

From sintering to particle discrimination: New opportunities in Metal-Organic Frameworks scintillators

Vincent Villemot, Nicolas Dufour, Sharvanee Mauree, Benoit Sabot,

Guillaume Bertrand, Matthieu Hamel

▶ To cite this version:

Vincent Villemot, Nicolas Dufour, Sharvanee Mauree, Benoit Sabot, Guillaume Bertrand, et al.. From sintering to particle discrimination: New opportunities in Metal-Organic Frameworks scintillators. Advanced Photonics Research, 2021, pp.2100259. 10.1002/adpr.202100259. cea-03442303

HAL Id: cea-03442303 https://cea.hal.science/cea-03442303

Submitted on 23 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

- From sintering to particle discrimination: New opportunities in Metal-Organic
 Frameworks scintillators
 Frameworks scintillators
- 4 Vincent Villemot, Nicolas Dufour, Sharvanee Mauree, Benoît Sabot, Guillaume H. V. Bertrand,
 5 Matthieu Hamel
- 6 7
- 8 V. Villemot*, N. Dufour, S. Mauree, Dr. B. Sabot, Dr. G. H. V. Bertrand, Dr. M. Hamel*
- 9 Université Paris Saclay, CEA, List, F-91120 Palaiseau, France.
- 10 <u>vincent.villemot@cea.fr</u> and <u>matthieu.hamel@cea.fr</u>
- Orcid numbers: 0000-0002-9478-6651 (VV), 0000-0001-8551-709X (ND), 0000-0003-30438006 (BS), 0000-0003-2061-9241 (GHVB), 0000-0002-3499-3966 (MH).
- Keywords: MOF, scintillator, densification, photoluminescence, radioluminescence, MCNP,
 discrimination
- 16
- 17 Abstract:

18 The characterization of a scintillating Metal Organic Framework (MOF) is not straightforward, 19 mainly due to the small size and low density of the material. In this context, we present herein 20 a generic method to give an easy access to the determination of a key parameter in the 21 scintillation field, namely the light output. To reach this, MOF-205 was first synthesized as 22 millimetric-size single crystals then sintered under pressure and temperature conditions to afford a pellet. The density was increased by 300% while maintaining optical properties on par 23 24 with scintillation application. The as-prepared scintillator was then characterized in terms of photoluminescence (UV-excited emission spectrum, time-correlated single photon counting) 25 and radioluminescence spectroscopy (beta-excited emission spectrum, alpha, beta and gamma 26 27 pulse height spectra, alpha/beta and alpha/gamma discrimination). Results were compared with commercial BC-404 plastic scintillator performances as well as supported by MCNP6.2 28 29 simulation.

30

31 **1. Introduction**

Methods to detect, qualify and quantify ionizing radiations were introduced soon after the discovery of radioactivity by Henri Becquerel in 1896. Currently, numerous applications benefit from this field, ranging from nuclear activities, research in high-energy physics, astronomy,

35 homeland security and medicine. Depending on the radionuclide to be detected, various disintegrations can occur, the most common and probable leading to the emission of alpha or 36 37 beta particles often followed by de-emissions producing X and/or gamma rays. These ionizing radiations can be detected with scintillators, which are materials that are efficient to produce 38 light when exposed to such radiations. This specific class of photoluminescent materials is 39 divided into two main categories, namely inorganic and organic scintillators.^[1] The former 40 subclass appeared as early as 1895 (barium tetracyanoplatinate(II) $BaPt(CN)_4$)^[2]). The later was 41 pioneered when the use of naphthalene was first reported in 1947.^[3] Since these seminal 42 43 publications, many efforts have been performed in the two chemistry worlds for the quest of the 'best' scintillator. However, both have pros and cons and currently no photoluminescent 44 45 material represents the Holy Grail that could fulfil all requirement in terms of radiation detection (among others: detection efficiency against production cost). In this context, scientists 46 47 have considered using advantages from both worlds, hence leading to a various range of scintillators such as sol-gel, hybrid materials or nanoparticles-loaded plastics.^[4] Most 48 49 particularly, composite scintillators stand out as they can bypass a lot of limitations. The core 50 idea is to take a known efficient scintillator, mainly an organic or inorganic single crystal, and 51 embed them into a matrix of suitable polymer. This will give access to what can be described as a polycrystalline scintillator. As single crystals are often hard to produce in large scale or are 52 53 not very stable towards ambient condition (mechanical weakness, humidity and temperature dependency), this technology affords a way to combine large quantity of efficient scintillator 54 and stability-aimed encapsulation. 55

