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1. Introduction

Applications of energy storage in transpor-
tation and grid scale call for next genera-
tion batteries, as electrochemical devices, 
with high energy and power, long cycle life, 
high energy efficiency, impeccable safety, 
large sustainability, and low cost.[1,2] It is 
common wisdom that overall performance 
of batteries is limited by the fundamental 
behavior of the used materials including 
electrode active materials, electrolytes, 
and other supporting, so-called inactive 
components (binder, current collector, 
conductive fillers, cell housing, etc.). In all 
types of past, current and future batteries, 
electrolyte plays a central role in terms of 
design and control of the electrode pro-
cesses, material interactions, overall per-
formance, long-term stability, cost, and 
last but not least the safety of a battery.[3] 
Although the role of the electrolyte is often 
considered trivial, its choice is actually  

The timely arrival of novel materials plays a key role in bringing advances to 
society, as the pace at which major technological breakthroughs take place is 
usually dictated by the discovery rate at which novel materials are identified 
within chemical space. High-throughput experimentation and computation 
strategy, now widely considered as a watershed in accelerating the discovery 
and optimization of novel materials in virtually every field, enables simulta-
neous screening, synthesis and characterization of large arrays of different 
material classes toward identification of the lead candidates for given system 
and targeted application. However, the ability to acquire data, through the 
continued advancement of automation platforms and workflows especially 
in the field of battery research and development, often outpaces the ability to 
optimally leverage obtained data for improved decision-making. Closing this 
gap inevitably calls for adapted algorithms, development of reliable predic-
tive models and enhanced integration with machine learning, deep learning, 
and artificial intelligence. This Review aims to highlight state-of-the-art 
achievements along with an assessment of current and future challenges as 
well as resulting perspectives toward accelerated development of advanced 
battery electrolytes and their interfaces.
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crucial, and is based on criteria that can differ significantly 
dependent on application.[4–7] Due to the complexity of electro-
lyte formulation, determined by the physicochemical properties 
of its components, namely, inorganic fluorinated salts, organic 
solvents/cosolvents, and functional additives, the overall cell 
performance is inevitably accompanied by side reactions. The 
electrolyte is concomitantly unified to 3D interphases that origi-
nate from the high reactivity of the electrodes and the intrinsic 
instability of electrolyte components toward these electrodes. In 
most cases, electrolyte formulations and their ad hoc interfacial/
interphasial chemistries dictate and govern the fate of each bat-
tery chemistry and its cell performance. However, interphases 
forming at electrolyte|electrode interfaces still remain the most 
important but the least understood components in alkali metal/
ion batteries, including lithium metal/ion batteries.[8–10] For 
this reason, a fundamental understanding comprising both  
i) relevant structural/compositional characteristics, chemical/
electrochemical reactions as well as ii) thermodynamic/kinetic 
behavior thereof, hand in hand with the practical strategies 
for enhancing interphase properties are of paramount impor-
tance for advancement of the overall performance for targeted 
applications. With all the challenges pointing toward the need 
for novel electrolyte design, we need to explore the electrolyte 
frontier and push our current understanding of electrolyte 
(electro)-chemistry. Due to the complex nature of electrolytes 
and the complexity involved in their interphase behavior, pro-
found research and development require collaborative efforts 
involving the disciplines of chemistry, physics, materials sci-
ence, nanoscience/nanotechnology, as well as computational 
modeling/simulation that will beneficially impact the current 
lithium-based technologies and future generations of lithium 
metal and lithium ion batteries based on polymer, ceramic 
solid, and hybrid electrolytes (see the paper by Grimaud et al. in 
this issue). Significant enhancements for battery technologies 
in the future must therefore definitely focus on an optimiza-
tion or modification of the electrolyte solution in terms of novel 
and more beneficial components.[11] There are two approaches 
within the electrolyte design known: i) electrolyte engineering 

as the combination (typically physical mixtures) of commonly 
used conducting salts and solvents/cosolvents resulting in 
enhancement of physicochemical properties like dielectric con-
stant, viscosity, and ionic conductivity and ii) electrolyte chem-
istry as the bottom-up design of novel electrolyte components 
that ultimately allow for finer control of relevant physicochem-
ical properties, such as electrochemical stability and proper-
ties beyond ion conductivity (Figure 1). Electrolyte engineering 
approaches may fail to give insight into molecule structure–
property relationships beyond the exact compounds studied 
as a sole focus is usually set on performance metrics such as 
‘‘capacity versus cycle number” dependence, excluding under-
standing of the reaction mechanisms underlying the advance-
ments of electrolyte formulation. Although both approaches are 
vital for advanced electrolyte development, electrolyte chemistry 
can lead to discovery of entirely new electrolyte classes with tar-
geted, application oriented properties.

1.1. Finding a Needle in a Haystack

By definition, chemical/material space is a concept developed 
in cheminformatics referring to the property space spanned by 
all possible molecules and chemical compounds adhering to a 
given set of boundary conditions and construction principles. 
Immense in size, it is estimated to be in the order of 1060 mole-
cules.[12] So far, humans have created 108 materials. Functional 
materials possessing one or more physicochemical properties 
that can be significantly changed in a controlled fashion by 
external stimuli to result in a desired function are applied in a 
broad range of technological and energy storage devices. New 
functional materials with optimized or novel properties of rel-
evance, obtained by a chemical reaction, a modification or by 
formulation/blending of different substances, may initiate or 
revolutionize industries and lead to fundamental understanding 
of their nature through developed structure–property–perfor-
mance relationships. If something is novel, it is new but also 
original and unique. Identifying a material with the adequate 

Adv. Energy Mater. 2021, 2102678

Figure 1. Electrolyte engineering versus electrolyte chemistry approach. Reproduced with permission.[11] Copyright 2020, Elsevier.
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properties for a targeted application is a highly challenging task 
usually based on intuition, prior knowledge, and/or predic-
tions.[13] The specific individual property can sometimes only 
be present in unique structures and chemistries. Moreover, not 
only one, but several properties often need to align adequately 
to synergistically lead to enhanced performance. Unwanted and 
inherent correlations between materials properties make this 
task at hand even more arduous, without even mentioning the 
important economic constraints. Although tremendous pro-
gress has been made in our ability to design materials de novo 
with specific properties, our predictive abilities and our funda-
mental understanding still remain limited. These limitations, 
among other battery vital domains, are being addressed within 
the BATTERY 2030+ Roadmap (see the paper by Edström et al. 
in this issue).

1.2. Accelerating the Search for Functional Materials Is an 
Ongoing Challenge

Discovery and development of novel functional materials with 
targeted properties traditionally involves a large number of 
trial tests following a series of procedures, see, e.g., on flame 
retardants for liquid electrolytes.[14–17] However, these efforts are 
inevitably far from time-efficient considering the near infinite 
chemical space. Current materials design approaches are still 
mostly based on human knowledge and intuition, as well as 
on low throughput experiments. Efficient investigation of the 
unexplored chemical space calls for automated techniques with 
smart navigation (Figure 2).

Since the first demonstration of combinatorial synthesis 
several decades ago,[18] there has been tremendous progress in 
the field of materials discovery through incorporation of com-
binatorial synthesis[19,20] and high-throughput (HT) characteri-
zation.[13] Utilization of the wealth of metadata accompanying 
measurement results generated by HT methods became pos-
sible through rapid advancement in data management and 
integration of machine learning (ML), deep learning (DL), and 
artificial intelligence (AI). Moreover, greater autonomy[21–23] in 
materials discovery is demonstrated by integrating predictive[24] 
or generative models[25,26] based on ML and DL techniques. The 
level of autonomy[27] in the framework of materials discovery 
is determined by the degree of integration of automated tasks, 
degree of reduction of human intervention (e.g., as shown in 

early work by Nikolaev et al.)[28] and the degree of materials 
intelligence. Despite successful examples of material discov-
eries[29,30] and a rapidly growing number of materials databases 
such as High-Throughput Experimental Materials database, 
Citrination platform, and the Materials Data Facility, the sheer 
vastness of the chemical space requires more efficient explo-
ration techniques. Moreover, solid state materials and certain 
molecules pose challenges due to limited available data, lack 
of available invertible representation,[26] and costly exploration 
of monolithic, fixed libraries.[31] Overcoming those challenges 
can lead to disruptive advances in materials discovery, not only 
to autonomously design materials with desired functionalities, 
but also to predict possible chemical hazard and toxicity of the 
materials.

2. Classical/Traditional Approach

Many of the numerous challenges in battery research have 
come down to optimization problems. Discover the optimum 
electrolyte composition ( = formulation) for a given set of elec-
trolyte components, discover the optimum electrode composi-
tion in a given material family, or discover a charging procedure 
that results in the highest capacity retention and thus longest 
lifetime of the battery cell are all fundamentally the same type 
of problem: discovering the global maximum of an observable 
with respect to a given set of variables.[32]

The methodically simplest approach to finding a solu-
tion is the so-called “brute force” approach where every pos-
sible combination of variables is verified in order to cover 
the complete space of possible experiments.[33] The advan-
tages of this approach relate to the facile experimental plan-
ning, thus excluding an a priori knowledge on the studied 
system. Furthermore, as the complete experimental space is 
covered, the obtained result is automatically a complete pic-
ture of the dependencies of the observable on the variables 
and can reveal unexpected relations.[34] In case of variables 
with continuous dimensions, this is of course not possible 
as the number of required experiments approaches infinity 
and each dimension must be quantized. However, even 
then (assuming equally spaced points in all dimensions) the 
total number of required experiments is Xn with X being the 
number of points in one dimension and n being the number 
of variables (Figure 3a).

Adv. Energy Mater. 2021, 2102678

Figure 2. Search for functional materials: classical experimental approach versus HT experimentation approach.
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This phenomenon is known as “combinatorial explosion” 
and represents the major drawback of this approach as it can 
very easily push the number of experiments into regions that 
are not achievable in a feasible way.[35] Especially if the experi-
ments have to be performed sequentially in a classical manual 
experimentation setup, this can push the required time very 
easily beyond the available time. If no or limited a priori knowl-
edge is available, another drawback of this approach is that a 
large number of points may be located in regions of the experi-
mental space that do not make sense since, for example, in a 
region where certain ratios of electrolyte components may lead 
to the precipitation of one of the components.

A more common approach in manual experimentation is an 
iterative process starting from a random point or an “educated 
guess” if a priori knowledge is available. The obtained result 
of the experiment is analyzed, the variables more-or-less ran-
domly varied and the next experiment is performed until the 
maximum is found (Figures 3b and 4). The process is similar 
to what is known as a random walk with the difference that 
the next step is not selected randomly, but adjusted based 
on the previous steps.[36] A great advantage of this method is 
that typically much fewer experiments have to be conducted 
as compared to the brute force method. However, one has to 
be wary of the possibility of only finding a local maximum as 
illustrated in Figure 3b). Once a maximum is found, be it local 
or global, any alteration of the variables will result in a poorer 
result. To avoid getting trapped in a local maximum, either 
great care must be taken in experiment planning for each itera-
tion or several of these sequences have to be performed in dif-
ferent regions of the variable space, ultimately diminishing the 
advantage over the brute force method. Additionally, one has to 
bear in mind that, due to the sequential nature of the process, 
the time saving potential strongly depends on the ratio of the 
time it takes to conduct an experiment and the time it takes to 
analyze the experiment. The intrinsic shortcoming of this “clas-
sical” approach is that it will never yield the full picture of the 
variable space, which may or may not be significant, depending 
on the aim of the research endeavor in question.

