal to 1 bit in the same encrypted block.

From this point forward, we separate the AES modes of
operation into two different categories, according to their fault
spreading property.

• Non-spreading category including the CTR and the
OFB modes of operation.

• Spreading category including the CBC, CFB and PCBC
modes of operation.

In the non-spreading category, the faults on the ciphertext are
not spread over the plaintext during decrpytion, but they are
simply trasmitted to the corresponding bit. Conversely, modes
of operation in the spreading category are able to spread the
effect of one-bit corruption on the ciphertext over at least an
entire block of plaintext.

B. THE ROLE OF PADDING IN AES
Block-based encryption needs padding to work properly.
Indeed, since the encryption is performed on 128-bit blocks,
it is necessary to conceive a way to deal with plaintexts whose
size is not multiple of 128 bits. The padding standards are
conceived in order to add to the plaintext the number of bytes
required to reach a multiple of 16 bytes (i.e., 128 bits). Thus,
the size of the resulting ciphertext is always a multiple of 16

bytes. After decryption, the extra padding bytes are removed
to obtain the original plaintext. The procedure used by the
decryption module to determine the number of bytes that
must be removed is mandated by the standard. One of the
most popular padding technique for block ciphers relies on
the PKCS #7 - RFC 2315 standard [32]. According to this
standard, if n bytes are added to pad the last block, then
each of these bytes will encode the value n. After decryption,
the last byte of the resulting plaintext is read, and its value
determines the number of bytes that must be discarded. To
provide an example, let us imagine a plaintext message of
100 bytes, which corresponds to 6 128-bit blocks plus 4 bytes.
In order to complete the seventh block, 12 bytes are added
as padding. Therefore, each padding byte will contain the
value 0x0C (12 in decimal). After decryption, the presence of
the value 0x0C on the last byte of the plaintext implies two
things:

(i) the last 12 bytes of the resulting plaintext must all encode
the value 0x0C;

(ii) the last 12 bytes of the resulting plaintext must be
removed after decryption.

C. FAULT TOLERANCE ANALYSIS
The phenomena described in Subsection III-A entail different
consequences for the system.

The non-spreading modes of operation do not exacerbate
the fault effect, leaving it confined to a specific bit of the
plaintext. From a fault tolerance standpoint, a fault has the
same probability to be masked or detected by the system or
by the running application as if no encryption was applied.
Conversely, the spreading modes of operation aggravate the
fault effect by extending it to multiple bits of the plaintext.
From a fault tolerance standpoint, this could potentially
entail worse consequences if no extra detection mechanism
is available in the hardware platform or in the running
application.

Therefore, using the spreading AES modes of operation
may seem extremely counterproductive, as it aggravates
the fault effects and does not help detecting their presence.
However, as mentioned in Subsection III-B, the padding
standard introduces some redundancy that may improve
the fault-tolerance. Indeed, storing the information about
the number of added padding bytes into the padding bytes
themselves (0x0C in the example in Subsection III-B) is not
strictly necessary for the correct operation of the encryption.
Nonetheless, the redundancy turns out being a powerful
property for the purpose of fault detection. In fact, considering
the above example, if the value 0x0C appears on the last
byte, but not all the 12 last bytes contain the same value, the
decryption operation can detect and signal a decryption error.

Concerning the AES operation modes described in Sec-
tion III-A, for the padding check to be used for fault-detection,
the effect of a fault must reflect on the padding bits. In
general, the event of having a fault impacting a padding bit
is as probable as for the other bits. Thus, for non-spreading
operation modes, the presence of padding check is not likely

VOLUME X, 2021 5

to have a significant impact on fault-tolerance. Conversely,
when the fault effect is extended to other bits (as in spreading
operation modes), the probability of obtaining a corrupted
padding increases, and so does the detection capability. In
details, CBC and CFB (Figures 1a and 1b) operation modes
propagate the effect of a fault occurring on a single ciphertext
bit only to the corresponding plaintext block and to the
next one. Therefore, also these two operation modes are not
much likely to benefit from the padding check. Nevertheless,
the PCBC mode (Figure 1c) has the interesting property to
propagate a fault in a given block to all the successive blocks,
all the way to the padding blocks. As a result, the probability
to spread the effect of a fault to the padding and detect it is
much higher in the PCBC mode of operation.

In the next sections, we report the experimental validation
of this analysis.

IV. EXPERIMENTAL VALIDATION OF ENCRYPTION
FAULT DETECTION CAPABILITY
In this section, we describe the experimental setup that we
adopted to validate the encryption fault detection capabilities
discussed in Section III. Firstly, we describe the adopted fault
models, as well as the classification that we use to categorize
faults depending on their effects on the application under
study. Then, we present the two ML applications used as case
studies, the adopted fault injection setup and the flow of our
experiments.

A. FAULT MODELS, FAULT CLASSIFICATION, AND
FAULT EFFECTS
For the purpose of our analysis, in order to model the
transient faults affecting the NVM that stores the IP of our
system, we consider the Single Event Upset (SEU) (error
multiplicity equal to 1) and the Multiple Bit Upset (MBU)
(error multiplicity > 1). We perform fault injection campaigns
only on the ML application weights and not on other ML data
or application code. Concerning the application code, in a
previous work [33] we have shown that encryption enables
high fault detection rates. For the purpose of our analysis we
classify faults as follows:
• Silent: the fault does not affect the classification results

of the ML application and is not detected. The results
match the expected ones, i.e. the fault-free (golden)
classification results. The top-1 classification, namely
the result predicted with the highest probability, is not
modified.