56 Metal organic frameworks (MOFs) are a class of hybrid materials.^[5] Under their crystalline 57 form, they have found great interest to many researchers in a wide variety of fields because of 58 their great versatility.^[6] They are constructed of inorganic nodes linked with each other by 59 organic ligands. Therefore, the modification of one or both bricks allows modifying the final 60 properties, the only limitation being thus the creativity of the scientist. Allendorf *et al.* were the

first to highlight the possibility to use MOFs as potent scintillators. They observed decent light 61 outputs (up to 22% of anthracene, ca. 3,300 ph·MeV⁻¹) by switching traditional organic linkers 62 for a dicarboxylated *trans*-stilbene, an already known and efficient scintillating molecule.^[7] 63 Thanks to the above mentioned high degree of versatility of MOF construction, some 64 researchers, again using ligands based on scintillating molecules, have also assembled 65 frameworks based on traditional inorganic bricks and heavier metals to increase the stopping 66 power of X-rays. For example, Wang et al. have synthesized two different 9,10-di(para-67 carboxyphenyl)anthracene (DPA)-based MOFs,^[8] where one was connected to Zr nodes 68 69 whereas the other to Hf nodes. As the two materials have different X-ray cross sections, it was possible to show a qualitative increased sensitivity for Hf-MOF. 70

71 Recently, new contributions have emerged involving Metal-Organic Frameworks as 72 scintillators, having in mind their use in medical applications such as TOF-PET detectors.^[9] Perego *et al.* have embedded the DPA-based Zr-MOF (previously synthesized by Wang^[8]) 73 74 inside two polymeric matrices: poly(dimethylsiloxane) (PDMS) and poly(methyl methacrylate) (PMMA). As MOFs can be hard to synthesize in large crystals, difficult to scale up and tricky 75 76 to handle, composite materials seem to be the go-to solution to test them as scintillators. 77 However, several limitations are foreseen with the incorporation of a MOF inside a matrix, and 78 in general to the characterization of MOFs as scintillators. Despite efforts by chemists to 79 synthesize MOF nanocrystals, these are subject to strong light scattering already at a low 80 percentage of incorporation in the polymer matrix, which can lead to turbidity observed at loading as low as 0.5 weight%. This is mainly cause by the incorrect matching between the 81 82 matrix and MOFs refractive index which lead to light scattering. This effect coupled to the 83 numerous interfaces between the matrix and the embedded MOF can thus lead to strong 84 deviation from the optimal light collection. These cumulated factors are altering the global 85 optical properties and leading to a moderate scintillating material (6% the light output of anthracene, which is ca. 1,000 ph·MeV⁻¹). Other literature from this field generally describes 86

analytical methods that have to be adapted to small-size and low-density MOF materials, for example with Ion Beam Induced Luminescence^[7] (IBIL) or small X-ray tubes,^{[8].} This experiments require high dose delivery^[8, 9] or tedious characterization in liquid suspension.^[8] Such techniques are useful but developing a universal characterization method for scintillating MOFs the closest to their final use, which means confronted to the presence of radionuclides and without form factor (e.g. single crystals dispersed in a liquid) would be of great value for the scientific community, and that was the core idea at the root of this study.

94 To overcome these issues, this work presents two major contributions leading to scintillating 95 materials made from MOFs. The first concerns the densification by sintering until translucent media are reached.^[10] The second concerns the nearly transparent pellet entirely composed by 96 97 a luminescent MOF, and its use as scintillator. This application becomes particularly natural 98 and of practical use to determine one of the scintillator key parameter: the light output. 99 Experimental results, validated by particle radiation transport simulations performed with the 100 MCNP6.2 Monte Carlo code allowed for the first time to characterize a Metal Organic 101 Framework under alpha, beta and gamma excitation, and to observe a light output that can compete with a commercial plastic scintillator (BC-404, Saint-Gobain Crystals and 102 Detectors[[]).^[11,12]. Furthermore the hybrid nature of our sintered MOF was put in the perspective 103 104 of classical inorganic and organic crystal scintillation. Those fields are known to demonstrate good particle discrimination by PSD. This approach was applied to our materials and 105 106 unprecedented particle discrimination with scintillating MOFs has been reached, confirming precedent hint from Allendorf et al.[15] 107

- 108
- 109
- 110
- 111 112
- 112
- 114
- 115

116 **2. Results and discussion**

118 Figure 1. Structural and photophysical properties of sintered MOF-205. A) Photoluminescence 119 spectra of MOF-205 in DMF (dotted line), activated (dashed line) and pellet (solid line). Inset 120 are pictures of millimetric single crystals under visible light and under 365 nm excitation light. 121 B) Normalized steady-state Photoluminescence (PL), Radioluminescence (RL) and 122 Cathodoluminescence (CL) spectra of sintered MOF-205. Inset are pictures of pellet under 123 visible light and under 365 nm excitation light (excitation source was placed behind the pellet). 124 C) Time-Correlated Single Photon Counting (TCSPC) of sintered MOF-205 after 274 nm 125 excitation (blue) and X-rays excitation (black). Decay values are the result of a biexponential 126 fitting with a $R^2 = 0.99$. D) Radioluminescence spectra of BC-404 and MOF-205 (both are \emptyset 13 mm and thickness 400 µm). Area integration allows to recover the scintillation efficiency 127 128 values.