However, as time progresses so does technology, and what 
may have been a painstakingly slow and tedious data processing 
and analysis 50 years ago, can now be performed by a computer 
in the blink of an eye. Similarly, significant advancements have 

been made in robotics during the last decades, which enable 
different types of experiments to be performed in large num-
bers and with little or no human involvement, freeing up the 
researcher’s precious time for other tasks (Figure 5). Not only 
does this paradigm shift in research accelerate discoveries, it 
also builds a solid foundation of a priori knowledge for future 
research and helps to not just discover good results but to also 
understand them.

3. High-Throughput and Combinatorial Approach

Discovery and development of functional materials is an 
ongoing game of attrition with the main challenge of finding 
and selecting 1–2 optimized candidates from the millions 
of possibilities that will advance the overall performance of 
a given system and its chemistry for a targeted application. 
In this process, the possibility of identifying a series of opti-
mized compounds that could take research in new, unex-
pected directions should be retained as well. In response to 
aforementioned challenges, combinatorial and HT approaches 
comprising high capacity information processing and automa-
tion of experiments in a feasible large-scale repetition fashion 
allowing for faster experimentation without sacrificing the 
quality of the results, have been developed and established.[37,38] 
The combinatorial approach considers change in the nature of 

Adv. Energy Mater. 2021, 2102678

Figure 4. Schematic representation of the “classical” iterative experiment 
loop where the result of the experiment’s analysis feeds back into the 
planning of the next experiment.

Figure 3. Graphical representation of a possible variable space with examples of possible experimental coverages. a) Brute force approach with quan-
tized variables. b) Quasi random walk.
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the parameters, such as different components or materials of  
a recipe, whereas high-throughput refers to the system-
atic variation of parameters in a wide parameter space of a 
particular system with a given composition.[39] Combinatorial 
synthesis can be applied to different methods resulting in, e.g., 
thin films,[40] powders,[41] and electrolytes.[42] Even the combi-
natorial synthesis of nano particles is possible.[43] HT meas-
urement techniques mostly consider measurement areas on 
materials libraries and utilize nondestructive methods.[13]

For electrochemistry there has been quite an advancement 
in terms of HT characterization for catalysts[44,45] and bat-
teries.[46–49] The synthesis of adequate materials libraries usu-
ally goes hand in hand with their analysis. Major tools in HT 
electrochemistry are the different designs of scanning droplet 
cells[50–55] as well as different kinds of scanning electrochem-
ical microscopies. All of these techniques offer the capability 
to study three electrode half-cells or two electrode cells[56] at 
unprecedented throughput and reproducibility. Based on mate-
rials genomes concept,[57] both became valuable tools in mate-
rials science, chemistry and engineering to pin down the pre-
diction experimentally, enabling the discovery-to-deployment 
of advanced functional materials more efficiently, by saving 
energy, time, and cost. The mutual goal of these methods is to 
identify functional materials that can provide starting points 
for further optimization with respect to relevant properties and 
performance in a given system and simultaneously enable gen-
eration of large data libraries.[58] This requires careful analysis 
of many variables, starting with the choice of assay target and 
ending with the discovery of hit/lead compound(s), broken 
down in the following subsequent steps: target choice → ade-
quate assay development and validation → high-throughput 
implementation (screening collection) → data generation, 
processing, storage, and analysis → hit(s)/lead(s) identifica-
tion.[59] A hit compound is a molecule that shows desired type 
of activity/effect in a given screening assay. Lead compounds 
are selected from a collection of hits by refining the screening 
criteria to enable the selection of the most promising molecules 
for further development. Being far more than just the simple 
identification of functional compounds, hit discovery and lead 
generation stand for a multidisciplinary process in which the 
most promising candidates get selected from assessed com-
pound series/classes based on well-established criteria for a 
given system and application direction. During this filtration-
based process, relatively unqualified materials get screened out, 

followed by extensive preparation and further detailed charac-
terization.[60] Every step in this process calls for decisions that 
can significantly impact the outcome to the point of making it 
a success or a failure. Although specific guidelines should be 
established to ensure an acceptable level of quality, sometimes 
choices require the ability to compromise opposing forces. 
Three closely interdigitated key success factors are relevant for 
successful discovery of lead(s): quality of the compound collec-
tion to be screened, time (time per sample, samples per day, 
screens per year, project time) and costs (reagents, consuma-
bles, instrumentation, and personnel).[61] In addition to that, 
development of an appropriate assay or collection of assays 
which can be performed at a throughput, statistical robustness, 
and reproducibility consistent with the budgetary constraints 
is of fundamental importance for successful HT screening. 
By definition, an assay is a precisely defined and efficiently 
designed experiment measuring the effect of a substance in a 
process of interest.[62] First assays within the pioneering work of 
Dr. Gyula Takatsky in 1951 were developed in a 96-well format 
by machined 6 rows of 12 wells in Lucite to result in the first 
microtiter plate.[63] The use of microplates was a revolutionary 
breakthrough enabling multiple experiments to be carried out 
simultaneously in a uniform format. The microtiter plate has 
further grown to include standardized 96, 384, 1536 well for-
mats, with additional 3072 and 3456 well nanoplate formats for 
specialized reaction assays in domains of biology, medicine, 
and pharmacy.[37,61,64–67]

4. High-Throughput Experimentation

High-throughput experimentation (HTE) can be broadly 
defined as a workflow of running multiple similar experiments 
in parallel. These sets of experiments are rationally designed 
to answer specific questions and achieve targeted goals. HTE 
comprises several aspects, such as smart design and selec-
tion of experiments, search and optimization among a large 
number of samples with different parameters and conditions 
to accelerate the whole search process. The preliminary concept 
of HTE was first mentioned in 1970 by Hanak, who introduced 
the “multiple-sample concept” to accelerate the development 
of new binary superconducting compositions.[68] This con-
cept in a flow chart includes basic features of HTE: 1) mas-
sively parallelized sample synthesis 2) rapid characterization 

Adv. Energy Mater. 2021, 2102678

Figure 5. Schematic representation of the “brute force” experiment approach where a large number of simultaneous experiments is performed and 
the results analyzed in bulk.
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and analysis as well as 3) data collection and processing with 
the help of computers (Figure 6). Due to the limitations of the 
computer techniques at that time, the method was not immedi-
ately implemented worldwide. However, in the following years, 
combinatorial synthesis and screening of inorganic compounds 
have been intensively adopted, especially in the pharmaceutical 
industry for drug discovery.[69,70]

In 1995, Xiang et al. developed a HT combinatorial experi-
mentation method and first demonstrated its potential on 
solid state materials with novel physical/chemical proper-
ties.[71] Since that, HTE has drawn attention of researchers 
from various material fields around the world and has been 
applied in many research fields including photovoltaics,[72,73] 
catalysts,[74] thermoelectrics,[75,76] polymers,[77] and magnetic 
materials.[78]

In the field of electrochemistry, or more specifically in mate-
rials development for electrochemical applications, HTE has 
a great appeal as it offers efficient strategies for overcoming 
the numerous optimization problems typically encountered 
during the development of novel materials. Utilization of 
robotic systems for synthesis and characterization opened the 
door to material development with exceptional reproducibility 
and minimal materials investment[79] while implementation of 
advanced software tools to the simultaneously generated, con-
tinuously growing knowledge base improves the rational mate-
rials design process.[80]

4.1. High-Throughput Experiments on a Battery Electrolyte Level

High-throughput and combinatorial experimentation stands 
for an effective approach in characterizing large amounts of 
electrolyte materials/components over a broad compositional 
region in a short time, which enables significant acceleration 
in the discovery and optimization of lead electrolyte candidates 
for given battery chemistry and targeted application at low cost.

4.1.1. Liquid Electrolytes

Given the wide variety of liquid electrolyte formulations in 
terms of conducting salts solvents/cosolvents and functional 
additives, liquid electrolytes are ideally suited for combinatorial 
formulation due to the fact that an array of different variants 
can be achieved via simple mixing. The amount and concentra-
tion variation of the electrolyte components, guided in a sys-
tematic and meaningful fashion, leads to enhanced relevant 

physicochemical, electrochemical, and thermal properties of 
the resulting electrolyte formulation and impacts the overall 
performance and safety of a battery. The simplest way is to 
choose target components, design the experiments to ensure 
all possible combinations of all the pertinent factors and iden-
tify the lead compounds by using filtration effect based on 
criteria and requirements previously established for each of 
considered experimental techniques. For example, rational 
design of the composition of most commonly used organic 
carbonate-based solvents (ethylene carbonate, propylene car-
bonate, ethyl methyl carbonate, dimethyl carbonate, diethyl car-
bonate), leads to enhanced low-temperature power capability of 
LiNiMnCoO2||graphite cells due to the formation of an effective 
solid electrolyte interphase (SEI) without adding additives as 
Kafle et al. showed in their study.[81]

Su et al. integrated solubility and conductivity measurements 
in the automated high-throughput screening (HTS) platform 
to study the 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene 
(DBBB)-based electrolytes in a redox flow battery (RFB), as 
depicted in Figure 7.[82,83]

An automated, modular robotic synthesis and characteriza-
tion system within an inert gas-filled glove box was developed 
to perform combinatorial studies on electrolyte formulations 
as a function of composition, concentration and temperature. 
Combinations of common conducting salts and organic car-
bonate solvents were systematically explored to enhance the 
solubility of considered electrolyte components while main-
taining or even improving the electrolyte conductivity. A char-
acterization system was used to determine trends in several key 
parameters (e.g., diffusivity, standard rate constant) known to 
impact the overall battery cell performance.

The most crucial function of an automation HTS platform 
is the high accuracy aspiration/dispensing system for either 
liquid or solid components.[84] This system is embedded in 
a multiaxis robotic arm to enable the movement of the aspi-
ration/dispensing system between sample reservoirs and 
sample trays to formulate the electrolyte with different com-
ponents. One of the problems we might encounter during the 
formulation is that when handling highly volatile solvents, 
the solution is prone to volatilization leading to low accuracy 
due to an unpredictable continuous changing of the mixing 
ratio of the solvents. Therefore, a combinatorial strategy uses 
temperature-controlled reservoirs to decrease the vapor pres-
sure of the solvents and select a suitable technique to protect 
from the mixing of solvent during the aspiration/dispensing 
steps.[84] An additional feature of the automation HT platform 
is modularity: module(s) of interest can be introduced to realize 

Adv. Energy Mater. 2021, 2102678

Figure 6. Flow chart of processes needed for the study of entire multicomponent systems in single steps. Adapted with permission.[68] Copyright 1970, 
Springer Nature.
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the required function. For instance, the solubility of the elec-
trolyte can be determined by using a dynamic light scattering 
analyzer equipped with an optical camera and temperature 
controller.[82,83] Besides, the conductivity measurements can be 
performed with a conductivity meter with probe.