• Silent Data Corruption (SDC): the fault affects the classi-
fication results of the ML application and is not detected.
The results do not match the golden classification results.
The top-1 classification is modified.

• Detected: we consider 2 fault detection mechanisms:
1) Exception: the fault effect generates an ‘illegal’ condi-

tion and either the software or the hardware triggers
an exception revealing the fault occurrence.

2) Decryption Detection: the fault is detected by the
decryption mechanism. In particular, the fault affects

one (or more) of the padding bytes appended to the
plain-text (weights) for the encryption; the decryption
mechanism detects the padding incorrectness and
triggers an error, allowing the detection of the fault
occurrence.

It has been shown that ML-based systems are rather
resilient to errors [34], [35], [36]. Obviously, we want to avoid
SDC cases, that may be catastrophic for the system and its
environment. For example, in a self-driving vehicle, an object
detection ML application impacted by a fault could lead to
an incorrect detection of, for instance, pedestrians. This could
put human lives in harmful situations [37].

In most ML applications, the weights are represented by
floating point numbers. The IEEE-754 standard [38] specifies
a special value, ‘Not a Number’ (NaN), that is the result of
invalid operations. The presence of a NaN value reveals an
incorrect behavior and, in our scenario, triggers an exception.
According to the IEEE-754 standard, a sequence of bits
interpreted as NaN satisfies the following conditions:

1) the exponent bits are all set to 1,
2) at least one bit of the mantissa is set to 1.

NaN values may be detected at hardware level by the CPU
or at software level by the application code. In both cases,
an exception is typically triggered. In our context, a fault
affecting an encrypted weight is detected if its effect generates
either a NaN value – thus a software exception – or a corrupted
padding, caught by the decryption mechanism. Otherwise,
it will be either a silent fault or an SDC. This depends on
the fault criticality, which is connected to the fault location.
In Figure 2 we report the binary representation of a 64-bit
floating-point number. If the effect of an undetected fault

63 52 0

sign exponent	 fraction/mantissa	

	Silent	Data	Corruption	
	Silent	

FIGURE 2: IEEE-754: Binary64 Floating Point number
representation.

happens to corrupt one (or more) of the Least Significant Bits
(LSBs) of the floating point number, then it will most probably
be silent since the change of the weight’s value will not be
significant. Conversely, as the fault location moves towards
the Most Significant Bits (MSBs) then the effects will be
more severe and can lead to SDC [39], [40]. More in detail, as
observed in [39], faults impacting the sign and the mantissa
bits have a weaker impact on the network behavior than faults
impacting the exponent bits.

B. CASE STUDY A: SIMPLE ANN
The first case study used for our experiments is an ANN. It
is a classifier, which was developed using an ANSI C library
[41]. Given as input a point in the (x, y) Cartesian plane, the
ANN assigns it to one of the three following classes:

6 VOLUME X, 2021

• C1: The point belongs to either one of the circles:
(x± 1)2 + (y ± 1)2 ≥ 0.16
• C2: The point belongs to either one of the disks:
0.16 < (x± 1)2 + (y ± 1)2 < 0.64

• C3: The point belongs to neither circle nor disk:
(x± 1)2 + (y ± 1)2 ≥ 0.64

The aforementioned loci are depicted in Figure 3. The training

FIGURE 3: Graphical visualisation of the loci determined by
the classification boundaries of the target ANN.

and the testing set of the network contain 3, 000 points each
(6, 000 in total). In each set 1, 500 randomly generated points
are located inside the [0, 2]× [0, 2] rectangle and 1, 500 points
are located inside the [0,−2]× [0,−2] rectangle.

The network is composed of 1 input layer, 3 hidden layers
and 1 output layer. The input layer has 2 neurons, one for each
of the points coordinates (x, y). The hidden layers have 10
neurons each and the output layer has 3 neurons, one for each
of the classes (C1, C2, C3). In total, the network contains 283
weights (including each neuron’s BIAS input weight), each
corresponding to a 64-bit floating point number. In order to
train the network we used the supervised learning technique.
Every point in our training and test dataset was encoded

using one-hot encoding. The adopted training algorithm was
gradient descent.

The generalization error of the network was found to be
1.33%. This is the probability for the classifier to misclassify a
given point of the test-set (e.g., to classify a point of the class
C1 as a point of the class C2 or C3). The activation function
selected for this network is the sigmoid function.

C. CASE STUDY B: CNN
The CNN that we used for our experiments is the LeNet-5
network [44]. It was first introduced in [43], where it was used
to detect handwritten zip codes digits [45].

We resort to a LeNet-5 variant [42] trained on the MNIST
dataset of handwritten digits [46] using the darknet frame-
work [47]. The CNN takes as input 28x28 pixel images and
its architecture, depicted in Figure 4, consists of the following
layers:

C1: A convolutional layer that produces as output 32 feature
maps of size 28x28. C1 has 2,400 trainable weights.