129

117

130 As demonstrated in many contributions, MOF synthesis is tricky and requires attention as an

131 impurity can have a large impact on the final photophysical properties.^[13] As a case study, we

132 chose a MOF where the secondary building unit is Zn₄O, linked with two different organic

133 linkers: 1,3,5-tris(4-carboxyphenyl)benzene (H₃BTB) and 2,6-naphthalene dicarboxylate (2,6-

134 NDC), which is also named MOF-205 or DUT-6.^[14,15] It was selected as a potent candidate

135 thanks to its photoluminescent properties that comply with standard plastic scintillators: fast

136 decay time and emission wavelength centered around 420 nm. These interesting features are

carry by the naphthalene moiety, which is a well-known molecule in the scintillation field.^[16] 137 138 The second reason is that this framework presents a cubic lattice structure, which is compliant 139 with sintering application, a key in densification. Theoretically, under uniaxial pressure planes 140 of cubic structures should move isotropically and finally result in a material densification, a result that would be less easy to achieve with non-cubic lattices^[10], or anisotropic collapses. 141 142 Here we propose a densification of MOF under two external stimuli: pressure and temperature. 143 This has already been demonstrated by Zacharia et al. only under the action of pressure for MOF-177, a MOF that is similar to MOF-205.^[17] This trend remains marginal as the purpose 144 145 of synthesizing MOF is, classically, to use their porosity properties, which is not compatible with densification. 146

147 Thus, MOF-205 was synthesized to obtain large, pure, millimeter-sized crystals (Inset of Figure 148 **1.A**), was sintered and fully characterized (see Supporting Information, Figure S1). As heat can 149 promote the plastic displacement leading to densification, temperature limits should be defined 150 in order to prevent any parasitic degradation of the (photo)physical properties. Thus, thermal 151 decomposition behavior was investigated in order to characterize its thermal stability. As shown 152 in Figure S2, thermogravimetric analysis (TGA) shows two characteristic weight losses. The 153 first continuous weight loss of 9.9% in the temperature range from 30 °C to 350 °C corresponds 154 to the desorption of guest molecules. The second drastic loss of 66.4% occurring at 450 °C 155 corresponds to the decomposition of the frameworks to ZnO and organic byproduct. From this 156 analysis, we decided to constrain the sintering to an operating window between 30 °C and 157 200 °C in order to avoid any deterioration of the MOF during this process. Thus, activated 158 powder of MOF-205 was pressed under 15 tons in a 13 mm diameter dye at 100 °C for 20 min, 159 corresponding to a pressure of 1.1 GPa. The resulting pellet (Inset of Figure 1.B) presented a 160 thickness of $400 \pm 20 \,\mu\text{m}$ and a mass of 82 mg. Considering the pellet as a perfect cylinder, a 161 density of 1.56 ± 0.08 was calculated, which represents a remarkable increase of 300% compared to its original density (0.38).^[14] Furthermore, the resulting pellet displayed promising 162

photophysical properties. Main spectral characteristics were obtained from either UV
 photluminescence (PL) or ionizing radiation such as radioluminescence (RL) with an ⁹⁰Sr/⁹⁰Y
 beta source or cathodoluminescence (CL) with an X-ray excitation. The results are shown in
 Figure 1.A-D, and discuss below.