Another approach of automation HT platform is based 
on the microplate technique, frequently used in biochemical 
research. Microplate-based electrochemical cells can be con-
sidered as the battery inside the sample well.[85] The entire 
system, consisting of a liquid dispenser for the electrolyte 
formulation and a robotic arm for transporting the micro-
plates, is placed in the glove box under inert gas. The only 
difference is that the electrolyte is directly dispensed into the 
microplate-based electrochemical cells instead of aluminum 
vials. In addition, a 96 channel electrochemical analyzer was 
integrated into this platform to evaluate battery performance. 
With the help of this platform, Matsuda et  al. screened 2002 
samples and identified a specific combination of five additives 
that can significantly enhance the Coulombic efficiency of 
lithium metal batteries.[85]

The automation HT platform is very flexible due to its modu-
larity. However, the key point is the high accuracy robotic dis-
pensing system, equipped with a rinsing system to avoid cross-
contamination. Nevertheless, what if high precise pumps are 
used instead of the robotic arm system? The formulation of the 
electrolyte comprises simple mixing of the different electrolyte 
components by the help of pumps and valves, controlled by 
custom software that varies the inputs of pump speed, accelera-
tion, direction, and strokes for each component and steps.[86,87] 
There are two outlets of the valve, which are connected with 
mix vessel and waste, respectively. Between the dispensing of 
different electrolyte components, the valves will be flushed or 
cleaned to avoid mixing components. With a series of flow-
through devices this platform is capable of mixing complex 
electrolyte solutions and characterizing physical and electro-
chemical performance in a semicontinuous fashion. Dave et al.  

built a system named “Otto” to enable HT automated formu-
lation and characterization for liquid aqueous battery electro-
lytes.[88,89] Compared to traditional low throughput experiments, 
this system allows much faster formulation of 140 electrolytes 
within 40 h. In addition, the machine learning method coupled 
with automated evaluation of the acquired datasets enables 
inverse material design. The optimal electrolyte was found to 
be a novel dual-anion sodium electrolyte that exhibits a wider 
electrochemical stability window than the baseline sodium 
electrolyte.

Recently a low-cost with HT method called “microfluidic 
chip” was applied to accelerate the screening and optimi-
zation process due to increased electrode surface area and 
enhanced cell conductivity.[90,91] The automated microflu-
idic platform developed by Mo et al., resembles the “Otto” 
system, however instead of pumps, microfluidic chips are 
utilized to enable rapid and material-efficient electrochem-
ical reaction condition screening and reaction kinetics meas-
urements (Figure 8).[92]

The liquid handler can withdraw the liquid from the vials 
to prepare the microfluidic droplet injected into the sample 
loop, and then the microfluidic droplet will be moved into 
the eChem flow cell for electrochemical analysis. Subse-
quently, the microfluidic droplet will be introduced into the 
HPLC valve to analyze the reaction outcome. Furthermore, 
the system will be cleaned after each experiment to avoid 
cross-contamination. This team uses this platform to screen 
the radical–radical cross-coupling reaction on microfabri-
cated interdigitated electrodes and measure the kinetics for 
mediated anodic oxidations. This approach has a great poten-
tial for the liquid electrolyte study as the droplet has a small 
enclosed volume. For example, two droplets can be merged 
based on hydrodynamic coupling.[92] In this way, by changing 
the flow rate of the liquids, the concentration can be varied 
from one drop to the next, which allows to explore the con-
sidered part of chemical space of electrolyte formulations. 

Adv. Energy Mater. 2021, 2102678

Figure 7. Modular robotic platform. Reproduced with permission.[82] Copyright 2014, IOP.
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Another significant advantage of the microfluid refers to the 
fact that the fluid inside the microfluidic chip is in a laminar 
flow, allowing for measurement of the diffusion coefficients 
at small dimensions and the multiple microchannels enable 
HT sample preparation.[93,94] Chen et al. reported this HT 
approach for multiplex measurements of diffusion in a zinc 
battery, ten times faster than the conventional diffusion elec-
trochemical approach.[95] The microfluidic chip was combined 
with Raman microspectroscopy, enabling HT measurement of 
the diffusion in zinc electrolytes at different concentrations. 
Determined diffusion coefficients are found to be in a good 
agreement with the literature values.

4.1.2. Solid State Polymer Electrolytes

With the high demand for safety and high energy density, 
solid state batteries (SSBs) became a dominant research field. 
Depending on the specific chemistry, solid state electrolytes 
offer a wide electrochemical stability window, thus enabling the 
use of high voltage cathode and increasing the specific energy 
density.[96] Solid state electrolyte chemistry can be roughly 
divided into polymer and ceramic electrolytes. The usual way 
to advance the performance of polymer electrolytes is either 
to find novel conducting salt and inorganic fillers for solid 
polymer electrolytes or use plasticizer and inorganic fillers for 
gel polymer electrolytes.[97,98] Considering that these effects lead 
to a systematic influence on ionic conductivity and mechanical 
strength, HT methods application in the field of polymer elec-
trolytes has an extraordinary potential. Although HT methods 
have been applied to polymers for the industry for many years, 
polymer electrolyte characterization is much less advanced. 
A report by Alcock et  al. highlights a new HT characteriza-
tion method for rapid screening of polymer electrolytes[99] by 
employing a 64-electrode array, used to characterize electrode 
materials.[100] Electrochemical impedance spectroscopy (EIS), 
X-ray diffraction, and differential scanning calorimetry were 
conducted in a HT fashion to determine the highest ionic 
conductivities over the range of ternary polymer electrolyte 
system. So far, there are no reports on the HT fabrication of 
polymer electrolytes in lithium ion batteries. Chen et al. used 
a HT method called projection stereo-micro-lithography to 

fabricate a 3D lithium ion microbattery, which is a technology 
for small-scale energy storage.[101] The projection stereo-micro-
lithography technique enables parallel fabrication of multiple 
microbatteries on a single substrate with low cost compared 
to the conventional photolithography technique. Although the 
production of 3D lithium ion microbattery is yet more expen-
sive than conventional 2D battery, this work showed the fea-
sibility of microbattery fabrication as promising method for 
future research and development.

4.1.3. Solid State Ceramic Electrolytes

Among the methods developed for synthesizing ceramic 
solid state electrolytes, the most used one is high-throughput 
physical vapor deposition system (HT-PVD). This synthetic 
method was used to synthesize solid state thin film libraries 
for metal alloys by coevaporation of the multiple pure ele-
ments on temperature-controlled substrates.[102,103] The basic 
configuration of the HT-PVD system consists of a PVD 
chamber under an ultrahigh vacuum environment, which has 
off-axis sources and electron beam evaporators or Knudsen 
cell sources.[104] This method not only has the advantages 
of HT and simplicity but also enables the synthesis of solid 
state electrolytes with a large compositional range without the 
need of heat treatment. Yada et  al. identified a ternary oxide 
structure as an electrolyte–cathode interlayer for high voltage 
lithium SSBs based on this technique.[105] Beal et al. used this 
technique to synthesize a thin film sample library for the ion 
conductor Li3xLa2/3-xTiO3 and applied data analysis techniques 
to determine the key parameters.[106] Gigante et al. developed 
a HT wet chemistry approach to synthesize the close-hydrobo-
rates solid state electrolyte by exploiting inexpensive and safe 
precursors in a five step solution-based synthesis to obtain 
a superionic conductor and stable electrolytes Na4(B12H12)
(B10H10).[107] This method is cost-effective and has the poten-
tial for a large-scale synthesis for future studies. Another 
wet chemistry approach is using the curtain coating method 
in which one of the most significant advantages is that the 
thickness of electrolyte can be easily tuned by changing 
the flow rate or web speed. It is a wet coating, roll-to-roll 
process combined with a drying device used in electrode  

Adv. Energy Mater. 2021, 2102678

Figure 8. Schematic of the automated microfluidic platform for electrochemical reactions and analysis. Reproduced with permission.[92] Copyright 
2020, Wiley-VCH GmbH & Co. KGaA.
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fabrication of lithium ion batteries (LIBs). The hydrodynamic 
assist[108,109] during the curtain coating enables the coating 
speeds faster than 2000  m min−1 and film thickness less 
than 1  µm. Baada and Wood used this method to synthe-
size thin layer solid state electrolyte and demonstrated an  
80  m min−1 production of the uniform thin film.[110] Never-
theless, the coating speed of solid electrolytes is still not 
compatible with the coating speed of 2000 m min−1 in other 
industries due to high viscosity and high solid contents slur-
ries. A suitable slurry formulation therefore needs to be 
considered for the curtain coating. However, compared to 
the HT-PVD method, the wet chemistry approach requires 
high sintering temperatures, which inhibit cofiring of SSE 
and cathode particles.[111] Another approach refers to needle-
less electrospinning, as a fiber production method used for 
preparing various nanofibers[112] and attractive for increasing 
the throughput.[113] Rosenthal et al. presented a HT manu-
facturing of solid electrolyte nanofibers using needleless 
electrospinning by using Li7La3Zr2O12 (LLZO) nanofibers 
as proof-of-concept and showed a practical HT synthesis of 
LLZO materials.[114]

In the high voltage region, ceramic electrolyte solid state bat-
teries tend to have large charge transfer resistance.[115,116] Ionic 
conductivity is one of the most important electrolyte bulk prop-
erties influencing the performance of solid state electrolytes. 
The most common method to determine ionic conductivity for 
thin film solid state electrolytes is EIS, particularly useful and 
simple to determine a single sample. However, to realize high-
throughput approach for conductivity determination, the thin 
film configuration in combination with the deposition technique 
containing two types of electrode geometry setups: out-of-plane 
and in-plane, was applied as shown in Figure 9. In the out-of-
plane configuration, the thin film is sandwiched between the 
top and bottom metal electrodes and the measurement may be 
strongly affected by the close spacing of the electrodes. Further-
more, both electrodes are deposited on the top of thin film for 
the in-plane configuration and the spacing between electrodes 
is 5–10 µm, which causes less influence on ion conduction.[117] 
However, the in-plane configuration often suffers from artifacts 
due to stray capacitance and conductance through the sub-
strate.[118,119] Duan et al. reported a feasible HT measurement of 
ionic conductivity in thin films of multiple oxide systems[117] by 
measuring the oxygen ionic conductivity of thin film yttria-sta-
bilized zirconia using two different configurations, out-of-plane 
and in-plane as shown in Figure 9. On the other hand, Huang 
et al. demonstrated a HTt measurement of ionic conductivity of 
solid state electrolytes by using an out-of-plane configuration. 

The array of microdot metal on the top of electrodes enables 
measurements of hundreds of compositions in a single library.