S2: A sub-sampling layer that reduces the dimension of
the feature maps from 28x28 to 14x14. To generate a
single value of a given output feature map, S2 takes
the maximum value among a subset of four (2x2) input
values.

C3: A convolutional layer that produces 64 feature maps of
size 14x14. C3 has 51,200 trainable weights.

S4: A sub-sampling layer producing 64 feature maps of size
7x7, similarly to S2. Also S4 takes the maximum value
among a subset of four (2x2) input values to generate an
output value.

FC5: A fully connected layer with 1024 neurons. FC5 has
3,211,264 trainable weights.

FC6: A fully connected layer with 10 neurons. FC6 has 10,240
trainable weights.

OUT At the output of the network, a Softmax operation is
performed. This maps the output values to the range [0,1],
to treat them as probabilities. Finally, the sum of squared
error (SSE) is calculated to compute the distance between
the values from FC6 and some parameter vectors that
correspond to the ten classes of digits. The parameter

643232

INPUT
3 channels

28x28 pixels

Convolution
operation\sConvolution

operations Subsampling
operations

S2: sub-sampling layer (max)
32 feature maps 14x14

FC5: connected layer
1024 neurons

C3: convolutional layer
64 feature maps 14x14

Full connections

5x5 filter

C1: convolutional layer
32 feature maps 28x28

2x2

5x5 64

Subsampling
operations

2x2

S4: sub-sampling layer (max)
64 feature maps 7x7

FC6: connected layer
10 neurons

OUT: Softmax +
sum of squared

error (SSE)
computation

FIGURE 4: LeNet-5 variant architecture [42] (inspired from [43])

VOLUME X, 2021 7

vectors were determined manually and kept fixed.
Neurons in layers C1, C3, FC5, and FC6 compute a dot
product between their input vector and their weight vector
and add a bias. For C1, C3, and FC5, the result is then passed
through a Rectified Linear Unit (ReLU) activation function.
For FC6 a linear activation function is used. Table 1 reports
the percentage of images classified correctly per-digit after
training the network along with the number of images that
were used for the training and testing purposes of the network.
In total, 70,000 images were used.

MT: Nick, please, add the number of images used in
the test set. The total number of weights of the whole

TABLE 1: LeNet-5 classification accuracy, training and testing
data for the MNIST dataset

Digit Accuracy Number of Images
Training Testing

0 95,87% 5,923 980
1 97,41% 6,742 1,135
2 87,39% 5,958 1,032
3 81.76% 6,131 1,010
4 94,42% 5,842 982
5 78,06% 5,421 892
6 91,45% 5,918 958
7 90,45% 6,265 1,028
8 89,07% 5,851 974
9 88,33% 5,949 1,009

60,000 10,000

network, including neurons of both the convolutional and
fully connected layers, is 3, 275, 104. For more details on the
LeNet-5 structure and functionality, please refer to [43].

D. FAULT INJECTIONS
As already mentioned, in this study we focus on transient
faults affecting the NVM that stores the ML application’s
weights. To correctly model this scenario, we performed
fault injection campaigns on the encrypted version of the
ML applications’ weights, before decrypting and using them

to execute the ML application. Table 2 presents the size (in
terms of total number of bits used to represent the weights)
of the two ML applications, along with the total amount of
experiments performed.

TABLE 2: Network Sizes and Total Experiments

Network Total bits (net’s weights) Experiments
SEU MBU

ANN 18,112 6 36CNN 209,606,656

For the experiments executed under the SEU fault model,
we performed one fault injection campaign for each of the six
considered cryptographic configurations. For the experiments
executed under the MBU fault model, we performed six fault
injection campaigns for every cryptographic configuration.
Specifically, we injected faults of six different multiplicities,
namely 10, 20, 50, 100, 200 and 500. Thus, the total amount of
experiments (i.e., fault injection campaigns) related to MBU
model was 6× 6 = 36.

Fault Injections per ML application
In order to obtain statistically meaningful results with an
error margin of ≈1.5% and a confidence level of 95% we
had to perform 3, 454 fault injections for every experiment
on the ANN and 4, 145 fault injections for every experiment
on the CNN application. The number of injected faults per
experiment was calculated according to [48] as:

fault_injections =
N

1 + e2 × N−1
t2×0.25

where:

• N is the population, size i.e., column 2 of table 2.
• e is the desired error margin.
• t depends on the desired confidence level (t=1.96 corre-

sponds to 95% confidence level)

2 INJECT

3 DECRYPT

1 ENCRYPT

ML	WEIGHTS

TEST	SET

ENCRYPT 1.2

INJECT 2

DECRYPT 3

UNPAD 3.1

PAD 1.1

ML	
APPLICATION

Corrupted
Padding	?

NO

YES

C
O
M
PA

R
EFAULT	FREE

RESULTS

RESULTS

SDC

DETECTEDDETECTED

SDC

SILENT

FIGURE 5: Experimental Setup

8 VOLUME X, 2021

Furthermore, a uniform distribution was used for each fault
injection campaign. Thence, each memory bit had the same
probability of being selected.