167 At the origin of our composite scintillator, MOF-205 in DMF presents an emission of 380 nm 168 with characteristic vibronic structure of linker in its dilute form (Figure 1.A). This is 169 characteristic of a ligand-centered emission. As already mentioned in many publications, 170 frameworks are likely to be dependent on their environment, guest molecules or impurities 171 trapped inside their porosity. Fluorescence is especially sensitive to external stimuli when it arises from the linker only as is the case for MOF-5 for example.^[18] Hence, upon activation the 172 173 material looses its fine structure and shows a Gaussian-type emission centered at higher 174 wavelengths (394 nm). Then after pressing, the pellet shows a slightly different steady-state 175 photoluminescence as the fluorescence maximum undergoes a shift to 409 nm (Figure 1.B). 176 This wavelength increase could be explained by larger π overlaps between the ligands due to 177 the densification of the material and the reduction of the ligands distance to each other. Thus, 178 the energy gap would be reduced and would result in a bathochromic shift at the image of the 179 ligand in its solid form ($\lambda_{em} = 452 \text{ nm}$) (Figure S3). This assumption is confirmed by a 180 comparison of the time-resolved fluorescence spectra. Under the effect of pressure and 181 temperature the material therefore tends to amorphise and favours a spatial rearrangement of 182 the ligands which leads to emission at a higher wavelength. This is confirmed as the pellet 183 shows no X-ray diffraction. This trend is as also demonstrated by Zacharia et al. for a similar MOF.^[17] However, we assume that this structural change remains minor as the average lifetime 184 185 is only slightly changed compared to pure activated MOF-205 single crystal (Figure S4). This 186 results collectively show that MOF-205 as a single crystal or sintered as a pellet have the same 187 photophysical behavior. Sintered pellets are hence a good sudo-sample to judge the scintillation

188 response of a MOF. Pellets are also more practical to use andstarting from this point, we are 189 considering the pellets as scintillating material in their own rights.

190 Radioluminescence (RL) and cathodoluminescence (CL), contrary to PL, allow the 191 investigation of excited states by ionization with radionuclides. As known, ionization process 192 is quite different from PL as ionization can lead to several changes in the electronic and 193 molecular structure of matter, thus expectable discrepancies in emission wavelength or/and in 194 lifetime. Figure 1.B compares normalized PL, RL and CL state spectra. Since RL and CL/PL 195 are recorded in transmission and front face, respectively, it is possible to notice several changes 196 in the shape of the Gaussian-type emission. This is mainly due to reabsorption and diffusion 197 occurring within the pellet. However, since traditional scintillation measurements are usually 198 performed in transmission, the RL experiment is closer to the application measurement method. 199 Figure 1.C represents the Time-Correlated Single Photon Counting (TCSPC) of sintered MOF-200 205 after 274 nm excitation (blue) and X-rays excitation (black). It is interesting to note that 201 under X-rays excitation the pellet shows a fast and slow component in similar magnitudes as 202 under UV excitation. However, the weights of each components are different. Thus, the average 203 lifetime increases from 14.8 to 17.8 ns (Figure S5). This could be explained by a larger 204 population.

205 To highlight the use of sintered pellet of MOF-205, RL measurements were carried out with a 206 well-known reference in the scintillation field, namely BC-404 (Saint-Gobain Crystals and 207 Detectors) with same size and shape: a cylinder with 13 mm diameter and 400 µm thickness. 208 Both materials can thus be compared, provided that the experimental set up is identical as well. 209 This is shown in a radioluminescence experiments presented in Figure 1.D. As the area under 210 the curve corresponds to the amount of emitted photons, it is possible to estimate a scintillation 211 efficiency by a rule of thumb. MOF-205 emits 55% of what the BC-404 is capable. In other 212 words, this means that MOF-205 has a light output of 37% compared to anthracene, as the BC-

404 is 68% according to its datasheet.^[11] Considering that anthracene is \approx 15,000 ph·MeV⁻¹, the light output of the sintered MOF-205 is thus around 5,500 ph·MeV⁻¹. The above results validate the concept of a sintered MOF-205 as an intrinsic scintillator and places it above other MOF-based scintillators as far as light output is concerned.

217 As the pellets are quite thin, the use of alpha-emitting source is obvious in terms of 218 characterization with radionuclides. Alpha emitters have a short penetration distance in matter, 219 and therefore ionize the pellet by depositing all their energy as shown by simulation (Inset of Figure 2.A). For instance, the alpha emitter ²⁴⁴Cm presents two characteristics energy lines at 220 221 5.804 MeV (76.7%) and 5.762 MeV (23.3%).^[19] With this energy, alpha particles from ²⁴⁴Cm are fully stopped within 400 µm of both scintillators, as it was confirmed by MCNP6.2 222 223 simulation. The maximum interaction depth was simulated at 37 µm and 45 µm for MOF-205 224 and BC-404, respectively. We explain this interaction depth difference from the MOF-205 225 higher density. Due to the detector's resolution and small energy difference between the two 226 alpha rays, it is expected that a single Gaussian-like spectra would be observed. In addition, 227 considering large ionization quenching that are classically encountered with alpha emitters in plastic scintillators (12% of total energy), we expect to see the full absorption peak of the ²⁴⁴Cm 228 alphas around 560 keV.^[20] Results in Figure 2.A show that both BC-404 and MOF-205 present 229 a full absorption of ²⁴⁴Cm at channels 18500 and 6500, respectively. However, the light output 230 231 of the latter was quantified and estimated at 57% the one of BC-404, hence the Gaussian mean 232 value should be expected at higher channel value ($\approx 10,000$). One hypothesis is the loss of photons due to scattering in the MOFs, which is not as transparent as BC-404 plastic scintillator. 233 234 This was verified by measuring a pellet twice the width. The blue curve of an 800 µm thin 235 MOF-205 in Figure 2.A shows that the Gaussian peak is very close to the photomultiplier tube 236 noise, thus highlighting the importance of transparency. This is combined with the higher 237 stopping power of MOF-205 as was mentioned before, thus leading to an even more localized 238 interaction (ionization quenching), magnifying the light loss by self-quenching and increasing

