
HAL Id: cea-03452244
https://cea.hal.science/cea-03452244

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Instruction Set Design Methodology for In-Memory
Computing through QEMU-based System Emulator

Kevin Mambu, Henri-Pierre Charles, Julie Dumas, Maha Kooli

To cite this version:
Kevin Mambu, Henri-Pierre Charles, Julie Dumas, Maha Kooli. Instruction Set Design Methodology
for In-Memory Computing through QEMU-based System Emulator. 32nd International Workshop on
Rapid System Prototyping (RSP), Oct 2021, (En ligne), France. �cea-03452244�

https://cea.hal.science/cea-03452244
https://hal.archives-ouvertes.fr


Instruction Set Design Methodology for In-Memory
Computing through QEMU-based System Emulator

Kévin Mambu, Henri-Pierre Charles, Julie Dumas, Maha Kooli
Univ. Grenoble Alpes, CEA, LIST

F-38000 Grenoble, France
firstname.name@cea.fr

Abstract—In-Memory Computing (IMC) is a promising
paradigm to mitigate the von Neumann bottleneck. However its
evaluation on complete applications in the context of full-scale
systems is limited by the complexity of simulation frameworks
as well is the disjunction between hardware exploration and
compiler support. This paper proposes a global exploration
flow in the scale of Instruction Set Architectures (ISA) to
perform both modeling and the generation of compiler support
to perform ISA-level exploration. Our emulation methodology
is based on QEMU, implements a performance model based on
hardware characterizations from the State-of-the-Art, and allows
the modeling of cache hierarchies, while our compiler support is
automatically generated and based on a specialized compiler. We
evaluate three applications in the domains of image processing
and linear algebra on a reference IMC architecture, and analyze
the obtained results to validate our methodology.

Index Terms—QEMU, IMC, Instruction Set Design, Cache
Modeling, Power Modeling, Compiler, System Emulation

I. INTRODUCTION

Von Neumann architectures are inherently limited by per-
formance bottlenecks, in the form of the Memory Wall and
the Energy Wall. Previous works such as [1] show that the
discrepancy in energy cost between a CPU and L1 cache can
vary between ×10 for 8 KB and ×100 for 1 MB memories.
In-Memory Computing (IMC) is a solution to implement non-
von Neumann architectures and mitigate the Memory Wall
bottleneck by moving computation directly to memory instead
of exchanging data between it and the CPU, in order to achieve
a wider level of parallelism while reducing bandwidth usage,
and thus, the latency cost and power consumption of computer
architectures. The integration of IMC to conventional von Neu-
mann architectures opens the path to new challenges, as the
performance of an IMC architecture depends on the operations
supported by its instruction set but also its integration in a full-
scale system with a complex memory hierarchy and access to
I/O and peripherals, e.g. network cards. However, this need
for IMC to be evaluated in a real-life setup does not scale to
the level of abstraction of most simulation frameworks, and
the complexity required to model such systems in order to
perform the evaluation of IMC in a system integrating the
previously mentioned features to the level of Instruction Set
Architectures (ISAs).

Moreover, the exploration of emerging architectures such as
IMC is often disjointed between hardware and software explo-
ration, in terms of compiler & language support for the latter.

This discontinuity in terms of research methodologies makes
the bridge between emerging architectures and compilers diffi-
cult to sustain, as low-level modeling and micro-benchmarking
first need to be performed before considering compiler support
even though performing ISA-level exploration allows for the
characterization of results interesting for HW-SW exploration.

In this paper, we propose a complete environment to per-
form exploration of IMC architectures at the level of ISAs,
with complete applications able to be run on full-scale systems
instead of micro-benchmarks while also generating the com-
piler support for these architectures. The goal of this ISA-level
design methodology is to quickly and effortlessly perform
exploration beneficial for software and hardware exploration
later on.