A more straightforward and considerably faster way is to use 
an NMR probe that allows fast screening of solid state elec-
trolytes. In line with this, Schiffmann et al. developed a high-
throughput solid state NMR probe to determine the ionic con-
ductivity of the solid state electrolyte.[120] This method allows 
the evaluation with a HT of >100 samples per hour and is easily 
upscalable. Besides, Tirosh et al. demonstrated a HT mapping 
method based on the F-doped tin oxide darkening effect for 
screening the ionic conductivity in solid state electrolytes.[121] 
Each measurement requires only 5  min which is 100× faster 
compared with the traditional EIS method. However, the dis-
tinguishment between grain and bulk lithium ion conductivity 
cannot be realized.

Finally, the selection of HT experiments should not be lim-
ited to any method. Each of the different liquid and solid elec-
trolytes has different requirements and criteria, and the charac-
terization methods also vary. Accelerated research by running 
large-scale and automated experiments will be beneficial in 
advancing future materials research.

4.2. High-Throughput Experiments on a Battery Electrode Level

4.2.1. High-Throughput Characterization of Thin Film Battery 
Materials and Related Electrode|Electrolyte Interfaces

LIB technology and lithium metal battery (LMB) technology 
tackles new challenges at fundamental and industrial level to 
face the complexity of the new LIB generation, for instance in 
solid state batteries.[122] In this context, material characteriza-
tion of LIB components, i.e., the anode, the cathode, and the 
electrolyte was progressively improved at the level of single 
and correlative multiple characterization technique. Several 
characterization techniques have been developed to accompany 
materials synthesis and to study the reactivity of electroactive 
materials toward liquid or solid electrolytes in in situ/oper-
ando and postmortem ways using adequate protocols. Besides, 
the limited knowledge on the redox processes accruing during 
lithiation and delithiation of electrode materials, about the 
mechanisms of the SEI/cathode electrolyte interphase (CEI)[123] 
formation, growth and dissolution, interface/interphase design 
and its stability, characterization technique limitations asso-
ciated with material sensitivity and/or the techniques them-
selves are still bottlenecks for widening our understanding for 
optimum LIB/LMB performance. Access to complementary 
information on the same material is relevant, but usually, it 
is carried out sequentially and separately. Therefore, accel-
eration of materials discovery for outperforming LIB/LMB 
materials design needs a multiscale approach from the mate-
rial to the characterization level. Developing new correlative 
characterization workflows (CCWFs) adapted to LIB/LMB with 
the aim to become generic characterization solutions could 
yield acceleration in materials design while saving time and 
cost. The CCWFs include harmonized characterization pro-
tocols, and data treatment steps dedicated to data classifica-
tion. CCWFs will not only assist to gather key characterization 
techniques but also to establish synergies between techniques 
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Figure 9. Schematic of a) out-of-plane configuration and b) in-plane 
(integrated) configuration for electrical measurements. The IDE foot-
print was 1 mm × 1 mm. Reproduced with permission.[117] Copyright 2013, 
American Chemical Society.
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to correlate the various types of information and generate a 
high added-value consolidated set of data. It is therefore nec-
essary to design a HT approach starting from materials over, 
components and processes to systems to ensure wide trans-
ferability of results to industrial level. Therefore, common 
characterization methodologies go together with a harmoni-
zation of experimental protocols as well as data treatment, in 
terms of classification, types, format, curation, and establish-
ment of infrastructure facilitating management and sharing 
information.

Studying a region of interest, for instance, bulk as well as 
interfaces and interphases in LIB/LMB with a multidimen-
sional characterization approach faces several challenges from 
sample preparation to data treatment level. Quantitative and 
qualitative chemical, morphological, structural, and dynamic 
properties of materials are often recorded separately, and this 
at different length and time scales. In-depth understanding of 
interfaces/interphases can be achieved through single tech-
niques, however correlative analyses provide advanced levels of 
understanding.[124–126]

Structural and chemical mapping using combined transmis-
sion electron microscopy/electron energy loss spectroscopy/
energy dispersive X-ray spectroscopy on electrode materials at 
different state of charge enhance our knowledge of phase dis-
tribution and particle cracking of active material at nanometer 
scale.[127–130] Correlative study combining chemical analyses 
using XPS, Fourier-transform infrared  spectroscopy (FT-IR), 
and EIS paved the way to deep understanding of SEI and CEI 
composition at the micrometer scale.[9,131,132] Considering large 
volume, X-ray tomography performed in operando condi-
tion provides a low resolution overall picture of structural and 
some dynamic processes, for example, Li dendrite growth or 
particle expansion.[133–135] Through these three examples, cer-
tain techniques showed the possibility of successful correla-
tive analyses, however a general multiscale correlative CCGF 
remained unestablished. Considering the overall view of dif-
ferent degradation and ageing processes taking place in LIB/
LMB cells,[136,137] correlative analyses can be designed according 
to separate strategies of acquisition and corresponding work-
flows as, for instance,

• from nondestructive to destructive characterization methods,
• from global characterization, covering a large volume of the 

region of interest, to local view characterization. This step can 
be repeated at different length scale, combining two or sev-
eral characterization techniques.

• from dynamic (in situ/operando) to postmortem, through 
combined electrochemical and physicochemical characteri-
zation, and

• adequate sample preparation to fit with characterization tech-
nique constraints (environment, beam size, sample holder, 
length and time scale acquisition, etc.).

In similar ways, collection of multidimensional data must 
follow a correlative workflow considering

• classification of samples with enhanced quality of reproduc-
ibility and traceability, through combinatorial material design 
or material design by road map,[20,138]

• single dataset, often specific for each characterization tech-
nique, manipulation, analysis (quantitatively and qualita-
tively), and reconstruction within multidimensional datasets. 
Some software allowed the manipulation of data sets from 
single to general element, to create multi-output datasets,[139] 
with the assumption of perfect matching of the analyzed area 
probed by both techniques.

• raw and/or treated data storage through harmonized for-
mats. The large volume of data that can be produced through 
different subsequent workflows needs specifically structured 
big-data treatment strategies for optimum multiscale data ex-
change and manipulation within reasonable time scales.

• Data manipulation should keep retroactive loops of data pro-
cessing possible.

Developing correlative workflow analyses for battery 
accelerating design across multiscales of different chemical 
and physical properties requires dedicated computational 
approaches such as science-based, machine learning-based or 
HT based.[140–143]

Using the example illustrated in Figure  10, the correlative 
approach needs new characterization paradigms where every 
aspect must be designed taking in account the modalities and 
the time/length scale inside the established workflow.

4.2.2. Thin Film Materials as a Medium for High-Throughput 
Experimentation of Surface and Interface Properties

The assessment of the role and the influence of materials 
interfaces on the operation the LIB cells, and the rational 
improvement of appropriate material connections inside the 
electrochemical chain via an HTE approach can appear particu-
larly challenging. The 3D arrangement of the different com-
ponents of the battery cell, the multiplicity of its constituting 
materials and the even larger number of interfaces and inter-
phases they form, contribute simultaneously to the operation of 
the cell and influence its ageing, but makes difficult the char-
acterization of a particular interface/interphase and the assess-
ment of its specific influence in the system. Additionally, the 
achievement of controlled compositional, geometrical, struc-
tural gradients regarding the interface/interphase of interest 
is generally not straightforward, since each of the latter might 
result from the influence of various (and possibly unknown) 
parameters.

In this respect, controlled preparation and characterization 
of 2D model surface/interfaces/interphases can be a valuable 
tool for the HTE for material optimization regarding interfa-
cial phenomena. 2D model components are being commonly 
used in some conventional fundamental studies related to bat-
tery materials, with the aim to get a simpler electrochemical 
system, to precisely tune one of its parameter at a time, and 
finally to get a clear insight into the influence of the latter on 
the electrochemical response.[145] Most of these model com-
ponents consist in thin film materials (single or multilayers) 
deposited on polished wafers, single crystals, or on metallic 
foils by vacuum deposition techniques. The latter include 
chemical vapor deposition (plasma-enhanced chemical vapor 
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deposition, low pressure chemical vapor deposition, and atomic 
layer deposition)[146–149] and physical vapor deposition (magne-
tron sputtering, thermal or e-beam evaporation, pulsed layer 
deposition, and molecular beam epitaxy).[102,149–151] The benefit 
of using thin film materials lies in the fact that i) the electrode 
or the solid electrolyte can be studied as a pure compound, ii) 
its thickness can be easily monitored, so that the contribution 
of surface phenomena relative to bulk ones can be amplified, 
and iii) its planar geometry, and possibly its low roughness, 
generate clear surface and interface that ease the use of sur-
face characterization techniques and the interpretation of the 
results. For example, this configuration has been successfully 
used to get a comprehensive insight into the behavior of the 
LiCoO2|electrolyte interface due to complementary techniques: 
determination of the Li+ ion transfer through particular planes 
of the layered structure,[152] observation of the diffusion profiles 
of Li+ ions (time-of-flight secondary ion mass spectrometry/
glow discharge optical emission spectroscopy),[153] dynamics of 
the formation of an CEI (X-ray reflectivity under in operando 
conditions, polarization modulated-FTIR, and XPS),[154,155] evo-
lution of the surface morphology, contact stiffness, and surface 
potential (atomic force microscopy)[156] or the effect of a par-
ticular coating (LiPON) on high voltage stability.[157]

The introduction of this approach into the HTE process is at 
first conditioned by the capability to generate thin film mate-
rials libraries in a massive and reproducible way. Actually, 
among vacuum deposition techniques, magnetron sputtering 
has been identified since the 1970s[68] as a convenient means to 
combine multiple components in order to generate on single 
substrate thin film materials with compositional gradients 
(combinatorial synthesis) in a single experiment, and there-
fore as a tool for conducting accelerated assessment of mate-
rials in different scientific and technical areas.[158,159] However, 
since the approach aimed at generating spatially distributed 
materials libraries is against the flow of the conventional use 
of this deposition technique, it requires some specific adapta-

tions of the process or/and the experimental set-up in order to 
reach this goal. Different designs that involve either sequen-
tial or simultaneous deposition are shown in Figure  11. This 
approach was introduced and developed in the field of battery 
materials research by Dahn et  al.[46,160,161] 20 years ago for the 
assessment of Si and Sn-based negative electrode composi-
tions, and led to the identification of a ternary compound later 
introduced in Sony’s Nexelion lithium ion cells.[162] From then, 
it has been also applied to the development of various inorganic 
compounds including lithium-nickel-manganese-oxide and 
lithium-nickel-manganese-cobalt-oxide cathode materials.[163] 
The combinatorial synthesis of specific compounds of interest 
for battery applications is indeed not limited to the combination 
of simple elements and the synthesis of amorphous materials. 
Nevertheless, the investigation of specific compositions and 
structures of materials using vacuum deposition techniques, 
and particularly mass spectrometry (MS), can be particularly 
challenging, as conditioned by the availability of specific targets 
and/or substrates, the relative values of the sputtering yield, the 
deposition rate, a need for reactive deposition, for operando/ex 
situ annealing, etc.