E. EXPERIMENT FLOW
Figure 5 depicts the flow of our experiments. To study the
effect of the padding check on fault detection capabilities, we
organized the flow as follows. Firstly, the weights are either
padded or not and then encrypted; then, a fault is injected in
one of the weights, and finally they are decrypted and then
either un-padded or not. When the padding is used, the effect
of a fault on the encrypted memory content may propagate
to the padding, thanks to the decryption. In this case, the
padding check mechanism detects that the padding bytes
have been altered, thus leading to the fault detection. On
the other hand, if a padding byte has not been altered (or
if the target system does not perform the padding integrity
check), then it is up to the application to possibly detect the
fault. As already mentioned, in our scenario this happens
only if a NaN is generated and an exception is triggered.
Finally, the classification results are compared with the golden
classification results. Classification is performed as follows:

• If the results match i.e., exactly the same classification
was performed with respect to the fault-free scenario,
then the fault is classified as silent.

• If the results do not match i.e., items have been miss-
classified, then the fault is classified as SDC.

• If the decryption mechanism detects a discrepancy in the
padding segment or the application detects a NaN value
while loading the weights, an exception is triggered and
the fault is classified as detected.

In order to support the fault injection experiments we
developed a tool using Python. This tool is responsible of
(i) encrypting the weights of the respective ML application
using a given cipher configuration, (ii) injecting a fault of
a given multiplicity in the form of bit-flips and finally (iii)
decrypting the memory data segment.

First of all, the tool executes the fault-free (golden) ML

application with the given test set and obtains the fault-free
NN results. Then, in order to have a point of reference and
comparison, we perform fault injections on the networks’
weights without using encryption. The criticality of the
fault strongly depends on the fault location, as explained in
Section IV-A. In this scenario, the only case where a fault is
detected is when it causes a NaN value, which in turn triggers
a software exception.

V. RESULTS
In this section, we present the experimental results that we
obtained for our case studies. SEU results are summarized
in Table 3, while MBU results are presented in the plots
of Figure 6 and Figure 7. In both cases, two scenarios are
considered. In the first scenario, checks on the padding
segment of the ciphertext are not performed (NO PAD), while
in the second scenario, checks are performed during the
decryption process (PAD).

A. SEU EXPERIMENTS
ANN
Regarding the SEU experiments on the ANN, in the upper
part of Table 3 we show that the differences between the
results of the experiments performed with no encryption (our
reference baseline) and those performed with non-spreading
encryption ciphers are not significant, regardless of the
padding utilization. Thus, non-spreading encryption ciphers
do not provide any enhanced fault-detection capabilities. The
majority of the injected faults are classified as silent.

As for the spreading encryption ciphers, we observe that
almost always they produce more SDCs than the reference sce-
nario, regardless of the padding utilization. The reason behind
this behavior is the propagation of the fault during decryption.
As explained in Section II-A, these modes of operation tend
to amplify the fault effect by propagating it to neighbouring
blocks of information. This attribute of the ciphers increases
the probability of corrupting significant information bits that
will eventually lead to a SDC case. However, the PCBC cipher
configuration with padding utilization (PAD scenario) stands

TABLE 3: SEU Results

ANN

Fault
Classification

NO PAD PAD
non-spreading spreading non-spreading spreading

NO ENC CTR OFB CBC CFB PCBC CTR OFB CBC CFB PCBC
Silent 75,5% 78,8% 77,4% 1,6% 2,6% 6,4% 76,6% 76,6% 0,6% 1,8% 0%
SDC 24% 21,8% 22% 98% 97,4% 92,8% 22,8% 22% 98,2% 96,4 0,6%
Detected 0,3% 0% 0,6% 0,4% 0% 0,8% 0,6% 1,4% 1,2% 1,8% 99,4%

CNN

Fault
Classification

NO PAD PAD
non-spreading spreading non-spreading spreading

NO ENC CTR OFB CBC CFB PCBC CTR OFB CBC CFB PCBC
Silent 97,3% 96,8% 96,9% 20,3% 20,4% 0,0% 96,8% 96,9% 20,3% 20,4% 0,0%
SDC 2,7% 3,2% 3,1% 79,0% 78,6% 24,5% 3,2% 3,1% 79,0% 78 ,6% 0,1%
Detected 0,0% 0,0% 0,0% 0,7% 1,0% 75,5% 0,0% 0,0% 0,7% 1,0% 99,9%
NO PAD: Experiments that do not consider padding checking during decryption
PAD: Experiments that consider padding checking during decryption

VOLUME X, 2021 9

out for achieving a fault detection rate of 99,4%. This result
is due to the nature of the PCBC decryption process: when
a fault is injected in the ciphertext, the PCBC decryption
mechanism propagates the fault effects to all of the following
blocks, resulting in the corruption of the padding segment.
Hence, the corruption is detected by the padding check and
an exception is raised.

CNN

The SEU results of the CNN case study are reported in the
lower half of Table 3. Encryption with non-spreading ciphers
does not provide any notable fault detection capabilities,
similarly to the ANN scenario. Indeed, the results do not
substantially deviate from the no encryption scenario and the
vast majority of the faults fall into the silent category. Similarly
to the ANN results, CBC and CFB block ciphers produce a
high number of SDCs, regardless of the padding utilization.
On the other hand, the PCBC configuration shows improved
detection capabilities. In fact, when the padding check is not
used, the PCBC is able to detect 75,5% of the faults. Moreover,
when the padding check is performed, the PCBC achieves a
detection rate of 99,9%.

