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Abstract

When solving numerically an elliptic problem, it is important in most applications that the scheme used
preserves the positivity of the solution. When using finite volume schemes on deformed meshes, the question
has been solved rather recently. Such schemes are usually (at most) second order convergent, and nonlinear.
On the other hand, many high-order schemes have been proposed, that do not ensure positivity of the
solution. In this paper we propose a very high-order monotonic (that is, positivity preserving) numerical
method for elliptic problems in 1D. We prove that this method converges to an arbitrary order (under
reasonable assumptions on the mesh) and is indeed monotonic. We also show how to handle discontinuous
sources or diffusion coefficients, while keeping the order of convergence. We assess the new scheme, on
several test problems, with arbitrary (regular, distorted, random) meshes.
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Introduction

In this paper we are interested in the resolution of the following elliptic problem with mixed boundary conditions{
−div (κ∇ū) + αū = f in Ω,

βū+ γκ∇ū · n = g on ∂Ω,
(1)

where Ω is a bounded open domain of Rd and n ∈ Rd the external unit normal vector, with d the dimension.
The data are such that f ∈ L2(Ω), g ∈ H1/2(∂Ω), α ∈ R+\{0}, and κ ∈ L∞(Ω). The diffusion coefficient κ is
bounded and satisfies the ellipticity condition

∀x ∈ Ω, κ(x) ≥ κ0 > 0. (2)

Besides, β and γ are functions such that

∀x ∈ ∂Ω, β(x) ≥ 0, γ(x) ≥ 0

and they do not vanish at the same point. Under the above conditions, one can prove (see [14]) that system (1)
has a unique solution in H1(Ω). This solution satisfies a positivity principle, i.e. if f ≥ 0 and g ≥ 0, then ū ≥ 0.
For linear problems considered in this work, this property is equivalent to a maximum principle on ū, which
can be stated as follows: if the data f1, f2 and g1, g2 are such that f1 ≤ f2 and g1 ≤ g2, then the associated
solutions to (1), that we denote by ū1 and ū2 respectively, satisfy ū1 ≤ ū2 almost everywhere in Ω.

Because system (1) is intended to model, for instance, concentration diffusion and thermal conduction,
preservation of the positivity principle at the discrete level is highly desirable. An easy way to fix negative
values is to truncate the solution to zero. However, it is not appropriate, since it breaks another very important
property, which is the conservation. The standard finite volume two-point flux approximation (TPFA, see for
example [15]) is positivity preserving (one also says monotonic) but is unfortunately inconsistent on deformed
meshes, in dimension d ≥ 2. For this reason, a great deal of work has been devoted to the design of positivity
preserving schemes on general (namely non-κ-orthogonal) meshes over the past two decades. While elliptic
problems are often solved using a finite element discretization, all the works we know of on monotonic methods
on highly deformed meshes deal with finite volume schemes. Monotonic methods can be designed in the finite-
element framework (see [6, 8, 19, 20, 33] among others), but rely on restrictive conditions on the mesh we
cannot afford. The finite volume framework is well suited to achieve montonicity because it allows for an
easy manipulation of the fluxes. The first works we know of are those of Le Potier [21] and Bertolazzi and
Manzini [2]. In such methods, one uses a manipulation of the fluxes that leads to introduce a dependence on
the discrete solution in the coefficients of the fluxes, making the scheme non-linear, although (1) is linear. Thus,
mononicity is in general not equivalent to the maximum principle. In such methods, one usually introduces
secondary unknowns (for instance vertex-located or edge-located unknowns) in addition to the primal (cell-
located) unknowns. Among others, important contributions to this field are [3, 23, 37], which propose efficient
numerical schemes preserving the positivity of the primary unknowns. In [31], the requirement of positive
secondary unknowns is relaxed. In [4], a non-linear solver based on an iterative resolution of two problems
is described, the primary unknowns of one problem being the secondary unknowns of the other one. The
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works [38, 24] explain how to build monotonic schemes without relying on secondary unknowns. In [22, 25, 30],
maximum principle preserving schemes are proposed. Cancès and Guichard obtained moreover an entropy
diminishing property in [5], introducing the non-linearity directly at the continuous level with a change of
variables. Some concepts and proofs about the existence of solutions for these types of scheme can be found
in [10, 13]. Recent advances in this field are [27, 34, 36]. All the works mentioned above concern 2D or 3D
low-order (that is at most of order 2) numerical methods. Latterly, a third-order accurate monotonic method
has been proposed in the Finite volume element (FVEM) context [35].

We are interested in designing a high-order positive scheme (that is at least of order 3). We start, in the
present paper, with the 1D case. Thus, for now on, the system we study is the 1D version of (1), that is,

− d

dx

(
κ
dū

dx

)
+ αū = f in Ω,

βū+ γκ
dū

dn
= g on ∂Ω,

(3)

and we will suppose that Ω =]0, 1[ without loss of generality.
Although this setting is very specific, we believe it can be seen as a first step to tackle the question in

higher dimensions. Let us be more precise about the 1D setting: in such a case, the TPFA scheme is actually
consistent (and monotonic), contrary to dimensions d ≥ 2. Thus, the relevant question here is to design a
high-order scheme that satisfies the positivity principle. Of course, as one may expect, a naive extension to
higher orders of the TPFA scheme gives non-positive schemes. In particular, none of the existing [1, 7, 11, 12]
arbitrary high order methods for the problem (1) is monotonic. In [10] it is shown how to use Le Potier’s
trick [22] to obtain monotonic 1D schemes of order greater than 2. But as this method uses a finite difference
discretization on Cartesian meshes, it seems hard to extend to general meshes even in 1D. In the present paper
we propose a new numerical method that has the following properties:

• it has a provable arbitrarily high order of accuracy, under reasonable stability assumptions;

• it is monotonic;

• it is conservative, and

• it operates on general 1D meshes.

The organization of the paper is as follows. In Section 1 we design a high-order Finite-Volume method
by integrating the k-th order Taylor expansion of the unknown. The high-order derivatives of this series are
approximated using to a polynomial reconstruction of the solution while the degrees of freedom are the integral
mean values of the solution on the cells. The monotonic behavior of the scheme is enforced using the trick
described in [17], which leads to a non-linear resolution. A symmetric version of the scheme is also proposed,
allowing to obtain a Local Maximum Preserving (LMP) structure (see for instance [13] for a definition) for
the fluxes. In Section 2, we prove the properties of the method: conservation, consistency of the fluxes at
order k, monotonicity (or the LMP structure for the symmetric version) and convergence of the scheme. On
this aspect, our analysis is not completely satisfactory. A first approach consists in applying the fairly general
analysis performed in [28], using the assumption that matrix of the scheme is coercive. This is what we do in
Proposition 2.20 of Subsection 2.4.3, proving convergence at order k in L2-norm. Unfortunately, we do not know
how to prove that the matrix is coercive. Therefore, we propose a different approach, in which we replace such
a coercivity assumption by a form of stability that is more general (see Assumption 2.16 of Subsection 2.4.1,
and Proposition 2.17). We still do not know how to prove such an assumption, and Proposition 2.17 only gives
convergence at order k − 1 in L1-norm. Finally in Section 3 we verify the properties previously stated on 1D
test problems, showing that the method is indeed monotonic and of order k in L2-norm for the solution and
the fluxes.

In all the article, C will denote an unspecified strictly positive constant independent of the mesh size.

1 High-order finite volume scheme

Consider a mesh of Ω whose cells are numbered from 1 to n. The center of cell i is denoted by xi and its two
vertices are xi− 1

2
and xi+ 1

2
. The length of cell i is hi and the length between the centers xi and xi+1 is hi+ 1

2
,
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see Fig. 1. Without loss of generality, we will suppose that

xi < xi+1,∀i ∈ J1, n− 1K, (4)

so that Ω =]x 1
2

= 0, xn+ 1
2

= 1[. We will also assume that the mesh is quasi-uniform that is there exists C such
that

max
1≤i≤n

(hi) < C min
1≤i≤n

(hi). (5)

. . . . ..
i

i+ _
2

1

2

__i
1

2

1_

i
h

h
i+

_1

2

i+1i−1

.. +
1

2

_n

h
1 n

h

1 n

Figure 1: Definition of the mesh: i denotes the cells and i+ 1
2

the nodes.

We define h = max
1≤i≤n

(hi) and u = (ui)1≤i≤n. The notation u > 0 (resp. u ≥ 0) means that

ui > 0, (resp. ui ≥ 0) ∀i ∈ J1, nK.

Let us introduce some notations for the norms we are going to use. We first define the Lp norm, p ∈ [1,+∞[

‖ · ‖Lp : Rn −→ R

u 7−→

(
n∑
i=1

hi|ui|p
)1/p

(6)

and the L∞ norm

‖ · ‖L∞ : Rn −→ R
u 7−→ max

1≤i≤n
|ui|. (7)

Finally the H1 norm

‖ · ‖H1 : Rn −→ R

u 7−→

√√√√n−1∑
i=1

(ui+1 − ui)2

hi+ 1
2

+

n∑
i=1

hi|ui|2.
(8)

Remark 1.1. Note that (6) is a Lp-norm for grid function. Defining u(x) =

n∑
i=1

ui1[i− 1
2 ,i+

1
2 ](x), we have

‖u‖Lp =

(∫
Ω

|u(x)|pdx
)1/p

.
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1.1 Finite volume formulation

In this section, κ(x) is assumed to be a continuous function. The extension to discontinuous κ is explained in
Sec. 2.5. From now on we note κi+ 1

2
= κ(xi+ 1

2
) and ū ∈ Rn the vector defined by

ūi =
1

hi

∫ x
i+1

2

x
i− 1

2

ū(x)dx. (9)

Let ū ∈ Ck+1(Ω). The first step to design a finite volume scheme consists in integrating (3) on cell i

−

[
κi+ 1

2

(
dū

dx

)
i+ 1

2

− κi− 1
2

(
dū

dx

)
i− 1

2

]
+ αhiūi = hifi,

with

fi =
1

hi

∫ x
i+1

2

x
i− 1

2

f(x)dx. (10)

Thus we need to define the fluxes

F̄i+ 1
2

= κi+ 1
2

(
dū

dx

)
i+ 1

2

and F̄i− 1
2

= κi− 1
2

(
dū

dx

)
i− 1

2

.