The rest of the paper is organized as follows. Section II
presents a State-of-the-Art regarding simulation frameworks
and general-purpose and IMC-dedicated software compiler
solutions. Section III presents our reference IMC architecture,
e.g. its instruction set, its programming model and its system
integration. Sections IV and V focus respectively on the mod-
eling and software stack of our environment, while section VI
is an overview of the global exploration flow. Finally, section
VII describes the evaluation of a reference IMC architecture on
three applications – Frame differencing, Sobel filter & Matrix
multiplication – as well as a commentary of the results, and
section VIII exposes our conclusion and perspectives.

II. RELATED WORKS

A. Modeling & emulation frameworks

Frame
-work

Accu
-racy1

System
type2

Develop
-ment
effort

Simulation
speed Fidelity

LLVM I CM + + +
gem5 C S +++ +++ +++

SystemC C M ++ ++ +++
QEMU I ISS / S +/ +++ +/ + ++/ +++

+++: High, ++: Moderate, +: Low
1I: Instruction-accurate, C: Cycle-accurate

2CM: Cost Model, S: System, M: Micro-architecture, ISS: Instruction Set
Simulator

TABLE I
COMPARISON OF VARIOUS SIMULATION FLOWS

Table I presents the comparison of different simulation
frameworks found in the literature, the retained criteria are



the type of architecture modeled and their accuracy, but also
their fidelity to a physical implementation and the development
effort required to perform ISA exploration. [2] implements
an instruction-level cost model based on LLVM to emulate
its energy cost by instrumenting LLVM bytecode. This is
a very fast method of prototyping in terms of development
effort and simulation speed, but it shows low fidelity to a
physical implementation. Other solutions such as [3] [4] [5]
use elaborate frameworks such as SystemC or gem5 to perform
cycle-accurate system modeling. These frameworks show very
high fidelity to physical implementations but low simulation
speed due to their complexity. Moreover, the development
effort required to model ISAs does not always scale to ISA-
level exploration, that is to the level of instructions and user-
visible resources. We retain QEMU [6] as a suitable tool
due to its capabilities of full-system emulation, based on
instruction-level translation, but also its potential to perform
rapid prototyping and exploration. Previous works such as [7]
and [8] base their simulation environments on QEMU to
perform respectively micro-architectural simulation and HW-
SW co-simulation with SystemC. Our present work shows that
QEMU is also able to perform ISA-level exploration for the
quick evaluation of IMC architectures at system-level.

B. Software solutions for In-Memory Computing

General-purpose code compilers such as gcc and clang
can be used to program IMC architectures through macros,
like [9] for example. The problem is that this solution shows
limited expressiveness and code portability, as such a dedicated
solution for IMC would be preferable. In the literature, there
exist few compiler solutions specialized for IMC architectures
and flexible enough to perform ISA exploration. [10] proposes
a compiler technique and a decision model to efficiently
offload instructions to IMC architectures but does not describe
a code compiler per se. [11] presents the Duality Cache
architecture, which implements a subset of Nvidia’s PTX
assembly instructions, and a compilation flow based on the
Nvidia CUDA compiler nvcc. This solution is effective for
compatible source code, but it is tied to a specific ISA and
lacks the flexibility desired to compile code to target various
IMC instruction sets. Moreover, the use of CUDA induces
significant overhead due to data and instruction scheduling
which might be difficult to control and evaluate in the scope
of ISA exploration. [12] is the most flexible solution we
found in terms of IMC support, an LLVM-based compiler
tool-chain able to auto-vectorize scalar C code and targeting
IMC architectures. However, it is implemented as part of
the Intel x86 back-end of LLVM, which limits the degree
of exploration achievable to evaluate the ISA at system-
level. Moreover, the use of automatic vectorization makes
evaluation difficult to control, and a more explicit solution
is preferable. We decide to base our software stack on the
Hybrogen environment [13], a compiler environment targeting
heterogeneous architectures. Its programming language and
dedicated compiler, HybroLang, is able to compile a domain-
specific language with dedicated data types to lower-level

languages such as C, which makes it easy to use and integrate
in an existing compilation flow. It also integrates a database
manager to organize various ISAs. We adapt this compilation
environment for the support of IMC architectures modeled
through our simulation stack.