One notable difference between the two case studies can be
observed for the PCBC case in the NO PAD scenario. Without
padding checks, PCBC achieves a higher fault detection rate
when applied to the CNN, compared to the ANN. Note that the
only way for a fault to be detected in this case is for the fault to
generate a NaN value that will trigger an exception. We think
that the reason behind this peculiarity may be the difference
in size and number of operations between the two networks in
combination with the PCBC’s fault spreading property to all
the following blocks. Indeed, the CNN’s weights, as shown in
column 2 of table 2, are 104 times as many as the weights of
the ANN network. In order to be encrypted with a spreading
cipher configuration, the weights are split into 128-bit blocks.
In the ANN there are 142 blocks whilst in the CNN there are

6,550,208 blocks. Thus, during the decryption process, the
effect of a fault impacting a random encrypted block in the
CNN will be propagated to much more subsequent blocks than
in the ANN, thus impacting more weights. Moreover, much
more operations are carried out in the CNN than in the ANN.
This surely contributes to error accumulation and propagation
and increases the probability of getting a NaN. To give an
example, we think that when a fault impacts a lot of weights
(thanks to PCBC spreading property), it is likely that one or
more of them assume a large value. The large values would
grow even bigger thanks to the convolution operations, which
involve basically multiplications and additions, and eventually
could turn into the infinity value. Ultimately, operations with
infinity values (e.g. multiplication with zero or the∞−∞
operation) could likely generate a NaN.

B. MBU EXPERIMENTS
ANN

Figure 6 reports the results of the MBU experiments for the
ANN application. Regarding the NO PAD scenario (Figure 6-
a), we observe that non-spreading ciphers behave similarly
to the no encryption scenario. As the fault multiplicity rises,
the fault detection rates rise as well. This means that, as the
number of injected faults rises, the probability to induce a
NaN increases. On the other hand, spreading cipher configu-
rations tend not to provide any significant fault detection rate.
Specifically, we can see that their fault detection rate drops
for fault multiplicity higher than 200.

Concerning the PAD scenario where the padding integrity
checks are performed (Figure 6-b), we observe PCBC dom-
inating over the rest of the ciphers. Indeed, the PCBC
achieved high fault detection capabilities, very close to 100%,
regardless of the injected fault multiplicity. In general, the
performance of all the ciphers in terms of their fault-detection
capabilities was also enhanced since in this scenario a fault
may corrupt bytes of the padding segment, generating an

FIGURE 6: ANN MBU results for the (a) NO PAD and (b) PAD scenarios

10 VOLUME X, 2021

FIGURE 7: CNN MBU results for the (a) NO PAD and (b) PAD scenarios

immediate detection.

CNN
The results of the CNN case study are depicted in Figure 7.
Similarly to what happens in the SEU experiments, we can
see that the plots deviate from the ANN case. Regarding the
NO PAD scenario (Figure 7-a), non-spreading ciphers do
not provide significant fault detection. In fact, they achieve
a detection rate close to the no encryption scenario. On the
other hand, the fault detection rates obtained for spreading
ciphers are higher for the CNN compared to the ANN.
In particular, the PCBC configuration showed also in this
case high detection capabilities, very close to 100%. We
think that this phenomenon is related to what previously
stated in Section V-A for the SEU experiment for the NO
PAD scenario: the number of weights and operations in the
CNN is much larger than in the ANN. Therefore, we think
that, when multiple faults impact the CNN weights and the
effect is spread to other weights thanks to spreading AES
configurations, it is highly likely to generate high values that
could eventually turn into infinity. Operations with infinity
values could likely generate a NaN.

In the PAD scenario (Figure 7-b), where padding checks
are performed, we observe again PCBC dominating over the
rest of the ciphers by achieving very high fault detection rates,
close to 100%.

Silent Faults and SDCs
As already discussed, the faults that remain undetected can
be classified either as Silent or SDC. In both the analyzed
ML applications, the percentage of undetected faults that are
classified as SDCs is directly proportional to the injected fault
multiplicity. Consequently, the percentage of undetected faults
that are classified as silent is inversely proportional to the fault
multiplicity. Indeed, as the multiplicity of faults increases, the
likeliness of an undetected fault impacting significant memory

bits increases as well; thus, the probability of a fault being
silent and not causing data corruptions decreases. We observed
the same trend for both spreading and non-spreading cipher
configurations.

While the trend is the same, for low fault multiplicities
the non-spreading configurations tend to produce higher
percentages of silent faults (thus lower percentages of SDCs)
than the spreading configurations. This is due to the intrinsic
property of these latter configurations to spread the fault
effects to multiple bits in the decryption process.

VI. CONCLUSIONS
The modern society is permeated with digital computing
systems, which are increasingly vital to our everyday life.
The design process of these systems has become incredibly
complex, as many requirements have to be taken into account.
In particular, reliability constraints have profoundly impacted
the way designers implement these systems. Furthermore,
in the last years, the growing interest in avoiding malicious
attacks on intellectual properties within these systems led
designers to integrate security-oriented techniques, such as
memory encryption.