First of all, the Taylor expansion at order k in the neighborhood of xi+ 1
2

gives

∀x ∈ Ω, ū(x) = ū(xi+ 1
2
) +

k∑
`=1

(x− xi+ 1
2
)`

`!

d`ū

dx`
(xi+ 1

2
) +O

(
(x− xi+ 1

2
)k+1

)
. (11)

In order to have mean values as degrees of freedom we integrate (11) from xi+ 1
2

to xi+ 3
2

and divide by hi+1

1

hi+1

∫ x
i+3

2

x
i+1

2

ū(x)dx = ū(xi+ 1
2
) +

1

hi+1

k∑
`=1

∫ x
i+3

2

x
i+1

2

(x− xi+ 1
2
)`

`!

d`ū

dx`
(xi+ 1

2
)dx+O

(
hk+1
i+1

)
,

that is to say

ūi+1 = ū(xi+ 1
2
) +

1

hi+1

k∑
`=1

[
(x− xi+ 1

2
)`+1

(`+ 1)!

]x
i+3

2

x
i+1

2

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1
i+1

)
,

namely

ūi+1 = ū(xi+ 1
2
) +

k∑
`=1

h`i+1

(`+ 1)!

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1
i+1

)
.

In a similar way, by integrating (11) from xi− 1
2

to xi+ 1
2

we obtain

ūi = ū(xi+ 1
2
) +

k∑
`=1

(−1)`h`i
(`+ 1)!

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1
i

)
.

The difference between these last two equalities gives, using (5)

ūi+1 − ūi = hi+ 1
2

dū

dx
(xi+ 1

2
) +

k∑
`=2

h`i+1 − (−1)`h`i
(`+ 1)!

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1

)
,

from which we obtain, using (5) again

dū

dx
(xi+ 1

2
) =

1

hi+ 1
2

(
ūi+1 − ūi −

k∑
`=2

h`i+1 + (−1)`+1h`i
(`+ 1)!

d`ū

dx`
(xi+ 1

2
)
)

+O
(
hk
)
. (12)
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Let u = (ui)1≤i≤n be the numerical solution. By mimicking the expression of the exact flux (12) the numerical
flux is defined by

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u)

)
, (13)

with

ri+ 1
2
(u) = − 1

hi+ 1
2

k∑
`=2

h`i+1 + (−1)`+1h`i
(`+ 1)!

d`P

dx`
(xi+ 1

2
), (14)

where P is a polynomial interpolation of u as we will see in the next section.

Remark 1.2. For k = 1 (linear approximation of the fluxes), the remainder ri+ 1
2
(u) vanishes, and the classical

second-order accurate TPFA scheme is recovered.

1.2 High-order reconstruction by interpolation

In the calculation of the flux, it is necessary to evaluate the derivatives of u in xi+ 1
2
. In this method, the neigh-

boring cells of xi+ 1
2

are used in order to compute the polynomial reconstruction of the solution by considering
that the average of the polynomial in a cell is equal to the average of the solution in this cell.

For a polynomial of degree k, there are k+ 1 coefficients to calculate, so k+ 1 neighboring cells of xi+ 1
2

will
be necessary. When it is possible, the stencil will be centered in xi+ 1

2
, but the closer xi+ 1

2
is to the boundary,

the more the stencil will be shifted in order to stay in the interior of Ω.

The notation u0, ..., uk denotes the k+1 values of u used for the calculation. With a small abuse of notation,
we denote by Si+ 1

2
= {x0, ..., xk} the stencil of the node xi+ 1

2
. The polynomial will be of this form

P (x) = ak(u0, ..., uk)
(
x− xi+ 1

2

)k
+ ...+ a0(u0, ..., uk).

The coefficients of the polynomial P (x) are approximated by

1

hj

∫ x
j+1

2

x
j− 1

2

P (x)dx = uj , ∀j ∈ J0, kK.

This leads to the following system


1 1

x
0+ 1

2
−x

0− 1
2

∫ x
0+ 1

2
x
0− 1

2

x− xi+ 1
2

. . . 1
x
0+ 1

2
−x

0− 1
2

∫ x
0+ 1

2
x
0− 1

2

(x− xi+ 1
2
)k

...
...

. . .
...

1 1
x
k+1

2
−x

k− 1
2

∫ x
k+1

2
x
k− 1

2

x− xi+ 1
2

. . . 1
x
k+1

2
−x

k− 1
2

∫ x
k+1

2
x
k− 1

2

(x− xi+ 1
2
)k


︸ ︷︷ ︸

=:Mk

 a0

...
ak


︸ ︷︷ ︸

=:a

=

 u0

...
uk

 .

The matrix Mk can be rewritten

Mk =


1

(x
0+ 1

2
−x

i+1
2

)2−(x
0− 1

2
−x

i+1
2

)2

2(x
0+ 1

2
−x

0− 1
2

) . . .
(x

0+ 1
2
−x

i+1
2

)k+1−(x
0− 1

2
−x

i+1
2

)k+1

(k+1)(x
0+ 1

2
−x

0− 1
2

)

...
...

. . .
...

1
(x

k+1
2
−x

i+1
2

)2−(x
k− 1

2
−x

i+1
2

)2

2(x
k+1

2
−x

k− 1
2

) . . .
(x

k+1
2
−x

i+1
2

)k+1−(x
k− 1

2
−x

i+1
2

)k+1

(k+1)(x
k+1

2
−x

k− 1
2

)

 . (15)

Proposition 1.3. Let {xi}1≤i≤n be a mesh satisfying (4). Let k ∈ N∗. The matrix Mk defined by (15) is
invertible.
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Proof. Mka = 0 means that the integral of the polynomial P (x) vanishes over k+1 distinct intervals. Therefore,
this polynomial of degree k has at least k + 1 roots. It is therefore zero, and all the coefficients aj , j ∈ J0, kK,
vanish. Thus, this implies that a = 0, so Mk is invertible.

The exact derivatives can then be approximated by

d`ū

dx`
(xi+ 1

2
) ≈ d`P

dx`
(xi+ 1

2
),∀` ∈ J2, kK.

Remark 1.4. A polynomial P is calculated for each node xi+ 1
2
. So, the polynomial P = Pi+ 1

2
can be different

for each node but in order to simplify the notation, we will denote it by P .

1.3 A method to obtain monotonicity

A method borrowed from [17] and developed in the framework of 2D diffusion on arbitrary meshes can be used
to make the scheme monotonic. This method has been successfully applied in a recent work [35]. The flux (13)
can be rewritten as follows

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

+ r+
i+ 1

2

(u)− r−
i+ 1

2

(u)

)
,

with

r+
i+ 1

2

(u) =
|ri+ 1

2
(u)|+ ri+ 1

2
(u)

2
≥ 0 and r−

i+ 1
2

(u) =
|ri+ 1

2
(u)| − ri+ 1

2
(u)

2
≥ 0.

Let us assume that u > 0, the flux then reads as

Fi+ 1
2
(u) = κi+ 1

2

[(
1

hi+ 1
2

+
r+
i+ 1

2

(u)

ui+1

)
ui+1 −

(
1

hi+ 1
2

+
r−
i+ 1

2

(u)

ui

)
ui

]
, (16)

and the coefficients of ui, ui+1 are positive.

1.4 Symmetric version

Let us introduce a coefficient si+ 1
2

depending on u so that Fi+ 1
2

can be rewritten as

Fi+ 1
2
(u) = κi+ 1

2

[(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
ui+1 −

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
ui

]
. (17)

To make the scheme symmetric the coefficients of ui and ui+1 must be equal

1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1
=

1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui
, (18)

which leads to

si+ 1
2
(u) =

uir
+
i+ 1

2

(u)− ui+1r
−
i+ 1

2

(u)

ui+1 − ui
.

To preserve positivity, it is necessary to impose

1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1
=

1

hi+ 1
2

+
ri+ 1

2
(u)

ui+1 − ui
≥ 0,

that is to say

ui+1−ui

h
i+1

2

+ ri+ 1
2
(u)

ui+1 − ui
≥ 0. (19)
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In other words, ui+1 − ui and Fi+ 1
2
(u), defined by (13), must have the same sign which seems natural because

if
dū

dx
(xi+ 1

2
) ≥ 0 (resp. ≤ 0), then ū is locally non-decreasing (resp. non-increasing) hence ūi+1 ≥ ūi (resp.

ūi+1 ≤ ūi).