However, the main challenge of HTE of thin film materials 
is probably the necessary development of appropriate (non-
destructive) characterization tools able to provide spatially 
resolved information about the chemical composition, the 
local and/or global structure, and other features (dimensional, 
(electro)chemical, mechanical) of the thin film material library. 
To map (electro)chemical properties of the films, two main set 
up designs already exist to carry out measurements on a single 
planar substrate. These set ups are based either on a fixed array 
of cells generated on the top (the resolution is then limited by 
the intercell distance, measurements can be made simultane-
ously on several if not all cells),[165,166] or on an X–Y moving 
probe that can be positioned above each point of the substrate 
(the resolution is limited by the diameter of the tip from tens 
of µm (scanning electrochemical microscopy) to mm, the 
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Figure 10. Overall view of correlative workflow for material by design battery, performance mapping, and multiscale characterization with regards 
to degradation processes in LIB cells. Some part of the figure use some figure and elements reported elsewhere.[136,144] Adapted with permission.[144] 
Copyright 2019, Springer Nature.
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Figure 11. Schematic diagrams of sequential depositions in combination with masking techniques or simultaneous deposition by cosputtering.  
A) Combinatorial synthesis of (GaxIn1−x)2O3 using a mobile mask with a squared-shape hole. Reproduced with permission.[262] Copyright 2020,  
American Chemical Society. B) Combinatorial synthesis of Co–C–Sn–Si quaternary thin film using rotatable substrate and fixed mask over the targets. 
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probe possibly contain a reference electrode, measurements 
have to be conducted sequentially).[167] The rest of the physical/
chemical characterizations of the materials libraries is probably 
less straightforward given the thin film form of the materials, 
their possible amorphous character, and the presence of light 
elements (including Li). Due to inappropriateness to the HTE 
approach of some techniques such as Rutherford backscat-
tering spectrometry and nuclear reaction analysis for example, 
additional approaches mentioned above consisting in the com-
bination/global processing of more or less complete, low/high 
accuracy sets of measurements will probably appear as a neces-
sity and a new frontier.

4.3. High-Throughput Experiments on a Battery Cell Level

Evaluating long-term performance as well as (time and/or 
cycle dependent) degradation mechanisms is the last but fore-
most challenge in pushing lithium ion and post-LIB advance-
ments. Due to manual lab scale manufacturing, there are only 
a few studies that evaluate larger numbers of cells on a labo-
ratory scale.[168,169] Full cell manufacturing requires significant 
capital investments,[170,171] hence the few studies published uti-
lized commercially available cells. Contrary to thin film-based 
studies,[172] full cell configurations require large amounts of 
material, and tests may last for months or even years. A general 
theme is therefore a batched experimentation. However, moving 
cell cycling capability (especially for commercial cells) from low 
throughput to HT can be as trivial as increasing the capacity 
for experiments, i.e., buying more cyclers and is probably the 
worst possible solution. High quality hardware is usually quite 
expensive and research budget as well as available space is quite 
limited for many groups. Herein lies the elegance of the work 
of Severson et al. who used statistical methods on cycling data 
to develop a purely data-driven model that is capable of accu-
rately predicting the lifetime of a battery cell based on the first 
100 charge/discharge cycles.[169] This allows to finish cycling 
experiments within days rather than months and thus signifi-
cantly increase the throughput of an experimental setup without 
changes to the hardware. In a following study, the group dem-
onstrated this by combining their prediction model with a 
closed loop optimization algorithm, which suggests a batch of 
experiments to perform next based on the previous batch.[168] 
Using both methods in combination, they were able to find the 
optimum from 224 different fast charging protocols using only 
185 commercial cells and 16 days of actual cycling time. This 
work demonstrates the great potential of modern data analysis 
and ML techniques when applied to optimization problems 
often encountered in materials research.

An alternative way of predicting long term effects refers to 
galvanostatic cycling of a battery cell via ultrahigh precision 

chargers[173] that allow for early failure prediction through 
careful analysis of Coulombic efficiencies.[174] However, as 
this requires specialized equipment and comparatively long 
experiment durations, broad application in HTE is not fea-
sible yet.

Some studies do however require very long experimental 
times and exhibit very smooth trends such as calendric ageing 
studies changing the perspective of the efficacy of acceleration 
of experiments through automatization versus acceleration of 
research through automatic analysis.[175]

5. High-Throughput Virtual Screening

The idea of material discovery has been evolving for genera-
tions. Most of the groundbreaking material discoveries hap-
pened by categorical approaches from experimentalist, rational 
design, or by accidents. This is due to the fact that screening 
through the chemical space for all combinations of molecules 
to achieve desired properties was extremely difficult. With the 
recent advances in automation technologies, the experimental 
screening of these compounds has been accelerated by mani-
folds. Nevertheless, the broadness of the chemical space makes 
the experimental screening a challenging task. With regard to 
desired material application and with considerable chemical 
intuition one can narrow down the chemical screening space 
to a large extent, however the cost of screening the remaining 
(>1 000 000) sets of molecules still remains very high. With 
recent advances in computer architecture and parallelization, 
molecules can be screened through a theoretical approach to 
further reduce the chemical screening space. This process of 
using a combination of high performing computer architecture 
and theoretical models to screen through large chemical space 
represents the philosophy of high-throughput virtual screening 
(HTVS). Several HTVS studies have been reported in the 
field of materials science,[176] as for instance for semiconduc-
tors[177] and perovskites.[178] In the field of battery science, many 
studies have been carried out for solid electrolytes, e.g., with 
regard to their phase stability,[179–182] transport properties,[180] 
geometric and bond valence site energy[182–186] or mechanical 
properties,[187] the latter being important for the suppres-
sion of dendrites. Similarly, a high-throughput computational 
screening process is reported for identifying lithium containing 
fluorides for battery cathode coatings.[188] Further studies on 
ML-driven automated screening for lithium-based batteries 
are also reported.[189,190] A recent review discusses the impor-
tance of computational techniques to predict novel candidates 
for superionic conductors and to reveal the underlying mecha-
nisms of fast ion diffusion.[179]

The concept of HTVS based on a recent publication by 
Aspuru-Guzik and co-workers combines experimentally 
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Schematic diagram of (a) the rotating table showing “snapshots” of one of five substrate tables at various instants in time in a sputtering reactor and 
(b) four-element thin film resulting from the sputtering run. Gaussian-shape mask is illustrated. Reproduced with permission.[263]  Copyright 2006, IOP 
Publishing, Ltd. C) Combinatorial laser molecular-beam epitaxy synthesis of calcium oxyborates of Tb, Sc, and Pr using trapezoid and triangular-shaped 
rotatable masks. Reproduced with permission.[264]  Copyright 2004, American Chemical Society. D) Set of 12 shadow masks used for the preparation 
of ternary compounds as catalyzers for OER/ORR in Li–air batteries. Reproduced with permission.[265]  Copyright 2005, AIP Publishing. E) Principle of 
cosputtering. Reproduced with permission.[164] Copyright 2016, Springer Nature.
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validated density functional theory (DFT) calculations with ML 
algorithms.[191] Notably, the latter further supports the accel-
eration of calculations, which in turn accelerates the material 
discovery process. Figure 12 displays a schematic of this HTVS 
approach that has been implemented in a stepwise fashion.[29]

A) Experimental measurements – The fundamental goal of 
HTVS is to identify quantitative structure–property relation-
ships that provide directions to predict novel materials for, 
e.g., battery applications in order to complement experimen-
tal HTS approaches. Material prediction follows two direc-
tions denoted by forward and inverse mapping principles. 
Forward directions predict materials properties using struc-
ture of the material or composition as input, whereas inverse 
mapping design follows predictions of material structure 
or compositions with target material property as input. The 
challenges involved in the inverse material design process for 
inorganic solid material are discussed by Noh et al.[192] as well 
as by Elton et al.[25,193] Even though high-throughput experi-
ments are automated and fast in nature, the initial cost might 
be very high for screening a large complex material space, 
required in the field of battery applications. Thus, computa-
tional approaches and theoretical models are necessary to as-
sist experimental techniques.

B) Computational models and validation – Although theoreti-
cal methods[194,195] such as DFT or molecular dynamics (MD) 
may accelerate experimental HTS approaches, it is of prime 
importance to validate the predictions of the calculations for 
experimental accuracies. DFT is an ab initio technique, which 
by definition only relies on natural constants and thus does 
not require an extensive parametrization once the employed 

functional itself is validated. State-of-the-art DFT calculations 
typically rely on so-called hybrid or even generalized gradi-
ent approximation functionals, which show a significantly 
reduced computational demand as compared to wave func-
tion methods that explicitly take electron correlation into ac-
count. In this way, one is confronted with a trade-off between 
the amount of screened substances and the accuracy of the 
computed results.[29,196] However, for a reliable assessment 
of material properties, it is important that the problem un-
der consideration is well defined and directly related to the 
underlying atomic or molecular properties via so-called de-
scriptors.[197] For instance, the energy levels of the highest 
occupied molecular orbital (HOMO) or lowest unoccupied 
molecular orbital (LUMO) are frequently used to predict 
both the adsorption characteristics of organic photovoltaics 
or the electrochemical stabilities of electrolyte components, 
that is, one aims to establish a link between molecular and 
material properties. Moreover, these descriptors also play a 
central role for the development of ML models as feature vari-
ables, although in this particular context also experimental 
descriptors such as the composition of an electrolyte may be 
defined. Finally, the correspondence between molecular and 
material properties established by the descriptors results in 
a robust way to create material databases which are a fun-
damental component of the HTVS process. This process 
also includes automated data job management processes[198] 
ranging from input file generation to final data storage. These 
software protocols formulate genomic projects. The electro-
lyte genome project and polymer genome are examples of the 
pioneering works done for battery applications.[199,200] Unlike 
DFT, MD simulations relying on classical force fields have 

Adv. Energy Mater. 2021, 2102678

Figure 12. High-throughput virtual screening process. A) High-throughput experimental measurements to determine ionic conductivity, viscosity, 
density, electrochemical stability, etc. of liquid electrolyte formulations. B) Initial screening to validate suitable theoretical approaches (QC/MD) to cal-
culate desired properties of interest. C) Accelerating the computational speed of QC/MD methods using machine learning and data driven algorithms.  
D) Computational funnel screening approach. E) Approval of target candidates. F) Postprocessing and data analysis of high-throughput screening 
experiments with data driven methods.
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mainly been used in the field of drug discovery.[201,202] How-
ever, in a recent perspective article,[203] Makeev and Rajput 
advocate the use of MD to, e.g., compute viscosities or solu-
bilities of multicomponent systems, ideally combined with 
an automated force field generation.