III. IN-MEMORY COMPUTING ARCHITECTURE

A. Computational SRAM

The Computational SRAM (C-SRAM) architecture emu-
lated in this paper, is an SRAM-based IMC architecture able
to perform computation directly inside the memory array,
thus reducing bandwidth utilization by substituting multiple
data transfers with fewer C-SRAM instructions. In the base
specification, computation is performed between rows — i.e.
on physically aligned data in the memory array — by using
an ALU in its periphery. ALU operations can be parametered
to perform parallel computation on 8-bit to 32-bit operations.
Previous works [2], [14], [15] provided details regarding
the specification, the design and the characterization of this
architecture, and additional works [9], [16] investigated C-
SRAM integration in elaborate scenarios. In this paper, our
experimental C-SRAM architecture is a 128-bit single unit
supporting 16× 8 up to 32× 4 vector operations.

B. Programming Model

Fig. 1. The architectural integration of C-SRAM allows IMC instructions to
be sent by host CPU through the address and data buses.

Fig. 1 presents the programming model of the C-SRAM
from the point-of-view of the developer. The host CPU pro-
grams C-SRAM using a dedicated instruction set through
its address and data bus to make host-agnostic integration
possible.

C. Instruction Set Architecture

Fig. 2. C-SRAM Instruction Formats.

As seen on Fig. 2, the operating mode of the C-SRAM when
receiving requests can be toggled using the Most Significant



Bit (MSB) of the address bus, which we call NE. NE = 0 sets
the C-SRAM in Memory Mode, with data bus and address bus
containing resp. the address and data of the transfer request
issued by the host CPU. NE = 1 sets the C-SRAM in
Computing Mode, the address bus contains the 32 left-most
bits of the instruction while the data bus contains its 32
right-most bits, allowing us to implement 64-bit instructions.
The C-SRAM instruction set defines three instruction formats:
the R-format for 2-row operations, the I-format for 1-row
1-immediate operations and the U-format for 1-immediate
operations.

Fig. 3. Generation of C-SRAM instructions by the host CPU.

The host CPU generates C-SRAM instructions on-the-
fly by encoding them into store instructions, as previously
mentioned. Fig. 3 shows the generation of an 8-bit vector
multiplication C-SRAM instruction. This example code shows
a data dependency between the two consecutive C-SRAM
instructions. This dependency issue is addressed in the imple-
mentation of the C-SRAM architecture through various micro-
optimizations, in order to execute both instructions in a single
clock cycle. The operand addresses Lx does not correspond to
the virtual addresses of the vectors but their physical addresses,
i.e. their row index. Determining the row index from the
virtual address can be done by performing simple masking and
shifting operations. Each field is initialized in accordance to
the C-SRAM ISA, and the sw instruction issues the instruction
to the C-SRAM unit, with the address register encoding the
left-most bits and the data register the right-most bits of
the instruction — resp. r0 and r1 on Fig. 3. The resulting
execution model of a C-SRAM architecture can be seen on
Fig. 4. The interleaving of general-purpose CPU instructions
and C-SRAM instructions enables mixed parallelism without
altering the host ISA.

Fig. 4. Interleaved instruction flow between host CPU and C-SRAM.

Fig. 5. Integration of a C-SRAM unit in a computer architecture with a
2-level cache hierarchy.

D. System integration of the Computational SRAM

Due to its architecture-independent programming model, the
C-SRAM can be integrated in various computer architecture
layouts, from low-power embedded computing architectures
with a Micro-Controller Unit (MCU) and a long-latency
memory, to High-Performance Computing (HPC) architecture.

The architecture layout used for this paper is presented on
Figure 5: a 2-level cache hierarchy with L1 data and instruction
cache units, and a L2 unified cache connected between the L1
cache level and the main memory. It can be integrated in a
Multi-Processor System-on-Chip (MPSoC) architecture.