In practice, if

(
ui+1−ui

h
i+1

2

+ ri+ 1
2
(u)

)
(ui+1 − ui) > 0 we use the numerical flux (16), otherwise we use the first

order approximation

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

)
. (20)

1.5 Boundary conditions

1.5.1 Dirichlet boundary condition

In this section we only give the expression of the boundary conditions. Details are given in Appendix A. We
consider problem (3) with β = 1, γ = 0. For the non-symmetric version of the scheme, application of the
Dirichlet boundary condition on xn+ 1

2
gives

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u)

g(xn+ 1
2
)

)
g(xn+ 1

2
)−

(
2

hn
+
r−
n+ 1

2

(u)

un

)
un

]
, (21)

and for x 1
2
,

F 1
2
(u) = κ 1

2

[(
2

h1
+
r−1

2

(u)

u1

)
u1 −

(
2

h1
+
r+

1
2

(u)

g(x 1
2
)

)
g(x 1

2
)

]
,

For the symmetric version, we obtain

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u) + sn+ 1
2
(u)

g(xn+ 1
2
)

)
g(xn+ 1

2
)−

(
2

hn
+
r−
n+ 1

2

(u) + sn+ 1
2
(u)

un

)
un

]
, (22)

and for the left boundary, similarly

F 1
2
(u) = κ 1

2

[(
2

h1
+
r+

1
2

(u) + s 1
2
(u)

u1

)
u1 −

(
2

h1
+
r−1

2

(u) + s 1
2
(u)

g(x 1
2
)

)
g(x 1

2
)

]
. (23)

1.5.2 Neumann boundary condition

Consider problem (3) with β = 0, γ = 1. For the left (i = 1) boundary cell, the flux is

F 1
2
(u) = κ 1

2

dū

dx

∣∣∣∣
1
2

= −κ 1
2

dū

dn

∣∣∣∣
1
2

= −g(x 1
2
) (24)

while for the right (i = n) boundary cell, the flux is

Fn+ 1
2
(u) = κn+ 1

2

dū

dx

∣∣∣∣
n+ 1

2

= κn+ 1
2

dū

dn

∣∣∣∣
n+ 1

2

= g(xn+ 1
2
). (25)

1.5.3 Mixed boundary condition

Consider finally problem (3) with β(x) > 0, γ(x) > 0,∀x ∈ ∂Ω. In this case we have for i = 0 or i = n

ū(xi+ 1
2
) =

1

β(xi+ 1
2
)

(
g(xi+ 1

2
)− γ(xi+ 1

2
)κi+ 1

2

dū

dn
(xi+ 1

2
)

)
. (26)

8



Consider first the right boundary of the domain. The adaptation for the left boundary is straightforward. We
use the same method as for Dirichlet boundary condition in section 1.5.1. Replacing un+ 1

2
by its expression

(26) in (18) (see also (68) in the Appendix) yields

Fn+ 1
2
(u) =

κn+ 1
2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

)
g(xn+ 1

2
)− β(xn+ 1

2
)κn+ 1

2

(
2
hn

+
r−
n+1

2

(u)+s
n+1

2
(u)

un

)
un

β(xn+ 1
2
) + γ(xn+ 1

2
)κn+ 1

2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

) . (27)

For the left boundary (i = 0) we obtain similarly

F 1
2
(u) =

β(x 1
2
)κ 1

2

(
2
h1

+
r+1
2

(u)+s 1
2

(u)

u1

)
u1 − κ 1

2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

)
g(x 1

2
)

β(x 1
2
) + γ(x 1

2
)κ 1

2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

) . (28)

Remark 1.5. In the expression of the fluxes (28) and (27), if we take β = 0, γ = 1, we obtain the same fluxes
as (24) and (25). Likewise, if we take β = 1, γ = 0, we obtain the same flux as (23) and (22).

1.6 Summary of the method and matrix form

The scheme reads as

−(Fi+ 1
2
(u)−Fi− 1

2
(u)) + αhiui = hifi, (29)

that is, using (17),

− κi+ 1
2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
ui+1 + κi+ 1

2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
ui

+ κi− 1
2

(
1

hi− 1
2

+
r+
i− 1

2

(u) + si− 1
2
(u)

ui

)
ui − κi− 1

2

(
1

hi− 1
2

+
r−
i− 1

2

(u) + si− 1
2
(u)

ui−1

)
ui−1 + αhiui = hifi.

With a more compact notation, we write this as Au = A(u)u = b(u) = b, with

bi = hifi ∀i 6= {1, n},

Aij =



−κi+ 1
2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
if j = i+ 1,∀i 6= n,

κi+ 1
2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
+ κi− 1

2

(
1

hi− 1
2

+
r+
i− 1

2

(u) + si− 1
2
(u)

ui

)
+ αhi if j = i,∀i 6= 1, n,

−κi− 1
2

(
1

hi− 1
2

+
r−
i− 1

2

(u) + si− 1
2
(u)

ui−1

)
if j = i− 1,∀i 6= 1,

0 else.
(30)

The expression of the boundary terms depends on the type of boundary conditions. First, in the case of a
Dirichlet boundary condition, we have

b1 = h1f1 + κ 1
2

(
2

h1
+
r−1

2

(u) + s 1
2
(u)

g(x 1
2
)

)
g(x 1

2
), (31)
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A1,1 = κ 3
2

(
1

h 3
2

+
r−3

2

(u) + s 3
2
(u)

u1

)
+ κ 1

2

(
2

h1
+
r+

1
2

(u) + s 1
2
(u)

u1

)
+ αh1, (32)

and

bn = hnfn + κn+ 1
2

(
2

hn
+
r+
n+ 1

2

(u) + sn+ 1
2
(u)

g(xn+ 1
2
)

)
g(xn+ 1

2
), (33)

An,n = κn+ 1
2

(
2

hn
+
r−
n+ 1

2

(u) + sn+ 1
2
(u)

un

)
+ κn− 1

2

(
1

hn− 1
2

+
r+
n− 1

2

(u) + sn− 1
2
(u)

un

)
+ αhn. (34)

Next, in the case of a Neumann boundary condition, we have

b1 = h1f1 + g(x 1
2
), (35)

A1,1 = κ 3
2

(
1

h 3
2

+
r−3

2

(u) + s 3
2
(u)

u1

)
+ αh1, (36)

and

bn = hnfn + g(xn+ 1
2
), (37)

An,n = κn− 1
2

(
1

hn− 1
2

+
r+
n− 1

2

(u) + sn− 1
2
(u)

un

)
+ αhn. (38)

Finally, in the case of a mixed boundary condition, we have

b1 = h1f1 +

κ 1
2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

)

β(x 1
2
) + γ(x 1

2
)κ 1

2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

)g(x 1
2
), (39)

A1,1 = κ 3
2

(
1

h 3
2

+
r−3

2

(u) + s 3
2
(u)

u1

)
+

κ 1
2

(
2
h1

+
r+1
2

(u)+s 1
2

(u)

u1

)

1 +
γ(x 1

2
)κ 1

2

β(x 1
2

)

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

) + αh1, (40)

and

bn = hnfn +

κn+ 1
2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

)

β(xn+ 1
2
) + γ(xn+ 1

2
)κn+ 1

2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

)g(xn+ 1
2
), (41)

An,n = κn− 1
2

(
1

hn− 1
2

+
r+
n− 1

2

(u) + sn− 1
2
(u)

un

)
+

κn+ 1
2

(
2
hn

+
r−
n+1

2

(u)+s
n+1

2
(u)

un

)

1 +
γ(x

n+1
2

)κ
n+1

2

β(x
n+1

2
)

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

) + αhn. (42)

The matrix has been written for the symmetric version of the scheme. For the non-symmetric version, the
matrix is the same with si+ 1

2
(u) = si− 1

2
(u) = 0,∀i ∈ J1, nK.
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Remark 1.6. Assuming that f ≥ 0 and g ≥ 0, and that u > 0, the right hand side b has all its components
nonnegative, for any type of boundary conditions.

Remark 1.7. In the case of mixed boundary condition, the right hand side of the nonlinear system depends on
u.

1.7 A fixed point method for handling nonlinearity

The system obtained is of the form Au = b, A being a matrix dependent on the solution. So, we use a fixed
point algorithm (a Picard iteration method) to solve this system as, for instance, in [3, 4, 13, 29]. We start
with an initial guess u0, compute the matrix A(u0) and solve A(u0)u1 = b. Repeating this process, we build
a sequence uν that, if it converges, tends to the solution of the scheme. We perform this algorithm until the
difference between the solution obtained between two iterations is small enough1. To summarize, the following
loop is performed

ν = 0

A(uν)uν+1 = b

While ‖uν+1 − uν‖L2 > ε

A(uν)uν+1 = b

ν = ν + 1.

(43)

Unfortunately, we have no proof of convergence of this algorithm. Nevertheless, the numerical tests we have
performed did not provide any situation in which the above fix-point algorithm does not converge.

Note that, in [13], the authors show that the nonlinear system has a solution. The proof is quite general and
can be adapted to our case, but there is no proof of convergence of the fixed point algorithm. In some favorable
cases, one can prove the convergence of the fixed point algorithm, e.g. if α is large enough (see [3]).

Remark 1.8. We thus have two different schemes: the first one is linear and (expected to be) of high order, as
we will see below. It is defined by the fluxes (13). Its definition does not require the unknown u to be positive,
and its stencil is approximately of size k + 1. The second scheme is nonlinear, and defined by the fluxes (16).
We need u to be positive in order to define it, and its stencil is equal to 2. If it has a (positive) solution, then
it is a solution of the linear scheme. Thus, two situations may occur:

1. the solution of the linear scheme is positive; then, it is also a solution to the nonlinear scheme;

2. the solution of the linear scheme has non-positive entries. Then, the nonlinear scheme cannot have a
solution. Indeed, such a solution would be positive, hence solution to the linear scheme. We nevertheless
expect the above fix-point algorithm to converge to some u that is non-negative, but is not a solution to
the nonlinear scheme (nor to the linear scheme).

However, the solution of the continuous problem (3) satisfies a local maximum principle. Hence, assuming
that the solution ū is positive and that the linear scheme converges in the L∞ norm, its solution becomes a
positive vector for small enough values of h. This situation corresponds to Item 1 above, and the solution of
the nonlinear scheme coincides with the solution of the linear scheme. The case of Item 2 happens only for
larger values of h. In such a case, the monotonicity correction allows to recover positive values of the solution,
while giving up, to some extent, the equation defining the linear scheme, at least for points at which the solution
to the linear scheme is non-positive. What we observe numerically (see Section 3 below) is that the fix-point
algorithm always converges, to a ”solution” u ≥ 0 that is an approximation of order k to the exact solution ū.

1.8 Sketch of the method

We summarize the method as follows.

Initialization

1In the numerical tests, we choose ε = 10−12
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I Initialize u0 > 0.

I Evaluate κ at the nodes: κi+ 1
2
, i ∈ [0 n]; and the mean value of f in each cell: fi, i ∈ [1 n].