C) Machine learning model development – HT calculations on 
electrolytes have mainly been considered for single molecule 
properties like redox potentials, densities, and electrochemi-
cal stabilities. Even though DFT/MD algorithms predict ma-
terial properties with considerable accuracy, it takes up suf-
ficient computational time to screen through large chemical 
spaces. Nonetheless these tools are too expensive to deter-
mine diffusion behavior, ionic conductivities, and other bulk 
thermodynamic properties. MD and coarse grained mod-
els can estimate these properties, though the accuracies of 
these models are not up to DFT/MD, but with the advent of 
novel descriptors and ML-based interatomic potentials, these 
properties can be determined with ab initio accuracies.[180,204] 
These models are computationally too demanding to screen 
millions of molecule compositions. To accelerate the screen-
ing process surrogate models can be used, which provide 
property estimates with low computational expense and with 
equivalent accuracy to the trained model. Suitable regression 
models or neural network models are used to achieve the 
desired chemical accuracies.[191] These surrogate models are 
then used in the construction of necessary material databases 
for the material discovery process.

D) Computational funnel approach – Next step in the HTVS 
process is screening of materials with respect to the proper-
ties of interest for battery applications. In many cases, not 
only redox stabilities, but also other parameters are of inter-
est for a certain problem, such as calculating salt solubility. 
In this case, one typically applies a sequential scheme that 
is referred to as “computational funnel approach.”[29,180,197,205] 
Each quantity of interest corresponds to an individual step 
in the screening, and unsuitable compounds from the can-
didate pool are discarded at each step according to a certain 
criterion, leaving behind a substantially reduced set of can-
didates, which can be validated experimentally or via more 
sophisticated theoretical calculations (Figure 13).

The order of the assessed quantities may vary depending 
on the system, e.g., for multivalent ions, electrolyte solubility 
is extremely important and thus screened in a first step,[197,205] 
whereas for LIBs or RFBs, the electrochemical stability window 
(ESW) is of prime importance.[197] Solubilities are typically com-
puted from an implicit or explicit solvation model, in which the 
vacuum state serves as reference[205,206] due to the fact that the 
crystal structure of novel compounds (whose identification is 
the main purpose of high-throughput computing (HTC) screen-
ings) is not necessarily known. For instance, Klamt performed 
solubility calculations of several electrolyte solvents for calcium-
based batteries via COSMO-RS,[207] followed by calculations of 
the ESW for the remaining molecules. Further molecules were 
discarded in a third step on the basis of viscosity, flash point, 
and boiling point estimates. Finally, for the lead candidate, the 
stability of the solvation shell was computed in DFT calcula-
tions with explicit solvent molecules and four different anions 
to rationalize the ion-pairing behavior.

E) Refinement based on human intuition – Once the pool of 
desired candidates is established from a large database, it is 
further screened by chemical intuition and voting from sci-
entists, which is used only to exclude compounds that are not 
appropriate. The final dataset is again put into experimental 
validation for suitable material property predictions. Further 
screening is based on ranking of the down-selected candi-
dates on the basis of their structure and ease of synthesis. 
Based on this approach, recently, a study based on integrated 
organic functional material design that incorporates theoreti-
cal insight, quantum chemistry, cheminformatics, ML, in-
dustrial expertise, organic synthesis, molecular characteriza-
tion, device fabrication, and optoelectronic testing has been 
reported.[191] This HTVS process enables a fast screening of 
more than 1.6 million molecules, resulting in external quan-
tum efficiencies of materials that are comparable to state of 
the art material OLED devices.

F) Analysis of final candidates – Experimentally and compu-
tationally, it is very expensive to validate several thousands 
of candidates that may exist in chemical space. Thus, one 
needs a screening protocol that leverages HT calculations, 
ML and data driven algorithms, and experimental validation 
for identifying the right candidate material. This combinato-
rial process enables a fast screening of millions of molecules 
for the identification of suitable battery electrolytes and inter-
faces.[208]

Having outlined the interplay between experiments, theo-
retical modeling as well as ML techniques in HTVS, the focus 
on the computational part is set on the basis of two examples: 
liquid carbonate-based electrolyte additives and redox-flow 
anolytes/catholytes. Furthermore, descriptors with different 
complexity will be discussed, followed by an outlook on the 
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Figure 13. Schematic illustration of the computational funnel 
approach.[197] A possible example would be finding a suitable electrolyte 
formulation. In this example, the circles would represent different formu-
lations comprising of, e.g., conductive salt, solvent, and additive(s). At 
each step, candidates from the initial pool are discarded based on speci-
fied criteria. The remaining candidates can subsequently be investigated 
more thoroughly in experiments or refined calculations. Note that the 
quantities of interest as well as their order may vary depending on the 
considered problem.
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incorporation of ML-based molecular modeling techniques into 
HTVS approaches.

5.1. Simple Descriptors

In case of screening approaches for liquid electrolyte com-
pounds, a common example is the prediction of oxidation and 
reduction potentials of LIB electrolytes.[209,210] This is due to the 
fact that the performance of an LIB cell is critically linked to 
the formation and the properties of protective interphase layers 
at the anode (SEI) and cathode (CEI), which prevent the elec-
trolyte from continuous electrochemical decomposition. DFT 
calculations can guide the search for novel electrolyte compo-
nents that meet requirements by screening large sets of poten-
tial candidates and discarding molecules that are deemed too 
unstable according to a certain criterion. This approach is 
closely related to the computational funnel approach described 
in part D, and narrows down the initial set to a substantially 
reduced number of candidate molecules, which can then be 
investigated via more sophisticated calculations or experiments. 
For organic carbonate-based electrolytes, Hall and Tasaki per-
formed a large-scale screening of EC derivatives already a 
decade ago.[209] They estimated the redox stabilities of these 
compounds via HOMOs and LUMOs, as well as their ioniza-
tion potentials (IPs) and electron affinities (EAs). The latter 
quantities are intimately related to the former, but addition-
ally involve another QC calculation of the oxidized/reduced 
molecule, rendering the screening procedure more accurate, 
however, computationally more demanding. Later, Korth and 
co-workers performed similar calculations on a broader range 
of organic molecules that may serve as solvents for LIB elec-
trolytes, additionally assessing the performance and accuracy 
of different semiempirical schemes, DFT functionals, and 
wave function methods.[210,211] Notably, such schemes can also 
be implemented as volunteer computing projects due to the 
large number of independent calculations.[212] Naturally, HTVS 
screening approaches are not limited to a particular system 
such as LIBs, but were also reported for various types of electro-
lyte additives,[213] electrolytes for supercapacitors[214] or calcium 
batteries.[205] Once data sets are generated, they can be analyzed 
via regression techniques or ML concepts to relate the chemical 
structure to the molecular properties. For instance, Okamoto 
and Kubo employed molecular features such as the number of 
atoms of a certain element or the presence of ring structures 
in two different regression algorithms to estimate the redox 
potentials.[213]

Importantly, HTVS approaches were also employed in 
the search for optimal candidates for the active compound in 
anolyte and catholyte solutions in RFBs.[206,215] Besides con-
ventional anolytes/catholytes, relying on heavy metal ions as 
redox-active species, organic materials such as quinones or 
alloxazines in nonaqueous solution are highly promising due 
to the fact that they are cheap and can be tailor-made to meet 
specific demands as a consequence of the vast chemical space 
spanned by organic molecules.[29] Certainly, the latter point 
highlights the role HTVS approaches can play in order to opti-
mize these materials. Another reason why HTVS approaches 

were particularly performed for RFB compounds is grounded 
in their theoretically high reversibility upon galvanostatic 
cycling. That is, side-reactions ideally play a marginal role due 
to the fact that the excess charge upon oxidation/reduction is 
well stabilized by the large organic molecules utilized in RFBs.

5.2. Incorporating Reaction Pathways

The situation for HTVS screening of RFBs stands in stark con-
trast to that of LIB electrolytes, which necessarily form pro-
tective layers at either electrode (SEI and CEI) via a plethora 
of side reactions and cascades. Clearly, these reactions pose a 
serious challenge for HTVS approaches, as a straightforward 
calculation of HOMOs/LUMOs or of IPs/EAs only yields the 
limiting redox stabilities,[216,217] that is, the stabilities of iso-
lated molecules. Borodin et  al. demonstrated that by explicitly 
taking various initial decomposition reactions such as hydrogen 
transfer into account in QC calculations, the true electrochem-
ical stability can be lowered by as much as 2 V as compared 
to the IPs/EAs of single molecules.[218–220] To account for such 
effects in HTC approaches, it has been suggested to compute 
changes in the molecular geometry upon oxidation/reduc-
tion.[197] Whenever the geometry of a molecule changes by more 
than a preset value, it can be subjected to closer inspection. In 
this context, large-scale computational screening approach of 
possible fragmentation reactions of organic carbonates in LIBs 
is noteworthy.[212] Here, fragments of various carbonates were 
automatically generated and recombined according to a few 
predefined chemical rules, and the resulting reaction energies 
were computed (Figure  14). Subsequently, a ranking was cre-
ated based on energy values as well as similarity metrics such 
as the Tanimoto coefficient between reactants and products to 
estimate the likeliness of a given reaction when considering 
the necessary rearrangement of atoms. However, although 
important reactions can be automatically identified in this way, 
kinetic information is not included as the reaction barriers are 
not explicitly calculated. Besides electrochemical reactions, it 
has been demonstrated that the inclusion of lithium ions (in 
case of reduction) or anions (for oxidation) affects computed 
redox potentials significantly.[218–220] Interestingly, for the case 
of EC reduction, the potential is rather sensitive to the posi-
tion at which the lithium ions are inserted in the calculation 
(with a difference of ≈0.1–0.2  V), which should be considered 
in an HTC screening.[218] As a technical side note, range sepa-
rated hybrid DFT functionals have shown improved accuracy 
as compared to conventional functionals for redox reactions[221] 
due to the fact that the electronic self-interaction error in DFT 
is mitigated.[222]

5.3. Improvements via Machine Learning

As mentioned above, HTVS screening via MD has received sub-
stantially less attention in the field of battery research, mainly 
due to the fact that classical MD require force fields that need 
to be carefully parametrized—sometimes even for different 
concentrations for otherwise identical compounds—while  
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large-scale ab initio MD is computationally extremely 
demanding. Here, a new methodological avenue was opened 
by ML-trained force fields, which provide ab initio accuracies at 
a significantly reduced computational cost.[224] In this way, MD 
simulations can be used to predict structural and dynamical 
properties of materials at larger time and size scales. Recently, 
scale-bridging protocols based on active learning approaches 
coupled with Bayesian optimization algorithm (Section  6.3.2) 
are used to increase the accuracy of these models, further exper-
imental driven workflows are developed with ML approaches to 
automate this process.[225,226] Such automated workflows could 
indeed be employed in future HTVS approaches after they have 
reached sufficient maturity. In this way, MD simulations will 
likely become more important for screening approaches when 
ML-based force fields for battery electrolytes have become 
largely available, or when well-defined and automated work-
flows to generate these force fields exist.[203]

6. Data Driven Methods for the Analysis  
of High-Throughput Experiments
The screening of compounds is usually performed in various 
layers to narrow down suitable candidates in accordance to the 
desired property of interest. Of late there has been an unparal-
leled growth in computational power which resulted in develop-
ment of novel machine learning algorithms. These algorithms 
are predominantly employed in classification, regression, 
sample augmentation, clustering, and dimensionality reduction 

task for large heterogenous datasets.[227–229] Here we restrict 
ourselves to supervised learning algorithms whereas for unsu-
pervised approaches we refer the reader to study the work by 
Hinton and Sejnowski.[230–234] Various HTE data analysis tools 
have been used to assist this process. A detailed explanation 
of standard statistical practices used for HTE data analysis 
has been described by Malo et  al.[235] Due to high-dimension 
of the feature space, e.g., reflecting the number of components 
in an electrolyte in battery research, direct interpretation of 
the experimental or simulation data is somewhat hampered. 
Therefore, automated data analysis is of paramount impor-
tance. In general, surrogate modeling is employed when evalu-
ation becomes extremely expensive both experimentally and by 
computer simulation.[236,237] They may act as an approximate 
description of the relation between input and output data on 
a feasible computational level. For construction purposes, ML 
techniques[227,238] may provide a versatile way. Nevertheless, any 
knowledge about physical or chemical properties of the system 
(such as, e.g., symmetries) should be incorporated.