the pathway for photon transport within this material. To confirm this hypothesis, beta acquisitions were carried out.

Figure 2. Comparison between scintillation performances of MOF-205 and BC-404.
Histogram of scintillation data for BC-404 (black), MOF-205_400µm (red), MOF-205_800 µm
(blue) and 2,6-NDC/BTB in stoichiometric quantity (pink) in presence of A) ²⁴⁴Cm, B) ⁶⁰Co,
C) ³⁶Cl and D) ⁹⁰Sr-⁹⁰Y. E) ²⁴¹Am pulse coincidence spectra. Inset in each graph represents the simulated pulse height spectrum. F) Channel position of the scintillators' response versus impinging energy.

249 Beta emission spectra are continuous and beta particles present deeper tracks in the matter than alpha particles, resulting in full or partial energy deposition in the detector, depending of the 250 incident energy. Three beta radionuclides were used in this study with their main emission as 251 follows: 60 Co ($E_{\beta}^{mean} = 95 \text{ keV}, E_{\beta}^{max} = 317 \text{ keV}, {}^{36}$ Cl ($E_{\beta}^{mean} = 316 \text{ keV},$ 252 $E_{\beta}^{max} = 709 \text{ keV}$ and ${}^{90}\text{Sr}/{}^{90}\text{Y}$ ($E_{\beta}^{mean} = 196 \text{ keV}$, $E_{\beta}^{max} = 546 \text{ keV}$ for ${}^{90}\text{Sr}$, 253 $E_{\beta}^{mean} = 927 \text{ keV}, E_{\beta}^{max} = 2279 \text{ keV}$ for ⁹⁰Y).^[19] Experimental beta acquisition for both BC-254 404 and MOF-205 are represented in Figure 2.B-D with their respective simulated detection 255 efficiency. MCNP6.2 simulation stops at the particle-matter interaction and energy deposition, 256 257 so do not simulate any luminescence phenomenon nor any light propagation. Therefore, similar simulation spectra may lead to different experimental spectra, with discrepancies originating 258 from light generation and propagation. As shown, going from low-energy emitter ⁶⁰Co to a 259

higher energy emitter ³⁶Cl led to an increasing response in channels, thus in deposited energy. However, comparing ³⁶Cl spectrum with a much higher energy emitter such as ⁹⁰Sr/⁹⁰Y, no important change of the spectrum was noticed. This is not surprising considering the highenergy ⁹⁰Sr beta particles compared to the size of the pellet. Simulated detection efficiency (Inset of **Figure 2.D**) confirms that the generation of less photons comes therefore from a partial energy deposition within the pellet, as both energy deposition spectra are similar in shape and intensity.

267 Moving on to gamma detection possibility, and knowing that the geometry of our scintillators 268 is not ideal for such detection (which requires large detector volume in general), several scintillation spectra were recorded using low-energy gamma emitter such as ²⁴¹Am 269 $(E_{\gamma} = 59.5 \text{ keV} (36.9\%)$, Figure 2.E) and ¹³³Ba $(E_{\gamma} = 81 \text{ keV} (33.3\%)$ and 356 keV (62.0%), 270 Figure S6), and compared to simulation. To avoid the possible ²⁴¹Am alpha interaction, a thin 271 layer of paper was placed between the source and the detector. Simulation shows (Inset of 272 273 Figure 2.E) a noticeable 59.5 keV full absorption peak (PE) that is observable only for MOF-274 205 due to its higher density than BC-404. Experimentally, this was partially confirmed as BC-275 404 and MOF-205 spectra showed scintillation response discrepancies. BC-404 is composed of 276 a Compton edge (CE) whereas MOF-205 is composed of a unique Gaussian-type spectrum. We 277 expect that it is a convolution of CE and PE with the corresponding maximum attributed to the 278 59 keV gamma ray. As the considered energy is low and therefore near to the background noise, 279 we used a coincidence assembly to go deeper in our interpretation. Comparison between forms 280 of both spectra (Figure S7) also shows discrepancy. The fact that there are two patterns for 281 MOF-205 is in agreement with our above explanation. So far, the best explanation is that due 282 to the poor resolution of our measurement chain, it is not possible to correctly separate the 283 Compton edge from the PE. Instead, we have a convolution of both corresponding distributions. This trend was also observed for ¹³³Ba (Figure S8). Contrary to the ²⁴¹Am configuration it is 284 285 possible to distinguish two contributions. We hypothesized a probable 356 keV full absorption