Autonomous systems employing Machine Learning (ML)
technology are a prominent example where both reliability and
security constraints are crucial. In particular, the correctness
of the ML model weights determines the proper behavior of
the system; at the same time, the weights are also considered
a precious Intellectual Property (IP) item, since they are the
result of an expensive and not trivial training process. Thus,
companies need to protect them at once from faults and from
malicious attacks. Unfortunately, these two aspects are studied
and handled separately, with little interaction between the
respective experts.

In this work, we analyzed and highlighted the fault-
detection capabilities offered by memory encryption mecha-
nisms. This enables designers to single out the most suitable

VOLUME X, 2021 11

memory encryption mechanism for a system, while taking
into account not only its safety, but also its reliability. We
experimentally evaluated the positive impact that data encryp-
tion has in terms of reliability enhancements with respect
to the effects of transient faults. To do so, we performed
extensive fault injection campaigns on the encrypted weights
of an Artifical Neural Network (ANN) and of a Convolutional
Neural Network (CNN) and evaluated the fault-detection
capabilities provided by the decryption mechanism. The
underlying idea is that the effect of a fault affecting an
encrypted data will spread to adjacent data in the decryption
process, thus increasing the probability of detecting the fault
occurrence. The obtained results showed that selecting a
particular Advanced Encryption Standard (AES) configura-
tion, i.e., the Propagating Cipher Block Chaining (PCBC), in
combination with padding check mechanisms allowed us to
achieve significantly high fault detection rates (> 99%), with
respect to the Single Event Upset (SEU) and the Multiple Bit
Upset (MBU) faults models.

This work encourages and paves the way to the devel-
opment of new integrated design techniques that take into
account at once multiple crucial requirements of the new-
generation advanced computing systems.

REFERENCES
[1] K. F. Li and N. Attarmoghaddam, “Challenges and methodologies of

hardware security,” in International Conference on Advanced Information
Networking and Applications. IEEE, 2018.

[2] S. Ghosh, M. N. I. Khan, A. De, and J. Jang, “Security and privacy
threats to on-chip non-volatile memories and countermeasures,” in 2016
IEEE/ACM International Conference on Computer-Aided Design, 2016,
pp. 1–6.

[3] Mohammad Nasim Imtiaz Khan and Swaroop Ghosh, “Assuring Security
and Reliability of Emerging Non-Volatile Memories,” in 2020 Interna-
tional Test Conference. IEEE, 2020.

[4] D. Rossi and C. Metra, “Error correcting strategy for high speed and high
density reliable flash memories,” Journal of Electronic Testing, vol. 19, pp.
511–521, 2003.

[5] W. Liu and J. Rho and W. Sung, “Low-Power High-Throughput BCH Error
Correction VLSI Design for Multi-Level Cell NAND Flash Memories,” in
2006 IEEE Workshop on Signal Processing Systems Design and Implemen-
tation, 2006, pp. 303–308.

[6] J. Xiao-bo and T. Xue-qing and H. Wei-pei, “Novel ecc structure and eval-
uation method for nand flash memory,” in 2015 28th IEEE International
System-on-Chip Conference (SOCC), 2015, pp. 100–104.

[7] M. Ye, K. Zubair, A. Mohaisen, and A. Awad, “Towards low-cost mech-
anisms to enable restoration of encrypted non-volatile memories,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2019.

[8] S. Katzenbeisser and I. Polian and F. Regazzoni and M. Stöttinger, “Se-
curity in Autonomous Systems,” in 2019 IEEE European Test Symposium
(ETS), 2019, pp. 1–8.

[9] Tom Michel, Machine Learning. McGraw Hill, 1997.
[10] Yann LeCun and Yoshua Bengio and Geoffrey Hinton, “Deep learning,”

Nature, vol. 521, pp. 436–444, 2015.
[11] Michael K. K. Leung and Hui Yuan Xiong and Leo J. Lee. and Brendan J.

Frey, “Deep learning of the tissue-regulated splicing code,” Bioinformatics,
vol. 30, no. 12, pp. 121–129, 2014.

[12] Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun,
“Pedestrian Detection with Unsupervised Multi-Stage Feature Learning,”
CoRR, vol. abs/1212.0142, 2012.

[13] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning Hierarchical
Features for Scene Labeling,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 8, pp. 1915–1929, 2013.

[14] C. Garcia and M. Delakis, “Convolutional face finder: a neural architecture
for fast and robust face detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 11, pp. 1408–1423, 2004.

[15] Daniel R. Wade and Andrew William Wilson, “Applying machine learning-
based diagnostic functions to rotorcraft safety,” in 17th Australian
Aerospace Congress, 2017.

[16] Tramèr Florian and Zhang Fan and Juels Ari and Reiter Michael K. and
Ristenpart, Thomas, “Stealing Machine Learning Models via Prediction
APIs,” in 25th USENIX Conference on Security Symposium, ser. SEC’16.
USA: USENIX Association, 2016, p. 601–618.