IV. QEMU-BASED SYSTEM EMULATOR

A. QEMU Overview

QEMU is a fast machine emulator using a mechanism
known as Dynamic Binary Translation (DBT). An internal
dynamic translator, the Tiny Code Generator (TCG) scans
guest binary as a tree of blocks and translate them into
semantically equivalent host assembly code to execute on the
host architecture. the TCG also implements an IR to perform
code manipulation between guest and host binary.

a) QEMU operating modes: Linux user mode uses a
CPU model for the TCG to translate guest code to the
host, and system calls are handled by the host OS. This
operating mode is similar to semi-hosting mode in ARM CPU
architectures. System mode describes an entire Virtual Machine
(VM) with one or multiple cores, access buses, memory units
and peripherals to run applications, in most cases a guest OS.
This mode can be used to model complete architecture with a
high level of fidelity, the modeled platforms being described
in C through an internal API. We decide to implement our
architecture models using Linux user mode for the benefits of
modeling semi-hosted systems, which delegate system calls
to the host OS. With this solution, run-time instrumentation
can be focused solely on the binary code of the application to
evaluate instead of also instrumenting a guest OS, while still
making accesses to I/O and peripherals available through the
host OS.



b) TCG Plugin System: The QEMU TCG Plugin System
allows for end-users to implement out-of-tree features using
dynamically linked libraries. The original API is primarily
designed for code instrumentation. While the Plugin system
does not natively expose internal functionalities and structures,
it is possible to use it to implement call-backs to specific run-
time events out-of-tree, without modifying the main source
code of the QEMU project.

B. Simulation Methodology

Component Events
CPU Executed arithmetic/branch instruction, Executed load in-

struction, Executed store instruction
C-SRAM Load request, Store request, Executed C-SRAM instruc-

tion
Cache
memory

Load request, Store request, Cache look-up, Read miss,
Write miss

Main
memory

Load request, Store request

TABLE II
LIST OF THE EVENTS GENERATED AND COUNTED AT RUN-TIME BY OUR

SIMULATION METHODOLOGY, PER MODELED COMPONENT.

At translation time, every executed guest instruction triggers
callbacks available through TCG plugins for users to set their
own instrumentation helpers. Though Linux user mode QEMU
does not model architectural details such as the memory hier-
archy, we are able to functionally model our IMC architecture
and cache memories by writing TCG helpers performing event
counting & generation at run-time. Table II shows the list of
components we are able to model, and the associated list of
events generated and counted for each.

a) Emulation of IMC instructions: The programming
model of C-SRAM, as explained in the previous section,
describes the issuing of instructions by the host CPU through
the address and data buses to the C-SRAM controller to
decode and execute operations on memory. This non-intrusive
integration allows IMC instructions to be modeled without
altering the host ISA, by scanning CPU load/store instructions
whose address corresponds to accesses to C-SRAM in memory
mode. From that, the TCG helper calls for a "decode tree"
function to extract the arguments of the C-SRAM instruction
from the parameters of the memory access and execute the
appropriate function.

b) Cache modeling: QEMU does not perform native
cache modeling in Linux user mode, but we wanted the
possibility of performing ISA exploration of IMC depending
on its providing instruction set but also its integration in
a multi-level cache hierarchy. In order to model complete
memory hierarchies, we describe generic call-backs and data
structures in order to emulate cache controllers depending on
their write-policy. For the work presented in this paper, we
implement cache memories with write-through or write-back
policies, and with pseudo-random replacement policy [17].
Cache read/write call-backs can be chained to model a multi-
level memory hierarchy from CPU to main memory.

1) Performance and Energy Model: Let I a given instruc-
tion of the binary run on the architecture described through
our methodology:

Etotal =

Up to completion∑
I=First instruction

fInstruction(I, ArchState)

+fMemAccess(I, ArchState) + fC-SRAM(I, ArchState)

(1)

Ltotal =

Up to completion∑
I=First instruction

gInstruction(I, ArchState)

+gMemAccess(I, ArchState) + gC-SRAM(I, ArchState)

(2)

Equations 1 & 2 describe respectively the energy and latency
model of our simulation methodology. The total energy and
latency cost Etotal and Ltotal are the sum of the latency and
energy cost evaluated at every executed instruction, depending
on on their type – Non-memory access instruction, memory
access instruction or C-SRAM instruction – and the architec-
tural state at said instruction.