Picard iterations (ν):

Do

I Reconstruct polynomials Pi+ 1
2
, i ∈ [0 n], of degree k, in each cells i using the method described in

Section 1.2.

I Compute the reminder ri+ 1
2
(u), i ∈ [0 n] using equation (14).

I Distribute the reminder ri+ 1
2
(u) between cells i and i+ 1 to enforce monotonicity (see Section 1.3).

I Possibly, symmetrize the coefficients at each node, using the method of Section 1.4.

I Build the matrix A(uν) and the right-hand side bν (see Section 1.6).

I Solve A(uν)uν+1 = bν .

While ‖uν+1 − uν‖L2
> ε.

2 Properties

2.1 Conservation

Proposition 2.1. Assume that u > 0 and consider homogeneous Neumann boundary conditions, then the
scheme defined by (29) is conservative. Indeed it satisfies the equality

α

n∑
i=1

hiui =

n∑
i=1

hifi,

that is to say

n∑
i=1

(−Fi+ 1
2
(u) + Fi− 1

2
(u)) = 0.

Proof. The sum is telescopic so only the boundary terms remain. The homogeneous Neumann boundary
condition means that the boundary terms are zero, which leads to

n∑
i=1

(−Fi+ 1
2
(u) + Fi− 1

2
(u)) = 0,

that is to say

α

n∑
i=1

hiui =

n∑
i=1

hifi.

The scheme is conservative.

2.2 Monotonicity and Local Maximum Principle (LMP) structure

Definition 2.2. A matrix A = (aij) is an M-matrix if it satisfies the following inequalities

∀i 6= j, aij ≤ 0,

and

∀i,
n∑
j=1

ai,j ≥ 0. (44)

Moreover, if (44) is strict for all i ∈ J1, nK, we say that A is a strict M-matrix.
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2.2.1 Non-symmetric version: property of the matrix

Proposition 2.3. Assume that u > 0, the matrix A(u) defined by (30) and (31) through (34), or (35) through (38),
or (39) through (42) depending on the boundary conditions, with si+ 1

2
= 0, is such that AT (u) is a strict M-

matrix.

Remark 2.4. In the following proof we have considered Dirichlet boundary conditions, but the result also holds
with other boundary conditions. For mixed boundary conditions, the sum of the first and the last column have
also two positive terms. For Neumann boundary conditions, the sum of the first and the last column are also

positive but the first term vanishes, that is to say
∑
i

Ai,1 = αh1 > 0 and
∑
i

Ai,n = αhn > 0.

Proof of Proposition 2.3. The matrix satisfies

∀i 6= j, Aij(u) ≤ 0 and ∀j,
n∑
i=1

Ai,j(u) > 0.

Indeed, for the first column there are only two elements in the sum∑
i

Ai,1(u) = A1,1(u) +A2,1(u),

which leads to

∑
i

Ai,1(u) = κ 3
2

(
1

h 3
2

+
r−3

2

(u)

u1

)
+ κ 1

2

(
2

h1
+
r+

1
2

(u)

u1

)
− κ 3

2

(
1

h 3
2

+
r−3

2

(u)

u1

)
+ αh1,

that is to say

∑
i

Ai,1 = κ 1
2

(
2

h1
+
r+

1
2

(u)

u1

)
+ αh1 > 0.

And for the last column, ∑
i

Ai,n = An−1,n +An,n,

which leads to

∑
i

Ai,n = −κn− 1
2

(
1

hn− 1
2

+
r+
n− 1

2

(u)

un

)
+ κn+ 1

2

(
2

hn
+
r−
n+ 1

2

(u)

un

)
+ κn− 1

2

(
1

hn− 1
2

+
r+
n− 1

2

(u)

un

)
+ αhn,

that is to say

∑
i

Ai,n = κn+ 1
2

(
2

hn
+
r−
n+ 1

2

(u)

un

)
+ αhn > 0.

Besides, for other columns ∑
i

Ai,j = Aj−1,j +Aj,j +Aj+1,j ,

which leads to

∑
i

Ai,j = −κ(j−1)+ 1
2

(
1

h(j−1)+ 1
2

+
r+
(j−1)+ 1

2

(u)

u(j−1)+1

)
+ κj+ 1

2

(
1

hj+ 1
2

+
r−
j+ 1

2

(u)

uj

)
+ αhj

+ κj− 1
2

(
1

hj− 1
2

+
r+
j− 1

2

(u)

uj

)
− κ(j+1)− 1

2

(
1

h(j+1)− 1
2

+
r−
(j+1)− 1

2

(u)

u(j+1)−1

)
,
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that is to say ∑
i

Ai,j = αhj > 0.

2.2.2 Strict monotonicity of the method

Proposition 2.5. Assume that f ≥ 0, g ≥ 0, and either ‖f‖L2(Ω) > 0, g(0) > 0 or g(1) > 0. Assume moreover
that u0 > 0. Then ∀ν,uν > 0.

To prove this property, we need to introduce the concept of irreducible matrix. We quote here [32, Defini-
tion 1.15].

Definition 2.6. An n× n matrix A is reducible if there exits an n× n permutation matrix P such that

PAPT =

[
A1,1 A1,2

0 A2,2

]
,

where A1,1 is an r × r submatrix and A2,2 is an (n − r) × (n − r) submatrix, where 1 ≤ r < n. If no such
permutation matrix exists, then A is irreducible.

The matrix of the scheme can be proven to be irreducible in view of the following Lemma (see [32, Theo-
rem 1.17]).

Lemma 2.7. To any n×n matrix A we associate the graph of nodes 1, 2, ..., n and of directed edges connecting
i to j if Aij 6= 0. Then A is irreducible if and only if for any pair i 6= j there exists a chain of edges that allows
to go from i to j,

Ai,k1 6= 0→ Ak1,k2 6= 0→ · · · → Akm,j 6= 0.

With these definitions we can make use of the following theorem (see [32], Corollary 3.20).

Theorem 2.8. If A is an irreducible strict M-matrix, then it is invertible and ∀i, j : (A−1)ij > 0.

We are now in position to prove Proposition 2.5.

Proof of Proposition 2.5. We argue by induction on the index ν. We assume that uν > 0. Thus AT (uν) is a
strict M -matrix (see Proposition 2.3). It is easy to check that AT (uν) is also irreducible. Thus all the entries
of A−T (uν) are positive, using Theorem 2.8, and consequently all the entries of A−1(uν) are positive. Using
Remark 1.6, we know that all components of b are non-negative. Moreover, because of the assumption that
either ‖f‖L2(Ω) > 0, g(0) > 0 or g(1) > 0, at least one component of b is non zero. We thus have

∀i ∈ J1, nK : uν+1
i =

n∑
j=1

A−1
ij bj > 0,

since all terms of this sum are non-negative, with one at least that is positive.

Proposition 2.5 shows that the condition uν > 0 remains satisfied during the fixed point procedure, which allows
to always define A(uν). It shows moreover, than as long as hypothesis of the Proposition 2.5 are satisfied, all
the properties requiring u > 0 are verified for every fix point iteration.

2.2.3 Symmetric version: LMP structure

Proposition 2.9. Assume that u > 0, the matrix A defined by (30) and (31) through (34), or (35) through (38),
or (39) through (42), depending on the boundary conditions, is symmetric.

Proof. Let xi+ 1
2
, be an interior vertex of the mesh. If condition (19) is satisfied for this vertex, we use the

definition of the flux (17), then symmetrization condition leads to Ai,i+1 = Ai+1,i. Otherwise the flux is defined
by (20), and once again Ai,i+1 = Ai+1,i.
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Proposition 2.10. Assume that u > 0, let A be defined by (30) and (31) through (34), or (35) through (38),
or (39) through (42), depending on the boundary conditions, then the matrix A is a strict M-matrix.

Proof. As for Proposition 2.3, it can be proved that the matrix A is the transpose of a strict M-matrix. Besides,
A is symmetric, so A is itself a strict M-matrix.

Definition 2.11. This definition is taken from [13]. We say that a scheme for (3) has the local maximum
principle structure (LMP structure for short) if it can be written in the form

∀i ∈ J1, nK :

n∑
j=1

λi,j(u)(ui − uj) + λi, 12 (u)(ui − u 1
2
) + λi,n+ 1

2
(u)(ui − un+ 1

2
) = fihi, (45)

for some functions λi,j : Rn → R+ satisfying,

λ1, 12
> 0, λn,n+ 1

2
> 0, and ∀i ∈ J1, n− 1K : λi,i±1 > 0. (46)

Theorem 2.12. Assume that f ≥ 0, g ≥ 0, and either ‖f‖L2(Ω) > 0, g(0) > 0 or g(1) > 0. Let A and
b be defined by (30) and (31) through (34), or (35) through (38), or (39) through (42), depending on the
boundary conditions. Assume that we have applied the symmetrization procedure defined in Section 1.4. Then
A−1b = u ≥ 0. If moreover α = 0, the scheme has the LMP structure.

Proof. For interior vertices, we consider two cases:

• if condition (19) is satisfied, then the coefficients of the fluxes are defined by (18), and we have

λi+ 1
2

:= κi+ 1
2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
= κi+ 1

2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
,

which is positive because of (19).

• if condition (19) is not satisfied, then the coefficients of the fluxes are defined by (20), and

λi+ 1
2

:=
κi+ 1

2

hi+ 1
2

,

which is positive.

Substituting λi+ 1
2

in equation (17) and using the definition of the scheme (29) with α = 0 yields

λi+ 1
2
(ui − ui+1) + λi− 1

2
(ui − ui−1) = hifi.

In other words, we have (45), with λi,i±1 = λi± 1
2
> 0, and λij = 0 if |i − j| > 1. The proof is similar for

boundary vertices, see equation (68).