[17] R. Cantoro, N. I. Deligiannis, M. S. Reorda, M. Traiola, and E. Valea,
“Evaluating data encryption effects on the resilience of an artificial neural
network,” in 2020 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2020, pp. 1–4.

[18] Andreani,C. and Senesi,R. and Paccagnella,A. and Bagatin,M. and Ger-
ardin,S. and Cazzaniga,C. and Frost,C. D. and Picozza,P. and Gorini,G.
and Mancini,R. and Sarno,M. , “Fast neutron irradiation tests of flash
memories used in space environment at the ISIS spallation neutron source,”
AIP Advances, vol. 8, no. 2, p. 025013, 2018.

[19] M. Bagatin and S. Gerardin and A. Paccagnella and A. Visconti and L.
Chiavarone and M. Calabrese and C. D. Frost, “Sensitivity of NOR Flash
memories to wide-energy spectrum neutrons during accelerated tests,” in
2014 IEEE International Reliability Physics Symposium, 2014, pp. 5F.3.1–
5F.3.6.

[20] Yuqian Pan and Haichun Zhang and Mingyang Gong and Zhenglin Liu,
“Unexpected Error Explosion in NAND Flash Memory: Observations and
Prediction Scheme,” in 2020 IEEE 29th Asian Test Symposium, 2020.

[21] D. Ielmini and A.S. Spinelli and A.L. Lacaita, “Recent developments on
Flash memory reliability,” Microelectronic Engineering, vol. 80, pp. 321–
328, 2005, 14th biennial Conference on Insulating Films on Semiconduc-
tors.

[22] D. H. Yoon and N. Muralimanohar and J. Chang and P. Ranganathan and N.
P. Jouppi and M. Erez, “FREE-p: Protecting non-volatile memory against
both hard and soft errors,” in 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, 2011, pp. 466–477.

[23] Timothy J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC
for PC Server Main Memory,” IBM Microelectronics Division, Tech. Rep.,
1997.

[24] Intel, “Independent Channel vs. Lockstep Mode - Drive your Memory
Faster or Safer,” https://software.intel.com/content/www/us/en/develop/
blogs/independent-channel-vs-lockstep-mode-drive-you-memory-faster-
or-safer.html, [Online; accessed 05-November-2020].

[25] Amro Awad and Laurent Njilla and Mao Ye, “Triad-NVM: Persistent-
Security for Integrity-Protected and Encrypted Non-Volatile Memories
(NVMs),” 2018.

[26] S. Liu and A. Kolli and J. Ren and S. Khan, “Crash Consistency in En-
crypted Non-volatile Main Memory Systems,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018,
pp. 310–323.

[27] H. Shacham, “Return-oriented programming: Exploits without code
injection,” in Black Hat USA, 2008. [Online]. Available: https:
//www.blackhat.com/html/bh-usa-08/bh-usa-08-archive.html

[28] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,” ACM
Trans. Inf. Syst. Secur., vol. 15, no. 1, Mar. 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

[29] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 30–40. [Online]. Available: https:
//doi.org/10.1145/1966913.1966919

[30] O. Savry, M. El-Majihi, and T. Hiscock, “Confidaent: Control flow pro-
tection with instruction and data authenticated encryption,” in 2020 23rd
Euromicro Conference on Digital System Design (DSD), 2020, pp. 246–
253.

[31] Mario Werner and Thomas Unterluggauer and David Schaffenrath and Ste-
fan Mangard, “Sponge-Based Control-Flow Protection for IoT Devices,”
2018.

[32] B. Kaliski, “RFC2315: PKCS #7: Cryptographic Message Syntax Version
1.5,” USA, 1998.

[33] R. Cantoro and N. I. Deligiannis and M. S. Reorda and M. Traiola and
E. Valea, “Evaluating the Code Encryption Effects on Memory Fault
Resilience,” in 2020 IEEE Latin-American Test Symposium (LATS), 2020,
pp. 1–6.

[34] S. Mittal, “A survey of FPGA-based accelerators for convolutional neural
networks,” Neural Computing and Applications, 10 2018.

12 VOLUME X, 2021

https://software.intel.com/content/www/us/en/develop/blogs/independent-channel-vs-lockstep-mode-drive-you-memory-faster-or-safer.html
https://software.intel.com/content/www/us/en/develop/blogs/independent-channel-vs-lockstep-mode-drive-you-memory-faster-or-safer.html
https://software.intel.com/content/www/us/en/develop/blogs/independent-channel-vs-lockstep-mode-drive-you-memory-faster-or-safer.html
https://www.blackhat.com/html/bh-usa-08/bh-usa-08-archive.html
https://www.blackhat.com/html/bh-usa-08/bh-usa-08-archive.html
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919

[35] C. Torres-Huitzil and B. Girau, “Fault and Error Tolerance in Neural
Networks: A Review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[36] W. Sung, S. Shin, and K. Hwang, “Resiliency of Deep Neural Networks
under Quantization,” CoRR, vol. abs/1511.06488, 2015.

[37] Gunnar D Jenssen and Terje Moen and S. Johnsen, “Accidents with
Automated Vehicles -Do self-driving cars need a better sense of self?” in
26th ITS World Congress, 10 2019.