V. THE HYBROGEN COMPILER ENVIRONMENT

A. HybroLang Programming Language

Fig. 6. Language features of HybroLang in the sample code of Frame
differencing : support of specialized data types and parameterization of
variables <data_width vector_width>

The HybroLang language is heavily inspired by the C
language for its data type operands (int, float, pointers,
etc), but also implements more specialized data types variants
such as sint, to enable the support saturated arithmetic [13].
It also supports the explicit parameterization of variables with
a pair <data_width vector_width>, as seen on Figure
6. These parameters make possible to explicitly perform vector
computation on heterogeneous architectures without the need
for intrinsic functions, using the operator symbols provided by
the grammar of HybroLang. Finally, HybroLang is designed to
be integrated in a host source code of different language (e.g.
C, Javascript, Python) and trans-compiled source-to-source to
generate the described code at run-time. Our instruction set
design methodology uses a C back-end for debug & evaluation
purposes.



Fig. 7. Code generation flow of HybroGen & HybroLang

B. HybroGen Compilation Tool-Chain

The Hybrogen environment includes two programs:
HybroGen, which manages the database of supported ISAs
and HybroLang, the code compiler implementing the lan-
guage. Figure 7 represents the code generation flow the
HybroGen tool-chain. HybroGen takes as main input a .isa
file, describing the various operations supported by a given
architecture, the encoding of its instructions as well as their
formats and stores this information in a database. HybroLang
compiler transforms .hl input code into an Intermediate Rep-
resentation to perform various manipulations before writing
it back into host language — in our case, into C code
interleaving CPU and C-SRAM instructions. This output code
can then be compiled with any C compiler (e.g. gcc, clang),
making the Hybrogen environment easy to integrate in existing
project builds.

VI. GLOBAL EMULATION, COMPILATION & EVALUATION
FLOW

Fig. 8. Proposed compilation & simulation flow: software stack allowing
the code generation using HybroGen compilation environment & HybroLang
programming language presented in [13], modeling stack representing C-
SRAM architecture, simulation stack representing the QEMU-based propose
platform, and results giving statistics regarding energy and performance.

We propose in this article a unified emulation, compilation
& evaluation flow to model, evaluate and compile code for
IMC-based heterogeneous systems.

Fig. 8 presents the model generation steps. The inputs are an
architecture describing the memory hierarchy, and an energy
model with latency and energy costs for each component,
taken from post-Place-and-Route evaluations, the literature
and silicon measurements. Both inputs are written in JSON

format, and passed to a Python tool-chain to generate the C
sources of the plugin, which is compiled against the QEMU
project as a dynamic library. The result plug-in can be loaded
at launch-time to an unaltered QEMU binary to emulate the
behavior of a computer architecture with a memory hierarchy
integrating a C-SRAM unit. As of now, the cost of data
transfers between the CPU, the C-SRAM and the memory
hierarchy are modeled, while the cost of data transfers with I/O
and peripherals are abstracted. This allows us to perform the
evaluation of full-scale applications using I/O and peripherals
at a minimal development cost.

VII. EXPERIMENTAL RESULTS

A. Application Kernels

Application

Vector
Element

size Complexity Pattern type
Avg. data

redundancy
Frame

differencing 8-bit O(n) Row-major 1
Sobel
filter 16-bit O(n) Complex ≈ 18

Matrix
multiplication

(squares) 32-bit O(n3)

Row-major /
Column-major n2

TABLE III
CHARACTERISTICS OF RETAINED APPLICATIONS.