In addition to monotonicity, schemes with the LMP structure enjoy local stability properties as the nonoscil-
lating property (Proposition 1.5 of [13]). In the present case, this reads as follows. Let f = 0 and u
be a solution to the symmetric scheme; we have ∀i ∈ J2, n − 1K, min(ui−1, ui+1) ≤ ui ≤ max(ui−1, ui+1),
min(u 1

2
, u2) ≤ u1 ≤ max(u 1

2
, u2), and min(un−1, un+ 1

2
) ≤ un ≤ max(un−1, un+ 1

2
). Another very interesting

property, the preservation of initial bounds (Proposition 1.6 of [13]), holds for the parabolic version of the
scheme.

2.3 Consistency of the fluxes

In order to state the following result (Proposition 2.14), we need to assume that the interpolation matrix Mk

defined by (15) satisfies some regularity assumption in the limit h→ 0. Loosely speaking, we expect column j
of Mk to be of order hj . More precisely, we assume that

Mk = Nk


1 0 . . . 0

0 h
. . .

...
...

. . .
. . . 0

0 . . . 0 hk

 , (47)
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where the matrix Nk converges as h→ 0, the limit N0
k being invertible:

lim
h→0

Nk = N0
k , det(N0

k ) 6= 0. (48)

Remark 2.13. Assumption (47)-(48) may be seen as a regularity assumption of the mesh. It is clearly satisfied
by a regular mesh, for which an explicit computation gives (47), where the matrix Nk does not depend on h.

We have the following result:

Proposition 2.14. Let k ∈ N∗ and {xi}1≤i≤n be a mesh satisfying (4), (5), (47) and (48) Let ū ∈ Ck+1(Ω).
The fluxes defined by (13) are consistent of order k. More precisely, the vector ū being defined by (9), we have∣∣∣∣Fi+ 1

2
(ū)− κi+ 1

2

dū

dx
(xi+ 1

2
)

∣∣∣∣ ≤ C1

∥∥∥ū(k+1)
∥∥∥
L∞

hk,

where the constant C1 depends only on k, on the constant C in (5) and on the norm of the matrix
(
N0
k

)−1
,

where N0
k appears in (47)-(48). In particular it does not depend on ū nor on i.

Proof. Since ū ∈ Ck+1(Ω), a Taylor expansion gives

ū(x) =

k∑
`=0

d`ū

dx`
(xi+ 1

2
)
(x− xi+ 1

2
)
`

`!
+ ρ(x) = Q(x) + ρ(x),

where Q is the k-th order polynomial

Q(x) =

k∑
`=0

d`ū

dx`
(xi+ 1

2
)
(x− xi+ 1

2
)
`

`!
,

such that

d`Q

dx`
(xi+ 1

2
) =

d`ū

dx`
(xi+ 1

2
), ∀` ∈ J1, kK. (49)

The remainder ρ satisfies the estimate

|ρ(x)| ≤ 1

(k + 1)!

∥∥∥ū(k+1)
∥∥∥
L∞

∣∣∣x− xi+ 1
2

∣∣∣k+1

. (50)

Applying our expression of the flux to ū gives

Fi+ 1
2
(ū) = Fi+ 1

2
(Q) + Fi+ 1

2
(ρ) = κi+ 1

2
Q′(xi+ 1

2
) + Fi+ 1

2
(ρ) = κi+ 1

2

dū

dx
(xi+ 1

2
) + Fi+ 1

2
(ρ),

where Q (resp. ρ) is the vector defined as ū with the function Q (resp. ρ) instead of ū (see (9)). Here, we
have used first that the flux is linear, second that it is exact for polynomials of degree k (see Appendix B), and
finally (49) with ` = 1.

Proving the result thus amounts to show that
∣∣∣Fi+ 1

2
(ρ)
∣∣∣ ≤ Chk. To this end, we write it as follows

Fi+ 1
2
(ρ) =

(
0 1 0 . . . 0

)
M−1
k ρ,

and use (47)-(48)
Fi+ 1

2
(ρ) =

(
0 h−1 0 . . . 0

)
N−1
k ρ.

It is clear from estimate (50) that for each index `, we have

|ρ`| ≤ Ck
∥∥∥ū(k+1)

∥∥∥
L∞

hk+1,

where Ck depends only on k and on the constant appearing in (5). Hence,∣∣∣Fi+ 1
2
(ρ)
∣∣∣ ≤ Ck ∥∥N−1

k

∥∥∥∥∥ū(k+1)
∥∥∥
L∞

hk.

Finally, property (48) allows to prove that
∥∥N−1

k

∥∥ is bounded independently of h, at least for h small enough.
This concludes the proof.

Remark 2.15. This proposition can be extended to the boundary fluxes. Indeed, for a Neumann boundary
condition, the consistency is obvious and for Dirichlet or mixed boundary conditions, the proof is similar.
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2.4 Convergence

Consider again problem (3) with α > 0, β = 0, γ = 1,
− d

dx

(
κ
dū

dx

)
+ αū = f in Ω,

κ
dū

dn
= 0 on ∂Ω.

(51)

We will start by proving that the scheme is convergent at order k − 1 in L1 norm. Next, this will allow us
to prove the convergence of the fluxes at order k − 1 in L2 norm.

2.4.1 Convergence at the order k − 1

The scheme reads as

−Fi+ 1
2
(u) + Fi− 1

2
(u) + αhiui = hifi, ∀i ∈ J1, nK, (52)

with ∀i ∈ J1, n− 1K,

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u)

)
= κi+ 1

2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u)

ui+1

)
ui+1−κi+ 1

2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u)

ui

)
ui, (53)

and

F 1
2
(u) = Fn+ 1

2
(u) = 0. (54)

In order to state our convergence result, we need the following stability property:

Assumption 2.16. If b ≥ 0 and Au = b, with bi = hifi,∀i, then ∀i, u−i ≤ C(‖f‖L2(Ω) + g(0) + g(1)), where

u−i is the negative part of ui and C > 0 a constant independent of h, b and u.

This assumption is a stability hypothesis similar to the one presented in Proposition 3.3 of [13].

Note that, if the scheme is convergent of order 1
2 , then Assumption 2.16 is satisfied. Let us be more precise:

we assume that, denoting by ū the exact solution and u the numerical one, we have

‖u− ū‖L2 ≤ C
√
h(‖f‖L2(Ω) + g(0) + g(1)),

where the vector ū is defined by (9), the vector f is defined by (10), and C is a universal constant. Assuming
that f ≥ 0, we have ū ≥ 0, and this estimate implies∑

ui<0

hi (ui − ūi)2
+
∑
ui≥0

hi (ui − ūi)2 ≤ Ch(‖f‖L2(Ω) + g(0) + g(1))2.

The second term in the right-hand side is non-negative, and, when ui < 0, (ui − ui)2
=
(
−u−i − ui

)2 ≥ (u−i )2 .
Hence,

n∑
i=1

hi
(
u−i
)2 ≤ C2h(‖f‖L2(Ω) + g(0) + g(1))2.

Using (5), we infer that u−i ≤ C(‖f‖L2(Ω) + g(0) + g(1)), that is, Assumption 2.16.

We now prove the following convergence result.

Proposition 2.17 (Convergence at order k − 1 in L1 norm). Let k ∈ N∗, ū ∈ Ck+1(Ω) be the exact solution
of (51) and assume that ū ≥ 0. Let e = (ūi − ui)1≤i≤n, where u is the solution of the scheme (52)-(53)-(54).
Assume that Assumption 2.16 is satisfied. Then, we have

‖e‖L1 ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk−1,

with ‖ · ‖L1 defined by (6), and C does not depend on h nor on ū, u.
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Proof. On the one hand the numerical flux defined by (53) satisfies (52) and on the other hand, the exact flux

F̄i+ 1
2

= κi+ 1
2

dū

dx
(xi+ 1

2
) satisfies

−F̄i+ 1
2

+ F̄i− 1
2

+ αhiūi = hifi, ∀i ∈ J1, nK.

Subtracting (52) from this equation gives

−(F̄i+ 1
2
−Fi+ 1

2
(u)) + (F̄i− 1

2
−Fi− 1

2
(u)) + αhi(ūi − ui) = 0, ∀i ∈ J1, nK.

Besides, the consistency of the fluxes gives that there exists a constant C > 0 such as

Fi+ 1
2
(ū) = F̄i+ 1

2
+Ri+ 1

2
, ∀i ∈ J1, n, K with |Ri+ 1

2
| ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk, where k is the order. (55)

These last two equations imply

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhiei = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK.

By choosing ∆ = 1
α max

1≤i≤n

(
Ri+ 1

2
−Ri− 1

2

hi

)
∈ R+, that is to say 0 ≤ ∆ ≤ C

∥∥ū(k+1)
∥∥
L∞

hk−1 such that

−Ri+ 1
2

+Ri− 1
2

+ αhi∆ ≥ 0, ∀i ∈ J1, nK,

and adding it to ei leads to

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhi(ei + ∆) = −Ri+ 1

2
+Ri− 1

2
+ αhi∆ ≥ 0, ∀i ∈ J1, nK.

The flux is not modified since the remainder only involves derivatives (∆ being a constant, it no longer appears
in the derivatives)

Fi+ 1
2
(e + ∆) = κi+ 1

2

(
ei+1 + ∆− ei −∆

hi+ 1
2

+ ri+ 1
2
(e)

)
= Fi+ 1

2
(e), ∀i ∈ J1, nK.

The corresponding matrix system writes

A(e + ∆) = R + αh∆,

with

(e + ∆)i = ei + ∆, (R + αh∆)i = −Ri+ 1
2

+Ri− 1
2

+ αhi∆ ≥ 0, ∀i ∈ J1, nK.