Different goals have to be fulfilled in the analysis of HTE 
data.

1) One should be able to describe the dependence of the ob-
served properties on the composition also in systems with 
many components. This purpose can be achieved by finding 
a surrogate model with parameters, possessing a direct in-
terpretation. For example, one may directly learn about the 
explicit impact of the salt content on the conductivity. In this 
technique, data speaks for itself and provides meaningful  
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Figure 14. Schematic overview of the fragment generation. Electrolyte molecules (e.g., EC) are fragmented according to heuristic chemical criteria. 
Accordingly, the fragments are recombined in a second step. Various quantities such as reaction energies can be computed from these automatically 
generated compounds via chosen QC methods. Reproduced with permission.[223] Copyright 2015, the Royal Society of Chemistry.
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information about the system, so we do not need to design or 
program anything specific to extract this information.

2) The surrogate model should be able to predict well by bal-
ancing between model complexity and generalization er-
ror.[239,240] Discussion of this aspect involves the analysis of 
overfitting and underfitting which becomes relevant if too 
many or too few adjustable parameters are involved as com-
pared to the size of the available data set. Naturally, any ex-
pertise and domain knowledge[234] as well as known physical 
or chemical constraints, relevant for the problem at hand, 
should be taken into account when setting up the model or 
interpreting the ML-based results.

3) More generally, one may ask how complex a surrogate model 
can be formulated for a given number of experimental data. 
Reversely, one may estimate the number of data which is, 
e.g., required for a sufficient exploration of the high-dimen-
sional feature space. In the case of regression, the complexity 
is reflected, e.g., by the number of adjustable parameters.

4) In the context of active learning the analysis may suggest for 
which new experimental data points important new knowl-
edge might be generated. This step would establish a for-
ward–backward relation between experiment (or, alternative-
ly, simulation) and data analysis and is generally described by 
the interplay of exploitation and exploration.

The selection of methods to be discussed below is guided 
by the experiences with the analysis of HTE data of electrolyte 
mixtures. Furthermore, in this way it is possible to address the 
general goals (1)–(4) in a coherent way and to the pave the way 
for interesting applications.

6.1. Conceptual Framework of Machine Learning-Based 
Prediction

In general, the complete dataset is divided into three parts: 1) 
training, 2) cross validation, and 3) test. The model is trained 
on training datasets using optimization methods. For example, 
fitting a polynomial on training datasets using steepest descent 
optimization method, where optimization is carried out to 
obtain values of prefactors of the polynomial. During the opti-
mization procedure one needs to fix a set of hyperparameters, 
e.g., the parameters characterizing a steepest descent pro-
cess. For this set of hyperparameters, the prediction quality is 
obtained from comparison of the predictions with the informa-
tion of the cross validation dataset that is not observed by model 
during training. Subsequently, by minimizing the error, hyper-
parameters will be updated and optimized. The relevant final 
error is then determined from predicting the so-far unused test 
dataset. If the optimization of hyperparameters is not relevant 
one may just work with a training and a test set. In this case 
we will separate the N measured data in M training data and 
N − −M test data. The desired but unknown relation between 
a feature x and the experimental or numerical outcome y is 
denoted f(x). In general, the outcome is additionally hampered 
by noise commonly taken from a normal distribution, thereby 
incorporating uncertainty so that the outcome is given by

η( )= +y f xi i i  (1)

In principle, the feature x can have some uncertainty as well 
which will be neglected. The N measurements are expressed by 
the index i. In the limit of infinite N and homogeneous cov-
erage of all feature values, perfect learning of the function f(x) 
would be possible.

The process of estimation involves a function h(x, θ) with a 
parameter θ, reflecting, e.g., the regression coefficients. In general, 
the surrogate model, as expressed by this function, cannot fully 
recover the full complexity of the system, i.e., the function f(x). The 
determination of θ is via minimization of an appropriately chosen 
cost function which is often taken as the squared error

,
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The optimum is denoted θopt. Naturally, its value depends 
on the specific training set TM, selected from the available 
number of data, as well as on the noise realization {ηi}. The 
notation θopt(TM,η) expresses this dependence. Now one can 
conceptually think about the limit of the availability of an 
infinite dataset, which furthermore covers the whole relevant 
range of feature values x. For a ternary electrolyte composi-
tion αA − βB −  (1 − α − β)C this would mean that the prede-
termined interval [αmin,αmax] is densely covered by values of the 
mole fraction α and the same holds analogously for β. In this 
limit, the resulting optimum θopt no longer depends on the spe-
cific choice of the training set and on the noise.

Generally speaking, two different errors can be defined. First, 
the in-sample error Ein denotes the value of the cost function 
for the calculated optimum θopt(TM,η), which is subsequently 
averaged over different choices of the training set TM. For any 
analytical estimations of the in-sample error one also aver-
ages over the random contributions, i.e., the noise realization 
for a fixed training set TM. Basically, Ein represents the error 
from a standard fitting procedure. Second, the out-of-sample or 
generalization error, denoted Eout, evaluates the cost function 
in a two-step process. First, similarly to the estimation of the 
in-sample error an optimum parameter θopt(TM,η) is estimated 
from the training set. In a second step, the cost function is eval-
uated for the test set. Naturally, Eout characterizes the prediction 
error since the model is compared with so far unseen data. In 
general, one expects Ein < Eout and can write

θ η( )( )= 〈 −  〉, ,out opt

2
E y h x TM  

(3)

where the brackets denote the average over the test set. The 
generalization error is the relevant error when discussing the 
degree to which the available and often restricted experimental 
data contain sufficient information to characterize the under-
lying system. To enable a systematic discussion of the different 
error contributions, the generalization error can be decom-
posed into three contributions
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The first term denotes the experimental noise as seen 
from comparison with Equation  (1). The second term  
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compares the true function f(x) with the optimized estimate h,  
obtained in the hypothetical limit of an infinite number of 
data. This term basically expresses how good the chosen sur-
rogate model can capture the true underlying properties. 
The third term reflects the differences based on the pres-
ence of a finite training set. Most importantly, all three terms 
are uncorrelated. Thus, following the notation[241,242] and by 
inserting Equation  (4) into Equation  (3) the generalization 
error Eout can be written as

= + +e sout
2 2E nois bia variance  (5)

The first term can be estimated by performing repeated 
experiments with the same parameters. The bias-term (term 
2) gets smaller if the model becomes more complex, involving 
a larger number of adjustable parameters. However, the more 
complex the model is, the higher is the variance-term (term 3) 
since the fitting is less robust and will more strongly depend on 
the chosen training set. This term reflects overfitting. This gen-
eral bias-variance trade-off is a key motif in the field of machine 
learning.[243]

6.2. Machine Learning-Based Approaches

For a large amount of data which may be easily available, e.g., 
for computer simulations, a mapping of the features on the 
objective functions via neural networks may constitute a very 
rewarding approach. A recent review discusses the advances of 
different ML algorithms for the application of solid state mate-
rial science.[244,227] The focus is set on surrogate models beyond 
linear regression (LR) and Gaussian process regression (GPR) 
like random forest and neural networks for HT approaches. 
The discussion LR also helps to specify the general approach, 
introduced so far.

6.2.1. Linear Regression

LR is based on a specification of Equation (1) via

η= +y Xb  (6)

where X is the matrix where each of the M rows contains the 
p features (e.g., concentrations) per experiment. The vector b 
contains all the p regression coefficients, which one wants to 
estimate via the regression procedure. Its use does not nec-
essarily imply that one is restricted to linear relations. For 
example, in case of the sampling of the chemical space, the 
independent variables may also represent products of con-
centrations of different components or higher orders of the 
concentrations. Minimization of the cost function yields the 
standard solution

ˆ 1( )=
−

b X X X yT T

 (7)

As discussed by Hastie et  al.[242] from Equation  (7) one can 
estimate the generalization error after averaging over a large 
training set (here for the limiting case of no bias)

σ= +
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where σ2 denotes the experimental/computational noise vari-
ance. Higher order terms in the inverse size of the training set are 
neglected. Note that the in-sample error Eininvolves the expres-
sion (1 )2σ − p

M
 which explicitly shows that here Ein <  Eout. Thus, 

the complexity of the model, in the case of LR expressed by the 
value of p, increases the first term whereas in general it decreases 
the bias-term. In practice, for a given size of the training set there 
exists an optimum value of p and thus an optimum degree of 
complexity. For a larger training set the complexity of the model 
can be extended as well to reach a possibly small generalization 
error. This is schematically shown in Figure 15.

The effects of overfitting can be partially mitigated by adding 
a regularizer to the loss function. One specific example is the 
ridge method where the term λ(bTb) is added, but many regu-
larization terms are possible as well. The value λ is denoted a 
hyperparameter. As a consequence, Equation  (7) is modified 
and reads (Ep: unit matrix of dimension p)

ˆ 1
λ( )= +

−
b X X E X yT

p
T

 (9)

A finite value of λ will reduce the size of the regression 
parameters and, when choosing it appropriately, may reduce the 
generalization error. Qualitatively, solution of the regularized 
problem can be interpreted as solving the problem without reg-
ularization but with a smaller model complexity, thus reducing 
overfitting. However, at the same time the regression parame-
ters can no longer be interpreted in a straightforward way.

6.2.2. Gaussian Process Regression

GPR is an alternative method to model data sets. In contrast 
to regression it does not rely on a specific function but rather 
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Figure 15. Sketch of the generalization error as a function of the size 
of the training data set for different model complexities. The optimum 
model complexity depends on the size. Naturally, the experimental error 
forms the ultimate minimum for the generalization error, reached for 
large size and high model complexity.
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implicitly uses all possible functions that fit the data. In GPR 
one starts with a Gaussian process with the mean function m(x) 
as well as the covariance function k(x, x′).[245] If no additional 
knowledge is available one often chooses m(x)  =  0. The kernel 
determines the covariance of the function at locations x and x′, 
i.e., (using m(x)  =  0)

, ·( ) ( )( )′ = 〈 ′ 〉k x x f x f x  (10)

Often, one chooses a Gaussian

, exp
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Two hyperparameters are involved, reflecting the signal 
variance 2σ f and the length scale L along which the functions 
are correlated. It is also possible to consider the knowledge of 
the experimental errors at the training points, used to specify 
the prior f(x). A recent review article discusses the scalability 
of GPs for bigdata, which could be further used for HTS 
approaches.[246] As outlined by Balachandran et  al.[245] there 
exist a few related methods (support vector regression with dif-
ferent facets), which act in a related way.