Table III presents the three applications implemented on the
C-SRAM architecture. The criteria we retain to evaluate the
results of our experimentation are their algorithmical complex-
ity and their vector element size, which have an impact on the
arithmetical complexity of the applications and whether ot not
the main generated access pattern is regular or complex. We
also define for each application their Average data redundancy
factor, e.g. the number of times an input element is accessed
during the entire life cycle of the application:

• Frame differencing, used in Computer Vision to perform
motion detection [18], is an application which performs
saturated subtraction between two (or more) consecutive
frames in a video stream to detect differences. It has linear
complexity in both computing and memory.

• Sobel filter is an application which applies two 3 × 3
convolution kernels on an input image to generate its
edge-highlighted output. It is a standard operator in Image
Processing as well as Computer Vision to perform edge
detection [?]. It has linear complexity in computing an
memory, and shows constant data redundancy (2×9 reads
per input pixel, on average).

• Matrix-matrix multiplication is used in various domains
such as Signal Processing or physics modeling, and a
standard of Linear Algebra as the gemm operator [19]. It
has cubic (O(n3)) complexity in computing and memory,
and shows quadratic (O(n2)) data redundancy.

The variety of this selection in terms of complexity and data
reuse generates various distinct run-time behaviors to analyze.
All three applications were retained for their importance and
relevance to domains such as image processing and computer



vision. Most are defined as standard functions in Domain-
Specific APIs such as OpenVX [20].

B. Results

Fig. 9. Normalized speed-up and energy evaluated on the C-SRAM architec-
ture for each application.

1) Speed-up and Energy Reduction: Figure 9 presents the
speed-ups and energy reduction measured for each applications
on both experimental architectures.

For Frame Differencing, the execution time of the C-SRAM
implementation is inferior to the scalar implementation on 16×
16, 32×32 and 50×50 resolutions. From resolution 100×100
onward, the C-SRAM implementation performs up to 55%
faster than the scalar implementation. The energy reduction
of the C-SRAM implementations follows the same trend with
an improvement of 2 to 13% starting 320 × 240 resolution.
Both statistics present a roofline starting between 100 × 100
and 320× 240 resolutions. The cause of this limitation is the
capacity of the L1 data cache and the bandwidth between it,
the host CPU and the C-SRAM unit.

Sobel filter performs worst on the C-SRAM implementation
than the scalar implementation for image resolutions 256×256
to 1024 × 1024. Resolution 2048 × 2048 shows a significant
threshold where the performance reaches that of the scalar
implementation. This is because the size of the input data
set becomes large enough to compensate for the cost of data
management. Moreover, the data management code of the C-
SRAM implementation makes use of the data redundancy in
sobel filter to limit the number of accesses towards the rest of
the memory hierarchy. Its energy cost relative to the baseline
presents a similar threshold between resolutions 1024× 1024
and 4096× 4096 before trending towards 15%.

For Matrix Multiplication, both the execution time and the
energy consumption are higher on the C-SRAM implementa-
tion than the scalar implementation for trivial instances: 8× 8
and 32 × 32 matrix dimensions. Starting matrix dimension
64 × 64, the size of the input data set is large enough to
amortize the cost of data management, and matrix dimension
128×128 shows a significant theshold, due to the reuse of data
stored in C-SRAM, compared to the scalar implementation.
The overall performance trends towards a speed-up of ×24
and an energy reduction of ×75, compared to the scalar
implementation.

Fig. 10. Normalized reduction of read & write misses evlauated on the C-
SRAM architecture for each application.

2) Impact of the memory hierarchy on the performance:
Figure 10 presents the reduction of read and write misses
induced by the addition of C-SRAM for each application. All
three presented applications are inherently memory-bound, and
the current integration of the C-SRAM at the bottom of the
memory hierarchy without any dedicated transfer bus between
it and the main memory makes performance gains inherently
dependent on the memory hierarchy. A large number of
cache misses happen due to the limited capacity of the cache
memories but also because of the conflict misses between
control variables (iterators, generated addresses, etc) and the
input data destined for the C-SRAM unit. Moreover, the lack
of dedicated transfer mechanisms to assist the CPU creates a
consequential overhead in terms of CPU instructions. Finally,
the limited bandwidth between each cache memory further
aggravates the impact of cache misses on the performance.