286 peak but it was difficult to investigate and no formal conclusion was drawn even after 10 million pulses recorded. We estimate that the first visible maximum around channels 1900 corresponds 287 to the 81 keV full absorption peak. By comparing the channels between ²⁴¹Am and ¹³³Ba, these 288 contributions seem to correspond to the two emitted gamma at 81 keV and 356 keV confirming 289 290 the above hypothesis. To the best of our knowledge, the observation of PE in MOF was never achieved yet and we believe that this was possible in this study due to increased densification. 291 Considering both simulation and experimental data, it was possible to establish a calibration 292 curve by making a parallel with ²⁴⁴Cm alpha spectrum, ⁶⁰Co and ³⁶Cl beta emitters and gamma 293 emitter such as ²⁴¹Am and ¹³³Ba. To do so, an energy deposition endpoint for beta distributions 294 295 was read as the mean value between the first value that reaches zero and the last. For the specific alpha emitter ²⁴⁴Cm, the point was read as the average mean value of the peak. For ²⁴¹Am and 296 ¹³³Ba gamma emitters, the point was taken into account only for MOF-205 as it presents a full 297 298 absorption peak and it was read at the maximum of the curve endorsed by simulation. Figure 299 2.F shows the channels versus the corresponding simulated maximum energy deposition for 300 BC-404 and sintered MOF-205. For BC-404, it is possible to say with confidence that our model 301 fits well as the trend curve passes through the three points with an R² factor of 0.9998. This 302 furthers confirms our beta endpoint determination method, which has sufficient precision for 303 an energy calibration curve. Regarding MOF-205 the model looks consistent with the exception of ²⁴⁴Cm. This confirms the previous hypothesis that the auto-quenching for alpha ionization is 304 305 more important in the MOF than within the BC-404, which means that the output energy is 306 lower than the would be perceived 560 keV. It is also important to note that the trend is linear, 307 even at low energy. However, it is well known that both organic and inorganic scintillator are not linear with the incident energy, this effect appearing below 100 keV.^[21] This observation 308 309 remains far beyond the scope of this study as the MOF scintillation is still a new field and 310 requires further exploration to draw consistent conclusions.

311 Having explored the scintillation performances of the sintered MOF-205, we tried to challenge the material up a bit with the study of its potential discrimination properties. In particular, 312 313 alpha/beta and alpha/gamma discrimination were evaluated. It is noteworthy that such 314 properties are not straightforward for all-purpose scintillators and have never been studied in MOF scintillation to the best of our knowledge, even if it was hinted by previous results.^[15] 315 316 This discrimination is related to higher ionization densities within the material when the 317 incoming particle becomes heavier. This lead to a denser population of excited state, causing increase proximity of triplet state. .^[22] With two neighboring triplet states, annihilation may 318 319 occur, thus leading to delayed fluorescence paving the way to discrimination between particles of different dE/dx.^[23] MOFs belong to the class of supramolecules that are keen to perform 320 triplet-triplet annihilation,^[24] thus particle discrimination should be effective if properly 321 322 recorded.

323 As mentioned, two case studies were performed with the same BC-404 and MOF-205 pellets. 324 First is the alpha/beta discrimination, second is the alpha/gamma discrimination. Due to the 325 small size of the MOF-205 scintillator compared with our 2.5 cm diameter sources, experiments 326 were performed sequentially, that is to say alpha then beta or gamma spectra. Figure 3, top shows the bidimensional spectra of ²⁴⁴Cm (left), ³⁶Cl (center) and their addition (right). Since 327 328 the tail of alpha-related pulses is slightly longer than beta- or gamma-related pulses, the 329 integration of the delayed charge over the total charge allows sorting the nature of the excitation 330 that led to scintillation. Such pellet configuration is favorable for this discrimination as the 331 scintillator is intrinsically poorly sensitive to gamma rays and alpha emitters see the full 332 absorption of their energy within the material. But still and as expected, alpha/gamma discrimination using a gamma-emitting ¹³³Ba source was also possible (Figure 3, middle). As 333 334 a visual comparison, alpha/beta discrimination of BC-404 was less pronounced (Figure 3, 335 **bottom**), with the two lobes being tilted with a positive slope for an unknown reason. BC-400, a close equivalent to BC-404 was found to display moderate α/β discrimination as well.^[25]. In 336

addition, a noticeable Figure of Merit (FOM) of 0.55 was calculated over the full spectrum for both α/β and α/γ discrimination (Figure S9). Ultimately, fast neutron/gamma discrimination with MOF-205 was also tested but the results were harsh to interpret, mainly due to the small size of the material.