[38] 754-2019 - IEEE Standard for Floating-Point Arithmetic, IEEE, July 2019,
Revision of IEEE Std 754-2008.

[39] A. Bosio and P. Bernardi and A. Ruospo and E. Sanchez, “A Reliability
Analysis of a Deep Neural Network,” in 2019 IEEE Latin American Test
Symposium (LATS), 2019, pp. 1–6.

[40] Li, Guanpeng and Hari, Siva Kumar Sastry and Sullivan, Michael and Tsai,
Timothy and Pattabiraman, Karthik and Emer, Joel and Keckler, Stephen
W., “Understanding Error Propagation in Deep Learning Neural Network
(DNN) Accelerators and Applications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. Association for Computing Machinery, 2017.

[41] Lewis Van Winkle, “C Neural Network Library: Genann,” https://
codeplea.com/genann, [Online; accessed 05-November-2020].

[42] Gokul NC, “DarkNet Classifier LeNet MNIST,” https://github.com/
ashitani/darknet_mnist, [Online; accessed 21-December-2020].

[43] Y. LeCun and L. Bottou and Y. Bengio and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[44] Yann Lecun, “LeNet-5,” http://yann.lecun.com/exdb/lenet/, [Online; ac-
cessed 06-November-2020].

[45] LeCun Y. and Boser B. and Denker J. S. and Henderson D. and Howard
R. E. and Hubbard W. and Jackel L. D., “Backpropagation Applied to
Handwritten Zip Code Recognition,” Neural Computation, vol. 1, no. 4,
pp. 541–551, 1989.

[46] Yann LeCun and Corinna Cortes and Christopher J.C. Burges, “The
MNIST Database,” http://yann.lecun.com/exdb/mnist/, [Online; accessed
06-November-2020].

[47] Joseph Redmon, “Darknet: Open Source Neural Networks in C,” http://
pjreddie.com/darknet/, [Online; accessed 06-November-2020].

[48] R. Leveugle and A. Calvez and P. Maistri and P. Vanhauwaert, “Statistical
fault injection: Quantified error and confidence,” in 2009 Design, Automa-
tion Test in Europe Conference Exhibition, 2009, pp. 502–506.

NIKOLAOS IOANNIS DELIGIANNIS received
the MSc degree in Computer Science and Engi-
neering from the Department of Computer Science
and Engineering of University of Ioannina, Greece,
in 2019. He was a research assistant in the De-
partment of Control and Computer Engineering of
Politecnico di Torino where he is currently a Ph.D.
student. His research interests include testing of
processors using formal methods and fault toler-
ance. He is a member of the IEEE.

RICCARDO CANTORO received the MSc de-
gree and the Ph.D. in computer engineering from
Politecnico di Torino, Italy, in 2013 and 2017,
respectively. He is currently a researcher with the
Department of Computer Engineering of the same
university. His research interests include software-
based functional testing of SoCs and memories,
and machine learning applied to test and diagnosis.
He is a member of the IEEE.

MATTEO SONZA REORDA received the MSc
degree in electronics and the Ph.D. degree in
Computer Engineering from Politecnico di Torino,
Italy, in 1986 and 1990, respectively, where he is
currently a Full Professor with the Department of
Control and Computer Engineering. He published
more than 400 papers in the area of test and fault
tolerant design of reliable circuits and systems,
receiving several Best Paper Awards at major inter-
national conferences. He is involved in numerous

research projects with companies and other research centers worldwide. He
is a Fellow of the IEEE.

MARCELLO TRAIOLA received the Ph.D. de-
gree in Computer Engineering from the University
of Montpellier, France, in 2019 and the MSc De-
gree in Computer Engineering cum laude from the
University of Naples Federico II, Italy, in 2016.
He is currently a postdoctoral researcher at the
Lyon Institute of Nanotechnology, École Centrale
de Lyon, in France. His main research topics are
emerging computing paradigms with special inter-
est in design, test, and reliability. He is an IEEE

member.

EMANUELE VALEA received the MSc degree in
electronic engineering from Politecnico di Torino,
Italy, in 2016, and the Ph.D. degree in micro-
electronics from the University of Montpellier,
France, in 2020. He is currently a research en-
gineer at CEA-List, Grenoble, France. His re-
search interests include hardware security and
trust, cryptographic primitives for microelectron-
ics and security-related aspects of VLSI testing
and reliability. He is an IEEE member.

VOLUME X, 2021 13

https://codeplea.com/genann
https://codeplea.com/genann
https://github.com/ashitani/darknet_mnist
https://github.com/ashitani/darknet_mnist
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/mnist/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Introduction
	State-of-the-Art and Background
	Memory Encryption

	Analysis of the AES fault detection capability
	AES modes of operation and their fault propagation property
	The role of padding in AES
	Fault tolerance analysis

	Experimental validation of encryption fault detection capability
	Fault Models, Fault Classification, and Fault Effects
	Case Study A: simple ANN
	Case Study B: CNN
	Fault Injections
	Experiment Flow

	Results
	SEU Experiments
	MBU Experiments

	Conclusions
	REFERENCES
	Nikolaos Ioannis Deligiannis
	Riccardo Cantoro
	Matteo Sonza Reorda
	Marcello Traiola
	Emanuele Valea