Using Assumption 2.16, we can deduce that

(ei + ∆)− ≤
∥∥∥∥ 1

hi

(
−Ri+ 1

2
+Ri− 1

2

)
+ α∆

∥∥∥∥
L2

≤
∥∥∥∥ 1

hi

(
−Ri+ 1

2
+Ri− 1

2

)∥∥∥∥
L2

+ α|∆| ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk−1. (56)

Summing these inequalities over i, we obtain

n∑
i=1

hi (ei + ∆)
− ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk−1. (57)

Next, we sum the equalities −Fi+ 1
2
(e) + Fi− 1

2
(e) + αhi(ei + ∆) = −Ri+ 1

2
+Ri− 1

2
+ αhi∆, finding∣∣∣∣∣α

n∑
i=1

hi (ei + ∆)

∣∣∣∣∣ ≤ C ∥∥∥ū(k+1)
∥∥∥
L∞

hk−1 + α∆ ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk−1,

where we have used (55) and the above bound on ∆. Since ei + ∆ = (ei + ∆)
+ − (ei + ∆)

−
, this implies

α

n∑
i=1

hi (ei + ∆)
+ ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk−1 + α

n∑
i=1

hi (ei + ∆)
−
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Using (57), we conclude that
n∑
i=1

hi (ei + ∆)
+ ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk−1. (58)

Collecting (57) and (58), we conclude the proof.

2.4.2 Convergence of the fluxes

Let us denote by HM = {(ui)1≤i≤n} the set of cell values, HE = {(fi+ 1
2
)1≤i≤n−1} the set of node values and

consider homogeneous Neumann boundary conditions, that is, for all f ∈ HE

f 1
2

= fn+ 1
2

= 0. (59)

Let us define the scalar products 
(u|v)HM

=

n∑
i=1

hiuivi,

(f |g)HE
=

n−1∑
i=1

hi+ 1
2
fi+ 1

2
gi+ 1

2
,

(60)

and the operators
D : HM −→ HE defined by (Du)i+ 1

2
=
ui+1 − ui
hi+ 1

2

, 1 ≤ i ≤ n− 1,

D∗ : HE −→ HM defined by (D∗f)i = −
fi+ 1

2
− fi− 1

2

hi
, 1 ≤ i ≤ n.

(61)

Proposition 2.18. If condition (59) is satisfied the operators D and D∗ are adjoints of each other, that is to
say that (Du|f)HE

= (u|D∗f)HM
, ∀u ∈ HM , ∀f ∈ HE.

Proof. The definition of the scalar product gives

(Du|f)HE
=

n−1∑
i=1

hi+ 1
2
(Du)i+ 1

2
fi+ 1

2
,

which means

(Du|f)HE
=

n−1∑
i=1

(ui+1 − ui)fi+ 1
2
.

The two sums can be separated

(Du|f)HE
=

n−1∑
i=1

ui+1fi+ 1
2
−
n−1∑
i=1

uifi+ 1
2
.

We shift the index of the first sum, which gives

(Du|f)HE
=

n∑
i=2

uifi− 1
2
−
n−1∑
i=1

uifi+ 1
2
.

Then, the sums can be recombined as follows

(Du|f)HE
= unfn− 1

2
− u1f 3

2
−
n−1∑
i=2

ui(fi+ 1
2
− fi− 1

2
).

Condition (59) allows us to insert the boundary terms which are zero
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(Du|f)HE
= un(fn− 1

2
− fn+ 1

2
)− u1(f 3

2
− f 1

2
)−

n−1∑
i=2

ui(fi+ 1
2
− fi− 1

2
) = −

n∑
i=1

ui(fi+ 1
2
− fi− 1

2
) = (u, D∗f)HM

.

Thus, the operators D∗ and D are adjoints of each other.

Proposition 2.19 (Convergence of the fluxes at order k − 1). Let k ∈ N∗, ū ∈ Ck(Ω) be the exact solution of
(51) and assume that ū ≥ 0. Let us denote r(e) ∈ HE the vector whose components are ri+ 1

2
(e),∀i ∈ J0, nK

the remainders defined by (14) and the vector e ∈ HM defined by ei = ūi − ui,∀i ∈ J1, nK. Assume that
ui > 0,∀i ∈ J1, nK. Then we have

‖F(u)− F̄‖HE
≤ Chk−1,

where F(u) ∈ HE is defined by (F(u))i+ 1
2

= Fi+ 1
2
(u),∀i ∈ J0, nK, with Fi+ 1

2
given by (53) and (54), and F̄ is

defined by (F̄)i+ 1
2

= F̄i+ 1
2
, with F̄i+ 1

2
= κi+ 1

2

dū

dx
(xi+ 1

2
),∀i ∈ J0, nK.

Proof. The scheme

−Fi+ 1
2
(u) + Fi− 1

2
(u) + αhiui = hifi, ∀i ∈ J1, nK,

can be written as

D∗κ(Du + r(u)) + αu = f .

Besides, the exact flux F̄i+ 1
2

= κi+ 1
2

dū

dx
(xi+ 1

2
),∀i ∈ J1, nK also satisfies

−F̄i+ 1
2

+ F̄i− 1
2

+ αhiūi = hifi, ∀i ∈ J1, nK.

Since the fluxes are consistent there exists C such that

Fi+ 1
2
(ū) = F̄i+ 1

2
+Ri+ 1

2
, with |Ri+ 1

2
| ≤ Chk, ∀i ∈ J1, nK. (62)

Thus, we have

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhiei = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK,

that can be written

D∗κ(De + r(e)) + αe = D∗R.

Given v ∈ HM , we take the scalar product of this equation with v

(D∗κ(De + r(e))|v)HM
+ (αe|v)HM

= (D∗R|v)HM
,

that is to say

(D∗(κ(De + r(e))−R)|v)HM
+ (αe|v)HM

= 0.

Besides κ(De + r(e))−R can be rewritten as

κi+ 1
2
(De + r(e))i+ 1

2
−Ri+ 1

2
= −Fi+ 1

2
(u) + Fi+ 1

2
(ū)−Ri+ 1

2
= −Fi+ 1

2
(u) + F̄i+ 1

2
, ∀i ∈ J1, nK,

and Fi+ 1
2
(u) and F̄i+ 1

2
satisfy (59), so κ(De + r(e))−R satisfies (59) too.

Using Proposition 2.18 provides

(κ(De + r(e))|Dv)HE
+ (αe|v)HM

= (R|Dv)HE
.
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We define v ∈ HM by induction as follow
v1 = 0,

vi+1 = hi+ 1
2
κi+ 1

2

(
ei+1 − ei
hi+ 1

2

+ ri+ 1
2

)
+ vi ∀i ∈ J1, n− 1K,

whence Dv = κ(De + r(e)). We thus have

‖κ(De + r(e))‖2HE
+ (αe|v)HM

= (R|κ(De + r(e)))HE
.

The Cauchy-Schwarz inequality leads to

‖κ(De + r(e))‖2HE
+ (αe|v)HM

≤ ‖R‖HE
‖κ(De + r(e))‖HE

. (63)

Besides, we have

(αe|v)HM
= α

n∑
i=1

hieivi.

Replacing vi by its expression leads to

(αe|v)HM
= α

n∑
i=1

hiei

i−1∑
j=1

hj+ 1
2
κj+ 1

2

(
ej+1 − ej
hj+ 1

2

+ rj+ 1
2

)
.

The Cauchy-Schwarz inequality gives

|(αe|v)HM
| ≤ α

n∑
i=1

hi|ei|

i−1∑
j=1

hj+ 1
2

(
κj+ 1

2

(
ej+1 − ej
hj+ 1

2

+ rj+ 1
2

))2
1/2i−1∑

j=1

hj+ 1
2

1/2

,

hence

|(αe|v)HM
| ≤ α

(
n∑
i=1

hi|ei|

)
‖κ(De + r(e))‖HE

.

Inserting this estimate into (63), we have

‖κ(De + r(e))‖2HE
≤ α

(
n∑
i=1

hi|ei|

)
‖κ(De + r(e))‖HE

+ ‖R‖HE
‖κ(De + r(e))‖HE

,

hence

‖κ(De + r(e))‖HE
≤ ‖R‖HE

+ α

n∑
i=1

hi|ei|.

Equation (62) gives

‖κ(De + r(e))‖HE
≤ Chk + α

n∑
i=1

hi|ei|.

Proposition 2.17 gives
‖κ(De + r(e))‖HE

≤ Chk + αChk−1. (64)

Recalling that
(κ(De + r(e)))i+ 1

2
= Fi+ 1

2
(e) = Fi+ 1

2
(ū)−Fi+ 1

2
(u),

we infer

‖F(u)− F̄‖HE
= ‖F(u)−F(ū) + R‖HE

≤ ‖F(u)−F(ū)‖HE
+ ‖R‖HE

≤ Chk−1.

So the fluxes are convergent at order k − 1.
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2.4.3 Convergence at order k

Proposition 2.20 (Convergence at order k). Let k ∈ N∗, ū ∈ Ck+1(Ω) be the exact solution of (51) and assume
that ū ≥ 0. Let e = (ūi − ui)1≤i≤n, where u is the solution of the scheme (53)-(54). Assume that the matrix
A defining this scheme is uniformly coercive, that is, there exists a constant Cc > 0 independent of h such that

∀x ∈ Rn : xTAx ≥ Cc‖Dx‖2L2 ,

where the operator D is defined by (61). Then, we have

‖e‖L2 ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk,

where the constant C does not depend on ū, u, h.

Proof. As in the proof of Proposition 2.17, we use the consistency of the flux to obtain that

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhiei = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK.

with |Ri+ 1
2
| ≤ C

∥∥ū(k+1)
∥∥
L∞

hk. The corresponding matrix system writes

Ae = R,

with
(e)i = ei, (R)i = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK.

Taking line i of the system Ae = R, we multiply it by ei and sum over i:

eTAe =

n∑
i=1

(
−Ri+ 1

2
+Ri− 1

2

)
ei

Using a discrete integration by parts, then the Cauchy-Schwarz inequality, we have:

eTAe =

n−1∑
i=0

Ri+ 1
2
hi+ 1

2
(De)i+ 1

2
≤

(
n−1∑
i=0

hi+ 1
2
R2
i+ 1

2

)1/2(n−1∑
i=0

hi+ 1
2
(De)2

i+ 1
2

)1/2

≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk‖De‖L2 .