341

Figure 3. Pulse Discrimination spectra for various configurations. Left: ²⁴⁴Cm. Center: ³⁶Cl or
 ¹³³Ba. Right: superposition of the two precedent spectra. Note that the two ²⁴⁴Cm spectra for
 MOF-205 are not identical due to differences in the positioning of the source against the
 scintillator. See supporting information for full details.

348 **3. Conclusion**

349 In conclusion, an important advancement in scintillating MOFs characterization is presented

350 here. Thanks to sintering process, the access to a key parameter such as the light output is now

351 straightforward if one uses the most appropriate radionuclide (which means alpha or beta

352 emitters) as the excitation. Here we recommend the use of 60 Co or 36 Cl as beta source, since

353 their energy is fully absorbed by the material and the stopping range is not too elevated. Thus, 354 a 400 µm thick MOF-205 pellet displayed interesting scintillation properties, an emission 355 wavelength of 409 nm, a mean decay time of 14.3 ns and a scintillation yield 37% the one of 356 anthracene. Both alpha, beta and gamma experimental spectra were supported by MCNP6.2 357 calculations. Our sintered MOF was not fully transparent but the as-prepared pellet was 358 prepared exclusively from MOF-205, as this was our main goal. Pellets potentially prepared 359 with diluted MOF-205 with cubic powder of the same refractive index would lead to materials 360 with better transparency. It is the first time that alpha/beta and alpha/gamma discrimination is 361 qualitatively acknowledged for a MOF. Finally, this study opens a new and exciting research 362 topic. First, we guess that sintered transparent MOFs, achieved for the first time in this work, 363 will be an ongoing and explored field in the next years for optical application mainly. Secondly, 364 this derivative class of metal organic frameworks constitutes a brand new class of scintillator 365 full of opportunities. For instance by using the unique versatility of MOFs and by playing on 366 the composition with heavy metal as nodes and on sintering parameters, we guess that it should 367 be possible to be more sensitive to some ionization and therefore increase the energy response. 368 The goal is to be positioned between organic and inorganic scintillators as a new class of hybrid 369 materials. We hope that this report will be a tremendous input in the field as it brings two new 370 concept relative to the already rich area of MOF: sintering and scintillation discrimination.

371

372 Supporting Information

- 373 Supporting Information is available from the Wiley Online Library or from the author.
- 374

384

375 Acknowledgements

The Authors wish to thank Pr. Christophe Dujardin for X-ray TCSPC measurement. This 376 377 project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 899293. This document reflects only the authors' view 378 and the Commission is not responsible for any use that may be made or the information it 379 380 contains 381 Received: ((will be filled in by the editorial staff)) 382 Revised: ((will be filled in by the editorial staff)) 383 Published online: ((will be filled in by the editorial staff))

[1] a) C. Dujardin, M. Hamel, in *Plastic Scintillators: Chemistry and Applications* (Ed: M. Hamel), Springer-Nature Switzerland AG, 2021, Ch. 1, pp. 3-33.; b) G. H. V. Bertrand, M. Hamel, F. Sguerra, *Chem. – Eur. J.* 2014, *20*, 15660-15685.

[2] W. C. Röntgen, *Science* **1896**, *3*, 227.

[3] I. Broser, H. Kallmann, Z. Naturforsch. 1947, 2a, 642-650.

[4] a) M. Koshimizu, *Funct. Mater. Lett.* 2020, *13*, 2030003; b) M. Koshimizu, in *Plastic Scintillators: Chemistry and Applications* (Ed: M. Hamel), Springer-Nature Switzerland AG, 2021, Ch. 6, pp. 201-222.

[5] a) O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, *Nature* **2003**, *423*, 705-714; b) G. Ferey, *Chem. Soc. Rev.* **2008**, *37*, 191-214.