Frame differencing and sobel filter are linear with limited
opportunities of data reuse to compensate the eventual cache



misses. The reduction of cache misses on the L1 data cache
vary between the two however, in the case of Frame Differ-
encing the reduction of read & write misses is consistently
increasing, due to the conflict misses between the input data
and the limited capacity of the L1 cache.

For sobel filter, the reduction of L1 misses increases with
the size of the input data set up to 2048×2048 images before
stabilizing. This is due to the generated access patterns to
input data being more regular on the C-SRAM version than the
scalar version and also the data duplication being performed
by accessing data already stored in the C-SRAM. However,
the high complexity of the data management code and the
limitation of the memory bandwidth still impede the overall
performance, as can be seen on the reduction of read & write
misses decreasing for the L2 cache.

The overall reduction of cache misses in the case of Matrix
Multiplication is very high for the Matrix Multiplication due
to the loop tiling. The highest tiling factor achieved with the
dimensions of the experimental architecture was 8× 8× 4 =
256, which greatly maximize the data reuse, compared to the
scalar implementation of Matrix Multiplication. The data size
which presents peak performance in terms of reduction of read
misses as well as overall performance is dimension 128×128,
with a read miss reduction factor of ×20 on the L1 data cache,
as well as a peak energy reduction of ×85. On dimension
1024×1024, its peak reduction of L1 write misses is achieved
at ×103.

All previous observations are coherent with the criteria
retained for each application on Table III, as memory-bound
linear applications with fewer data redundancy offer less
opportunities of performance gains than memory-bound cubic
applications with higher data redundancy.

VIII. CONCLUSION

In this paper, we present a novel exploration flow to perform
exploration of IMC architectures at ISA-level with complete
applications running on full-scale systems instead of micro-
benchmarking. This exploration flow allows for the effortless
and quick exploration beneficial for software and hardware
exploration later on, by generating both the simulation model
and the compiler support for a given IMC ISA. We evaluate
a reference architecture on three applications to validate our
simulation methodology, and show that the results are coherent
with the algorithmical complexity of our applications and with
the dimensions of out reference architecture.

We plan to use this exploration flow for other paradigms
such as Stochastic Computing, and Quantum Computing to
evaluate the integration of quantum accelerators in traditional
von Neumann systems.

REFERENCES

[1] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb. 2014, pp. 10–14, iSSN: 2376-
8606.

[2] M. Kooli, H.-P. Charles, C. Touzet, B. Giraud, and J.-P. Noel, “Smart
Instruction Codes for In-Memory Computing Architectures Compatible
with Standard SRAM Interfaces,” p. 6.

[3] Y. M. Qureshi, W. A. Simon, M. Zapater, D. Atienza, and K. Olcoz,
“Gem5-X: A Gem5-Based System Level Simulation Framework to
Optimize Many-Core Platforms,” in 2019 Spring Simulation Conference
(SpringSim), Apr. 2019, pp. 1–12.

[4] W. A. Simon, Y. M. Qureshi, M. Rios, A. Levisse, M. Zapater, and
D. Atienza, “BLADE: An in-Cache Computing Architecture for Edge
Devices,” IEEE Transactions on Computers, vol. 69, no. 9, pp. 1349–
1363, Sep. 2020, conference Name: IEEE Transactions on Computers.

[5] R. Gauchi, V. Egloff, M. Kooli, J.-P. Noel, B. Giraud, P. Vivet,
S. Mitra, and H.-P. Charles, “Reconfigurable tiles of computing-in-
memory SRAM architecture for scalable vectorization,” in Proceedings
of the ACM/IEEE International Symposium on Low Power Electronics
and Design. Boston Massachusetts: ACM, Aug. 2020, pp. 121–126.
[Online]. Available: https://dl.acm.org/doi/10.1145/3370748.3406550

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
ser. ATEC ’05. USA: USENIX Association, Apr. 2005, p. 41.