6.3. Some Concepts along the Way

6.3.1. Ensemble Methods

The goal of ensemble methods is to combine the predictions of 
several base estimators built with a given learning algorithm in 
order to improve generalizability/robustness over a single esti-
mator. Two families of ensemble methods are usually distin-
guished. In averaging methods, the driving principle is to build 
several estimators independently and then to average their pre-
dictions. On average, the combined estimator is usually better 
than any of the single base estimators because its variance is 
reduced. Examples comprise bagging methods[247] and random 
forests.[248] By contrast, in boosting methods, base estimators are 
built sequentially and one tries to reduce the bias of the combined 
estimator. The motivation is to combine several weak models to 
produce a powerful ensemble. These methods have gained trac-
tion in recent times, where stacked ensemble learning methods 
used in combination with DFT surrogates tend to improve the 
accuracy of predicting experimental bandgaps.[249] More detailed 
discussion of these methods with regard to applications in solid 
state material science is provided by Schmidt et al.[227]

Another ensemble method is bootstrapping as a way to 
increase the information content about uncertainties.[250] 
Starting from the experimental data set with n measurements 
one may draw several data sets with replacement, i.e., a data 
set may contain a data point more than once. For each data set 
a model can be fitted. As a key result, one obtains information 
about the possible variations of the model parameters and thus 
about the variance of the model. Although numerically cumber-
some due to the large number of different sets which need to 
be analyzed, bootstrapping is a very versatile method to charac-
terize statistical properties of the resulting observables in detail. 
In case of regression this approach, e.g., allows one to estimate 
the uncertainty error for data from the test.

6.3.2. Bayesian Approach

The Bayesian approach can be used for a generalization of the 
formulation of surrogate models but also play a major role in 
more advanced prediction processes.[251,252] The measurement 
process can be generally formulated via the conditional prob-
ability p(y|x, b). It expresses how the probability distribution of 
the measurement values y displays a Gaussian distribution with 
variance σ2 which is centered around the deterministic values 
y0 =  Xb (using linear regression as a show case). The important 
question, tackled in linear regression, is the estimation of b for 
given values of x and y, as reflected by the conditional probability 
p(b|x, y). The calculate this probability function, one can start by 
analyzing the combined probability p(b, y|x) of experimental 
results and regression parameters for given feature values. This 
probability can be formally written in two different ways

, | | , · | ( | , )· ( | )( ) ( ) ( )= =p b y x p b x y p y x p y b x p b x  (12)

which can be rewritten as

| ,
( | , )· ( | )

( | )
( ) =p b x y

p y b x p b x

p y x  
(13)

The denominator on the r.h.s. only serves for normalization 
processes. On the r.h.s. knowledge about the so-called prior 
p(b|x) is required (typically it does not depend on x). Without 
specific knowledge one may choose p(b|x)  =  const. In gen-
eral, Equation  (11) allows one to estimate the so-called poste-
rior distribution p(b|y, x), which is at the core of the estima-
tion process. Furthermore, it is very powerful and informative. 
1) Choosing a constant prior, maximization of the posteriori 
yields the standard expressions for regression. Thus, it can be 
regarded as generalization of the regression procedure. 2) The 
posteriori not only predicts the most likely regression para-
meter b but also allows one to estimate its uncertainty. 3) When 
using a Gaussian distribution of the prior, the regularization 
via the ridge method can be recovered. This shows that desired 
effect that regularization implies a downscaling the probability 
of large regression parameters due to its lower a priori weights. 
4) The predictive distribution for the experimental value, y�  at 
a given point x�  from the test set, and not just the expectation 
value, can be estimated via

( ) = ∫� � � �| , ( | , ) ( | , )p y x x dbp y x b p b y x
 (14)

In summary, the Bayes approach captures the key aspects of 
the prediction process. Accordingly, the Bayesian framework 
is an essential ingredient in many HT studies.[253–256] Further 
advances in Bayesian factor modeling for scalable GPs are dis-
cussed by Moran.[257]

6.4. Further Directions to Analyze High-Throughput  
Experimental Data

6.4.1. Efficient Global Optimization

A key idea for the identification of newly tested systems is to 
balance the aim of identification of the optimum material, 
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denoted exploitation, and the aim of improving the surrogate 
model via exploration of different regions of the feature space 
(Figure 16).

In general, it is difficult to formulate a strict mathemat-
ical optimization approach. However, there exist heuristic 
approaches which help to find the balance between exploitation 
and exploration. One powerful approach is the efficient global 
optimization.[245,258] It starts from the expected improvement at 
feature space position x, given that that best y-value so far is 
μ*and that, based on the used surrogate model, one can esti-
mate the possible range of y-values for a given x, i.e., p(y|x), 
which is assumed to be Gaussian with variance σ2

∫ ∫µ µ
πσ

σ φ( ) ( )( ) [ ]( ) ( ) ( )= − = − = … = + Φ
µ µ

µ
σ

( )∞

∗

∞

∗
−

∗ ∗

d | d
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2

2
E I y y p y x y y e z z z
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(15)

where the variable z  =  (μ  − μ*)/σ has been introduced and 
straightforward manipulations have been performed. Further-
more, the normal density ϕ(z)and the cumulative distribution 
function Φ(z)have been introduced. This approach implies 
that for small uncertainties one measures the systems with the 
highest expected y-value whereas for large uncertainties the 
value with the highest uncertainty, thus improves knowledge 
about so-far unseen regions of the feature space. In practice, 
one can also add the experimental uncertainty to the measured 
data points which renders this approach even more realistic. 
Applications to the optimization of elastic moduli from simula-
tions of solid materials are outlined by Balachandran et  al.[245] 
However, as explored,[259] it is not always the case to achieve a 
significant improvement with respect to the base case where 
new data points are just found via random search.

6.4.2. Multiobjective Optimization

The situation becomes more complex when different objective 
functions f1(x)⋅⋅⋅fk(x) are of relevance, e.g., the conductivity as 
well as the chemical stability.[38,260] In general, the optimum 
for an individual objective function will be found for different 
values of x. However, for such situations one can devise Pareto 

optimality. A feature vector X is denoted Pareto optimal if any 
modification of X does not increase at least one objective func-
tion without decreasing the value of any other objective func-
tion. In general, there exist many vectors which are Pareto 
optimal. They are denoted Pareto front (Figure 17). Applications 
can be found elsewhere.[260] Compared to conventional strate-
gies, optimization methods can speed up and down streaming 
HTS processes and genetic algorithms can be applied to opti-
mize parameters in multidimensional optimization tasks.[261]

7. Concluding Remarks and Perspective

HTE as a process of scientific exploration comprises effective 
experimental design, laboratory automation and rapid parallel, 
and/or serial experiments toward accelerated discovery and 
development of LIB and LMB battery electrolytes their inter-
faces/interphases with the electrodes and the resulting battery 
chemistries for targeted application(s). Multiple advantages 
for implementing HTE include greater reproducibility and 
efficiency compared with the traditional one-by-one approach. 
HTE is ideal to “accomplish more with less” in a much faster 
fashion. To realize the full benefits of this approach, careful 
investments in strategy, hardware and software are inevitably 
required. Targeted HTS of promising electrolyte composi-
tions/formulations based on corresponding design of experi-
ments hand in hand with critical scientific and mathematical 
thinking yields success. As depicted by the given examples, 
HTE enables faster synthesis of new battery materials and sys-
tematic characterization of electrolytes performance in given 
battery chemistries toward identification of lead candidates 
based on the set of previously established requirements. Well-
designed HTE workflows result in a wealth of experimental 
datasets representing a solid foundation for enhanced tech-
nical decision making. To fully capture acquired datasets in 
a findable, accessible, interoperable, reusable (FAIR) fashion, 
an appropriate informatics infrastructure is required with a 

Adv. Energy Mater. 2021, 2102678

Figure 16. Sketch of the exploitation–exploration balance. Reproduced 
with permission.[245] Copyright 2016, Springer Nature.

Figure 17. Simultaneous optimization of two objective functions. Repro-
duced with permission.[260] Copyright 2018, Elsevier.
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well-designed data repository and query system in order to 
retrieve and reuse the data. However, in many cases software 
platforms within the HTE systems are still neglected or even 
underfunded, thus resulting in lost value and opportunity 
toward reaching the overall goal.

The ability to test multiple hypotheses in parallel through the 
continued evolution and improvement of automation platforms 
produces an exponential increase in data generation. Due to 
their size, acquired datasets are “mission impossible” for scien-
tists alone to process and make decisions. This inevitably calls 
for adapted algorithms and high-performance computing to 
decipher the large data volume.

Here is already a word of caution: if the given data is highly 
biased it will provide wrong results since the analysis is purely 
data driven. If we are looking for the highest conductivity of 
an electrolyte for given solvent components and if the model 
is trained with a large chunk of data outside that conductivity 
regime, only little information can be gained about the region 
of high-conductivity mixtures.

HTVS approaches have been used predominantly to pre-
dict the performance of materials for a variety of applications. 
These approaches provide a perspective pathway to demon-
strate the predictive performance of various ML algorithms for 
battery material application. HTC works as an important tool to 
minimize the developmental cost of new materials for battery 
electrolytes and interfaces. Further these tools not only support 
futuristic material discovery and corresponding experimental 
setups, but also the underlying statistical approaches may 
lead to interpretation of relations between feature and predic-
tion parameters that could be used as an input to theoretical 
models. The elementary building blocks of such analyses, that 
is screening, calibration with experimental data statistical anal-
ysis-based (ML or regression) and feedback loops can be adapted 
to the problem of interest, lending these approaches large flex-
ibility. Clearly, several challenges remain to be addressed for 
future applications to further improve the capabilities of HTVS 
approaches. For instance, the studies discussed above mainly 
focused on bulk quantities such as redox stabilities or solvation 
properties. However, for battery chemistries such as LIBs and 
LMBs, interfaces and interphases are extremely important to 
the overall cell performance. Therefore, incorporating interfa-
cial properties—although challenging—will likely be extremely 
rewarding for future approaches. In this context, it is also 
important to stress that the vast majority of HTVS approaches 
in the field of battery science relied on ab initio techniques. To 
assess, e.g., interfacial properties on larger scales, approaches 
based on classical MD or even ML-derived force fields seem to 
provide another thriving avenue of research.

In the end, research approaches, which successfully couple 
HT acquired datasets with ML, DL, and AI by resolving the 
compatibility and seamless integration challenges will easily 
differentiate themselves in the large R&D landscape and accel-
erate development of advanced electrolytes and their interfaces/
interphases in considered battery chemistries.
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