The coercivity condition then gives

Cc‖De‖L2 ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk.

A discrete mean Poincaré inequality, proved in Lemma 10.2 of [16], writes

n∑
i=1

hie
2
i ≤ C

n−1∑
i=0

hi+ 1
2
(De)2

i+ 1
2

+
1

|Ω|

(
n∑
i=1

hiei

)2

.

Owing to conservativity, we have

n∑
i=1

hiei = 0, hence

‖e‖2L2 =

n∑
i=1

hiei ≤ C
n−1∑
i=0

hi+ 1
2
(De)2

i+ 1
2

= C‖De‖2L2 .

Thus, we have

‖e‖L2 ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk,

which concludes the proof.
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2.4.4 Asymptotic behavior of the symmetry condition

Lemma 2.21. Let {xi}1≤i≤n be a mesh satisfying (4) and (5). Let k ∈ N∗, k > 2, ū ∈ Ck(Ω) be the exact
solution of (51) and assume that ū ≥ 0. Let u ∈ Rn be the solution of (52), (53) and (54) and assume that
ui > 0,∀i ∈ J1, nK. Assume moreover that dū

dx 6= 0 on Ω, then the condition (19) is asymptotically fulfilled as
h→ 0.

Proof. Proposition 2.19 shows that

ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u) =

dū

dx
(xi+ 1

2
) +O(hk−1),

and Proposition 2.17 that

ui+1 − ui = ūi+1 − ūi +O(hk−2) = hi+ 1
2

(
dū

dx
(xi+ 1

2
) +O(h)

)
.

Then since dū
dx (xi+ 1

2
) 6= 0, for h small enough these two quantities have the same sign.

2.5 The case of discontinuous diffusion coefficient κ

In the case where κ is discontinuous at the node xi+ 1
2
, we compute two fluxes FL

i+ 1
2

(u) and FR
i+ 1

2

(u). The first

one is computed using a Taylor expansion in [xi, xi+ 1
2
] while the second one is computed via a Taylor expansion

on [xi+ 1
2
, xi+1]. Thus, we use two polynomial reconstructions, one on the left and the other on the right of

xi+ 1
2
. For each node, we shift the stencil so that it does not cross the node where the discontinuity is located.

Let us denote

FRi+ 1
2
(u) = κRi+ 1

2

(
ui+1 − ui+ 1

2

hi+1

2

+ rRi+ 1
2
(u)

)
and FLi+ 1

2
(u) = κLi+ 1

2

(
ui+ 1

2
− ui

hi

2

+ rLi+ 1
2
(u)

)
,

with

κRi+ 1
2

= κ(xi+ 1
2

+ ε) and κLi+ 1
2

= κ(xi+ 1
2
− ε),

where rR
i+ 1

2

(u) (resp. rL
i+ 1

2

(u)) denotes the remainder associated with the polynomial reconstruction of the

solution using the cells located at the right (resp. left) of the node xi+ 1
2
.

Thus, the continuous problem imposing the equality of the fluxes (see also Figure 10 for an example), we also
impose it at the discrete level, that is to say FR

i+ 1
2

(u) = FL
i+ 1

2

(u) which leads to

κRi+ 1
2

(
ui+1 − ui+ 1

2

hi+1

2

+ rRi+ 1
2
(u)

)
= κLi+ 1

2

(
ui+ 1

2
− ui

hi

2

+ rLi+ 1
2
(u)

)
,

which yields

ui+ 1
2

=
hihi+1

2(hi+1κLi+ 1
2

+ hiκRi+ 1
2

)

[
2

(
κR
i+ 1

2

ui+1

hi+1
+
κL
i+ 1

2

ui

hi

)
+ κRi+ 1

2
rRi+ 1

2
(u)− κLi+ 1

2
rLi+ 1

2
(u)

]
.

Replacing ui+ 1
2

by its expression in FL
i+ 1

2

or FR
i+ 1

2

gives

Fi+ 1
2
(u) = FLi+ 1

2
(u) = FRi+ 1

2
(u) =

2κL
i+ 1

2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

[
(ui+1 − ui) +

1

2

(
hi+1r

R
i+ 1

2
(u) + hir

L
i+ 1

2
(u)
)]
,

that is

Fi+ 1
2
(u) = α̃i+ 1

2
(ui+1 − ui) + r̃i+ 1

2
(u) (65)
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with

α̃i+ 1
2

=
2κL

i+ 1
2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

, r̃i+ 1
2
(u) =

hi+1κ
L
i+ 1

2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

rRi+ 1
2
(u) +

hiκ
L
i+ 1

2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

rLi+ 1
2
(u).

The coefficient α̃i+ 1
2

being positive, we can achieve monotonicity as in Section 1.3 and the symmetrization
can be done again for this scheme. Besides, the previous analysis applies to this case. In the case where the
condition of symmetrization is not satisfied, the flux (65) is replaced by the first-order approximation

Fi+ 1
2
(u) = α̃i+ 1

2
(ui+1 − ui).

Remark 2.22. For k = 1, the remainders rL
i+ 1

2

(u) and rR
i+ 1

2

(u) vanish, and we obtain the classical harmonic

mean for the equivalent diffusion coefficient.

Remark 2.23. In the case of a discontinuous right hand side f , we use the same type of strategy. In such a
case, the second derivative of the solution ū is discontinuous. Thus, the reconstruction is made on each side of
the discontinuity.

3 Numerical experiments

Before giving numerical results, we explain how we deal with possibly vanishing Dirichlet boundary conditions.
The definition of the nonlinear scheme requires u > 0 (which is enforced by construction, see Prop.2.5), and
g(x 1

2
) > 0 and g(x 1

2
) > 0 for Dirichlet boundary conditions (see Sec. 1.5.1). However, we want to be able to

deal with homogeneous Dirichlet boundary conditions. In order to circumvent this difficulty, it is possible to
add a term proportional to hk to the denominator in the flux. Let ε > 0, the flux (21) is given by2

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+

r+
n+ 1

2

(u)

g(xn+ 1
2
) + εhk

)
g(xn+ 1

2
)−

(
2

hn
+
r−
n+ 1

2

(u)

un

)
un

]
,

Same modification is made if needed for F 1
2
. We use also a correction to prevent the denominator of (19) to

be zero. The condition (19) is replaced with(
ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u)

)
(ui+1 − ui) ≥ 0.

The L2 norm of the error is computed as

eL2 =

(
n∑
i=1

hi|ui − ūi|2
)1/2

for the solution, and

fL2 =

(
e2
L2 +

n∑
i=0

hi+ 1
2
|Fi+ 1

2
(u)− F̄(xi+ 1

2
)|2
)1/2

(66)

for the flux.

Given Ω =]0, 1[, κ a diffusion coefficient and g a function defined on ∂Ω, we consider problem (3) with
α = 0, β = 1, γ = 0 −

d

dx

(
κ
dū

dx

)
= f in Ω,

ū = g on ∂Ω.

(67)

We will use three types of meshes:

2In the benchmarks we have chosen ε = 10−11.
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1. Cartesian meshes,

2. deformed meshes, the deformation of which is given by: x→ x+ 0.65x(1− x)(0.5− x) sin(0.8π),

3. random meshes, the deformation of which is given by: x → x +
η

n
, with η ∈ [−0.45, 0.45], and n the

number of cells. Thus, C = 19 for inequality (5). An example of which with 8 cells being given in Figure
2.

•
x 1

2

0
•
x 3

2 •
x 5

2 •
x 7

2 •
x 9

2 •
x 11

2 •
x 13

2 •
x 15

2 •
x 17

2

1

Figure 2: An example of a random mesh with 8 cells.

Figure 3 gives an example of the repartition of the cell volumes for a random mesh with 64 cells.

Figure 3: Example of a repartition of the volume for a random mesh with 64 cells.

For all the tests, the ε and u0 of the fixed-point algorithm (43) are ε = 10−12 and u0
i = 1,∀i. We use the linear

solver GMRES with the preconditioner ILU (see [26], Chapter 7.4) and the convergence criterion is 10−14.

3.1 L2 convergence for polynomial solutions

Given κ = 1, f(x) = −6x (resp. f(x) = −72x7), g(0) = 1 and g(1) = 2, the function ū(x) = x3 + 1 (resp.
ū(x) = x9 + 1) is solution to (67). We perform a spectral convergence study for these problems on a deformed
mesh with 64 cells. The L2-error between the exact ū and approximated u solutions are reported in the Table
1.
The proof of exactness for polynomial of degree k (see appendix B) shows that the numerical solution must be
exact for an order greater than 3 (resp. 9). The table of convergence (1) agrees with the theory since the error
is zero, to machine precision, for the order greater than 3 (resp. 9).

3.2 L2 convergence for a smooth diffusion coefficient

Given κ = exp(x), f(x) = 4 exp(x) + 4x exp(x)− π cos(πx) exp(x) + π2 exp(x) sin(πx) (note that f is positive),
g(0) = 4 and g(1) = 2, the function ū(x) = sin(πx) − 2x2 + 4 is solution to (67). We perform a convergence
study for this problem with the non-symmetric and symmetric schemes on the deformed mesh. The L2-error
between the exact ū and approximated u solutions and fL2 (refer to Eq. (66)) are reported in Figures 4.
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Order ū(x) = x3 + 1 ū(x) = x9 + 1

1 1.64e-04 1.56e-03
2 3.46e-06 7.00e-04
3 4.53e-15 2.70e-04
4 3.79e-15 1.39e-06
5 8.15e-15 7.43e-07
6 2.57e-14 7.07e-09
7 4.21e-15 5.24e-10
8 5.02e-15 6.58e-13
9 7.86e-15 8.17e-15

Table 1: The L2-error between the exact ū and approximated u solutions.
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Figure 4: L2-error, at the left, and fL2 (refer to Eq. (66)), at the right, with the non-symmetric scheme for problem of
Sec. 3.2.