[6] a) L. E. Kreno, K. Leong, O. K. Farha, M.D Allendorf, R. P. Van Duyne, J. T. Hupp Chemical Reviews 2012, 112(2), 1105-1125; b) W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242-3285

[7] a) C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A. Simmons, M. D. Allendorf, *J. Am. Chem. Soc.* 2007, *129*, 7136-7144; b) F. P. Doty, C. A. Bauer, A. J. Skulan, P. G. Grant, M. D. Allendorf, *Adv. Mater.* 2009, *21*, 95-101; c) P. L. Feng, J. V. Branson, K. Hattar, G. Vizkelethy, M. D. Allendorf, F. P. Doty, *Nucl. Instr. Methods A* 2011, *652*, 295-298; d) S. R. Mathis II, S. T. Golafale, J. Bacsa, A. Steiner, C. W. Ingram, F. P. Doty, E. Auden, K. Hattar, *Dalton Trans.*, 2017, *46*, 491-500; e) S. R. Mathis II, S. T. Golafale, K. M. Solntsev, C. W. Ingram, *Crystals* 2018, *8*, 53.

[8] C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun, L. Xing, W. Lin, *J. Am. Chem. Soc.*,
2014, *136*, 6171-6174.

[9] J. Perego, I. Villa, A. Pedrini, E. C. Padovani, R. Crapanzano, A. Vedda, C. Dujardin, C.
X. Bezuidenhout, S. Bracco, P. E. Sozzani, A. Comotti, L. Gironi, M. Beretta, M. Salomoni, N.
Kratochwil, S. Gundacker, E. Auffray, F. Meinardi, A. Monguzzi, *Nat. Photonics* 2021, *15*, 393-400.

[10] S. Grasso, M. Biesuz, L. Zoli, G. Taveri, A. I. Duff, D. Ke, A. Jiang, M. J. Reece, Adv. Appl. Ceram. 2020, 119, 115-143.

[11] C. J. Werner, J. S. Bull, C. J. Solomon, F. B. Brown, G. W. Mckinney, M. E. Rising, D.
A. Dixon, R. L. Martz, H. G. Hughes, L. J. Cox, A. J. Zukaitis, J. C. Armstrong, R. A. Forster,
L. Casswell, *MCNP Version 6.2 Release Notes*, <u>http://doi.org/10.2172/1419730</u>.

[12] <u>https://www.crystals.saint-gobain.com/products/organic-scintillation-materials</u> Accessed: July, 2021

[13] P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D. Allendorf, J.*Am. Chem. Soc.* 2010,132, 15487-15489.

[14] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q.Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, *Science* 2010, *329*, 424-428

[15] J. J. Perry IV, P. L. Feng, S. T. Meek, K. Leong, F. P. Doty, M. D. Allendorf, *J. Mater. Chem* 2012, 22, 10235-10248.

[16] M. Fust, H. Kallmann, *Phys. Rev.* **1955**, *97*, 583-587.

[17] R. Zacharia, D. Cossement, L. Lafi, R. Chahine, J. Mater. Chem. 2010, 20 (11), 2145–
2151.

[18] a) V. Villemot, M. Hamel, R. B. Pansu, I. Leray, G. H. V. Bertrand, *RSC Adv.* 2020, 10, 18418-18422; b) A. R. Kshirsagar, X. Blase, C. Attaccalite, R. Poloni, *J. Phys. Chem. Lett.* 2021, *12*, 4045-4051.

[19] M.-M. Bé, V. Chisté, C. Dulieu, M. A. Kellett, X. Mougeot, A. Arinc, V. P. Chechev, N.

K. Kuzmenko, T. Kibédi, A. Luca, A. L. Nichols, 2016. Monographie BIPM-5 : Table of Radionucléides. Bureau International des Poids et Mesures. ISBN 978-92-822-2264-5.

- [20] V. I. Tretyak, Astropart. Phys. 2010, 33, 40-53.
- [21] W. W. Moses, G. A. Bizarri, R. T. Williams, S. A. Payne, A. N. Vasil'ev, J. Singh, Q. Li,
- J. Q. Grim, W.-S. Choong, IEEE Trans. Nucl. Sci. 2012, 59, 2038-2044.
- [22] G. H. V. Bertrand, M. Hamel, S. Normand, F. Sguerra, *Nucl. Instr. Methods A* 2015, 776, 114-128.
- [23] D. L. Horrocks, Rev. Sci. Instrum. 1963, 34, 1035-1040.
- [24] R. Medishetty, J. K. Zaręba, D. Mayer, M. Samoć, R. A. Fischer, *Chem. Soc. Rev.* 2017, 46, 4976-5004.
- [25] K. Mitev, C. Dutsov, S. Georgiev, L. Tsankov, T. Boshkova, *IEEE Trans. Nucl. Sci.* 2017, 64, 1592-1598.