[7] N. Derumigny, F. Gruber, T. Bastian, C. Guillon, L.-N. Pouchet,
and F. Rastello, “From micro-OPs to abstract resources: constructing
a simpler CPU performance model through microbenchmarking,”
arXiv:2012.11473 [cs], Jan. 2021, arXiv: 2012.11473. [Online].
Available: http://arxiv.org/abs/2012.11473

[8] A. Charif, G. Busnot, R. Mameesh, T. Sassolas, and N. Ventroux, “Fast
Virtual Prototyping for Embedded Computing Systems Design and
Exploration,” in RAPIDO2019 - 11th Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, Valence, Spain, Jan.
2019, pp. 1–8. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
02023805

[9] R. Gauchi, M. Kooli, and P. Vivet, “Memory Sizing of a Scalable SRAM
In-Memory Computing Tile Based Architecture,” p. 6.

[10] R. Hadidi, L. Nai, H. Kim, and H. Kim, “CAIRO: A Compiler-Assisted
Technique for Enabling Instruction-Level Offloading of Processing-In-
Memory,” ACM Transactions on Architecture and Code Optimization,
vol. 14, no. 4, pp. 1–25, Dec. 2017.

[11] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel
Acceleration,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), Jun. 2019, pp. 1–14, iSSN: 2575-
713X.

[12] H. Ahmed, P. C. Santos, J. P. C. Lima, R. F. Moura, M. A. Z. Alves,
A. C. S. Beck, and L. Carro, “A Compiler for Automatic Selection
of Suitable Processing-in-Memory Instructions,” in 2019 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), Mar. 2019, pp.
564–569, iSSN: 1558-1101.

[13] J. Dumas, H.-P. Charles, K. Mambu, and M. Kooli, “Dynamic compila-
tion for transprecision applications on heterogeneous platform,” Journal
of Low Power Electronics and Applications JLPEA, vol. 11, no. 3, 2021.

[14] J.-P. Noel, V. Egloff, M. Kooli, R. Gauchi, J.-M. Portal, H.-P. Charles,
P. Vivet, and B. Giraud, “Computational SRAM Design Automation
using Pushed-Rule Bitcells for Energy-Efficient Vector Processing,” in
2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, pp. 1187–1192.

[15] J.-P. Noel, M. Pezzin, R. Gauchi, J.-F. Christmann, M. Kooli, H.-P.
Charles, L. Ciampolini, M. Diallo, F. Lepin, B. Blampey, P. Vivet,
S. Mitra, and B. Giraud, “A 35.6 TOPS/W/mm2 3-Stage Pipelined
Computational SRAM With Adjustable Form Factor for Highly Data-
Centric Applications,” IEEE Solid-State Circuits Letters, vol. 3, pp. 286–
289, 2020, conference Name: IEEE Solid-State Circuits Letters.

[16] V. Egloff, J.-P. Noel, M. Kooli, B. Giraud, L. Ciampolini, R. Gauchi,
and C. Fuguet, “Storage Class Memory with Computing Row Buffer:
A Design Space Exploration,” p. 6.

[17] “ARM Cortex-A Series Programmer’s Guide.” [Online]. Available:
https://developer.arm.com/documentation/den0013/d/Caches/Cache-
policies/Replacement-policy

[18] G. Thapa, K. Sharma, and M. M.K.Ghose, “Moving Object
Detection and Segmentation using Frame Differencing and
Summing Technique,” International Journal of Computer Applications,
vol. 102, no. 7, pp. 20–25, Sep. 2014. [Online]. Available:
http://research.ijcaonline.org/volume102/number7/pxc3898647.pdf

[19] “BLAS (Basic Linear Algebra Subprograms).” [Online]. Available:
http://www.netlib.org/blas/

[20] “OpenVX - Portable, Power-efficient Vision Processing,” Dec. 2011,
section: API. [Online]. Available: https://www.khronos.org/openvx/