The results show that the numerical convergence order is at worst equal to the theoretical order k (for the
theoretical order 4 one obtains convergence at order 4) or better (for the theoretical order 3 one obtains the
order 4). Besides, the results are qualitatively the same for the symmetric case and for the non-symmetric case
(the results are only given for the non symmetric case because the figures are similar). We observe similar
convergence orders for eL2 and fL2 .

We also perform a convergence study for the same problem on the random mesh: see Figures 5 and 6. As for
the deformed mesh, the results show that the numerical convergence order is at worst equal to the theoretical
order k (for the theoretical order 4 one obtains convergence at order 4) or better (for the theoretical order 3
one obtains convergence at order 4). The results are similar for the symmetric case and for the non-symmetric
case (the results are only given for the non symmetric case). We observe similar convergence orders for eL2

and fL2 . However, the curves are slightly translated: for a given mesh size, the error is larger when the mesh
is deformed. This is illustrated on the Figure 9 for the fourth-order non-symmetric scheme.

Figures 7 and 8 show that the number of iterations of the fixed-point algorithm depends weakly on the number
of cells. This is especially visible in the Figure 7. Besides, for a random mesh, the number of iterations (for
the fixed-point algorithm to reach stagnation) is significantly larger than for a deformed mesh.
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Figure 5: L2-error with non-symmetric scheme and random mesh for problem of Sec. 3.2.

3.3 Comparison with a non-monotonic scheme

To show the effect of the monotonicity correction, we compare our scheme with a non-monotonicity preserving
scheme.

Given κ = 1, f = π2 sin(πx), g(0) = g(1) = 0, the function ū(x) = sin(πx) is solution to (67). We perform
a monotonicity study for this problem on a Cartesian mesh with the third-order version for different grid sizes.
Results are summarized in Table 2. Note that the non-monotonic scheme does not exhibit negative entries for
all the grid resolutions, but when it happens, it is corrected with the monotonic version.

3.4 Discontinuous diffusion coefficient κ

Given κ such that
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Figure 6: fL2 -error with non-symmetric scheme and random mesh for problem of Sec. 3.2.

Number of cells High order monotonic scheme High order non-monotonic scheme
8 0 1
16 0 0
32 0 0
64 0 1
128 0 0

Table 2: Negative entries for the non-monotonic and the monotonic schemes.

κ(x) =


1 if x ≤ 1

2
,

2 if x >
1

2
,

and f(x) = π2 sin(πx), the function
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Figure 7: Number of iterations of the fixed point algorithm with the non-symmetric scheme for problem of Sec. 3.2 for
a deformed mesh. The number of iteration of the fixed point algorithm increases with the order of convergence k, but
is weakly affected by the mesh refinement.

ū(x) = (sin(πx) + 2x)1{x≤ 1
2}

(x) +

(
1

2
sin(πx) + x+ 1

)
1{x> 1

2}
(x),

is solution to (67). The solution of this problem is displayed on Figure 10. We perform a convergence study
for this problem, using the method described in Section 2.5, on a Cartesian mesh for order 1 to 9.

An even number of cells is required to have a node coinciding with the discontinuity of κ (x = 1
2 ). Results

are summarized in Figure 11. These graphs show that we achieve the expected convergence rate, even with
discontinuous κ.

4 Concluding remarks

In this paper we have proposed an arbitrary-order monotonic scheme for the elliptic problem (3), on arbitrary
1D meshes. The properties of convergence at a given order, and the preservation of the positivity of the discrete
solution have been proven with reasonable assumptions on the mesh. We also proposed a symmetric version of
the method. We have shown how to extend these schemes to the case of a discontinuous diffusion coefficient.
These properties have been illustrated numerically up to the order 9. In future works, we aim to extend these
schemes to higher spatial dimensions and to parabolic problems. We are quite confident in the fact that our
scheme can be extended to 2D because we used the same method to enforce monotonicity than Gao et al [17],
who have applied it in the context of 2D diffusion on arbitrary meshes. To extend this method in 2D, we will
need secondary unknowns. In order to compute them, several strategies are possible. Among others, one may
use interpolation (see [9]), or a dual partition, in the spirit of the DDFV method (see [18]).
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Figure 8: Number of iterations of the fixed point algorithm with the non-symmetric scheme for problem of Sec. 3.2 for
a random mesh. The number of iteration of the fixed point algorithm increases with the order of convergence k, but is
weakly affected by the mesh refinement.
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implementation of the method.

A Dirichlet boundary conditions

Consider first the right boundary of the domain. The adaptation to the left boundary is straightforward. The
k-th order Taylor expansion in the neighborhood of xn+ 1

2
gives

∀x, ū(x) = ū(xn+ 1
2
) +

k∑
`=1

(x− xn+ 1
2
)`

`!

d`ū

dx`
(xn+ 1

2
) +O

(
(x− xn+ 1

2
)k+1

)
.

Here again, we integrate this expression in order to use mean values. This gives

1

hn

∫ x
n+1

2

x
n− 1

2

ū(x)dx = ū(xn+ 1
2
) +

1

hn

k∑
`=1

∫ x
n+1

2

x
n− 1

2

(x− xn+ 1
2
)`

`!

d`ū

dx`
(xn+ 1

2
)dx+O

(
hk+1
n

)
,

that is to say

ūn = ū(xn+ 1
2
) +

1

hn

k∑
`=1

[
(x− xn+ 1

2
)`+1

(`+ 1)!

]x
n+1

2

x
n− 1

2

d`ū

dx`
(xn+ 1

2
) +O

(
hk+1
n

)
,
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Figure 9: L2-error, at the top left, and fL2 (refer to Eq. (66)), at the top right, and number of iterations of the fixed point
(bottom) with the non-symmetric scheme at order k = 4 for problem of Sec. 3.2. It shows that the mesh deformation
impacts slightly the error, but strongly the number of fixed point iterations to achieve convergence.

from which we obtain

dū

dx
(xn+ 1

2
) =

2

hn
(ū(xn+ 1

2
)− ūn) + 2

k∑
`=2

(−1)`h`−1
n

(`+ 1)!

d`ū

dx`
(xn+ 1

2
) +O

(
hkn
)
.

The numerical flux is obtained by approximating the derivatives of ū at xn+ 1
2

using a polynomial reconstruction
of the solution

Fn+ 1
2
(u) = κn+ 1

2

(
2

hn
(un+ 1

2
− un) + rn+ 1

2
(u)

)
.

The trick of Section 1.3 can be applied to ensure monotonicity, that is in the non-symmetric version

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u)

un+ 1
2

)
un+ 1

2
−

(
2

hn
+
r−
n+ 1

2

(u)

un

)
un

]
,

and, in the symmetric version

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u) + sn+ 1
2
(u)

un+ 1
2

)
un+ 1

2
−

(
2

hn
+
r−
n+ 1

2

(u) + sn+ 1
2
(u)

un

)
un

]
, (68)

with

sn+ 1
2
(u) =

unr
+
n+ 1

2

(u)− un+ 1
2
r−
n+ 1

2

(u)

un+ 1
2
− un

.
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Figure 10: Illustration of problem of Sec 3.4. The diffusion being discontinuous, also is the gradient, but the flux remains
continuous.

In order to preserve positivity, a condition similar to (19) must be satisfied for the symmetric version of the
scheme

2
hn

(un+ 1
2
− un) + rn+ 1

2
(u)

un+ 1
2
− un

≥ 0,

that is to say that un+ 1
2
− un and Fn+ 1

2
(u) must have the same sign. As above, this condition seems natural

because if
dū

dx
(xn+ 1

2
) ≥ 0 (resp. ≤ 0), then ū is locally increasing (resp. decreasing) so ūn+ 1

2
≥ ūn (resp.

ūn+ 1
2
≤ ūn).

Applying the boundary condition, (68) becomes
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. (69)

For the left boundary we obtain similarly

F 1
2
(u) = κ 1

2

[(
2

h1
+
r+

1
2

(u) + s 1
2
(u)

u1

)
u1 −

(
2
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(u) + s 1
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(u)

g(x 1
2
)

)
g(x 1

2
)

]
. (70)

B Exactness for polynomials of degree k

To simplify the calculation let us take a polynomial of degree k centered on xi+ 1
2

as an exact solution in order

to demonstrate that the approximation of
dū

dx
(xi+ 1

2
) is exact for polynomials of degree k. For

ū(x) =

k∑
p=0

ai+ 1
2 ,p

(x− xi+ 1
2
)p,

we obtain

d`ū

dx`
(x) =

k∑
p=`

p!

(p− `)!
ai+ 1

2 ,p
(x− xi+ 1

2
)p−`,
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Figure 11: L2-error with symmetric scheme and discontinuous κ for problem of Sec. 3.4.

that is

d`ū

dx`
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2
) = `!ai+ 1

2 ,`
.

Besides, mean values were used to estimate the values of u at the centers of the cells, so

ūi+1 =
1
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The flux is

Fi+ 1
2
(ū) =

κi+ 1
2

hi+ 1
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ūi+1 − ūi −
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hpi+1 + (−1)p+1hpi
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dpP

dxp
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2
)

]
,

where P is an interpolation polynomial of ū. Besides, P = ū in that case since ū is a polynomial of degree k
and P leaves invariant polynomials of degree k. The flux becomes

Fi+ 1
2
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ai+ 1
2 ,p

(−1)phpi
p+ 1

]
−

k∑
p=2

hpi+1 + (−1)p+1hpi
(p+ 1)!

p!ai+ 1
2 ,p

)
,

that is to say

Fi+ 1
2
(ū) = κi+ 1

2

(
ai+ 1

2 ,1
+

k∑
p=2

ai+ 1
2 ,p

hpi+1 + (−1)p+1hpi
hi+ 1

2
(p+ 1)

−
k∑
p=2

hpi+1 + (−1)p+1hpi
hi+ 1

2
(p+ 1)

ai+ 1
2 ,p

)
= κi+ 1

2
ai+ 1

2 ,1
.

The flux is exact for polynomials of degree k.
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