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Abstract

When solving numerically an elliptic problem, it is important in most applications that the scheme used
preserves the positivity of the solution. When using finite volume schemes on deformed meshes, the question
has been solved rather recently. Such schemes are usually (at most) second order convergent, and nonlinear.
On the other hand, many high-order schemes have been proposed, that do not ensure positivity of the
solution. In this paper we propose a very high-order monotone (that is, positivity preserving) numerical
method for elliptic problems in 1D. We prove that this method converges to an arbitrary order and is indeed
monotone. We also show how to handle discontinuous sources or diffusion coefficients, while keeping the
order of convergence. We assess the new scheme, on several test problems, with arbitrary (regular, distorted,
random) meshes.
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Introduction

In this paper we are interested in the resolution of the following elliptic problem with mixed boundary conditions{
−div (κ∇ū) + αū = f in Ω,

βū+ γκ∇ū · n = g on ∂Ω,
(1)

where Ω is a bounded open domain of Rd and n ∈ Rd the external unit normal vector, with d the dimension.
The data are such that f ∈ L2(Ω), g ∈ H1/2(∂Ω), α ∈ R+\{0}, and κ ∈ L∞(Ω). The diffusion coefficient κ is
bounded and satisfies the ellipticity condition

∀x ∈ Ω, κ(x) ≥ κ0 > 0. (2)

Besides, β and γ are functions such that

∀x ∈ ∂Ω, β(x) ≥ 0, γ(x) ≥ 0

and they do not vanish at the same point. Under the above conditions, one can prove (see [13]) that system (1)
has a unique solution in H1(Ω). This solution satisfies a positivity principle, i.e. if f ≥ 0 and g ≥ 0, then ū ≥ 0.
For linear problems considered in this work, this property is equivalent to a maximum principle on ū, which
can be stated as follows: if the data f1, f2 and g1, g2 are such that f1 ≤ f2 and g1 ≤ g2, then the associated
solutions to (1), that we denote by ū1 and ū2 respectively, satisfy ū1 ≤ ū2 almost everywhere in Ω.

Because system (1) is intended to model, for instance, concentration diffusion and thermal conduction,
preservation of the positivity principle at the discrete level is highly desirable. The standard finite volume
two-point flux approximation (TPFA, see for example [14]) is positivity preserving (one also says montone) but
is unfortunately inconsistent on deformed meshes, in dimension d ≥ 2. For this reason, a great deal of work
has been devoted to the design of positivity preserving schemes on general (namely non-orthogonal) meshes
over the past two decades. While elliptic problems are often solved using a finite element discretization, all
the works we know of on monotone methods on highly deformed meshes deal with finite volume schemes.
Monotone methods can be designed in the finite-element framework (see [6, 8, 16, 17, 27] among others), but
rely on restrictive conditions on the mesh we cannot afford. The finite folume framework is well suited to
achieve montonicity because it allows for an easy manipulation of the fluxes. The first works we know of
are those of Le Potier [18] and Bertolazzi and Manzini [2]. In such methods, one uses a manipulation of the
fluxes that leads to introduce a dependence on the discrete solution in the coefficients of the fluxes, making
the scheme non-linear, although (1) is linear. Thus, mononicity is in general not equivalent to the maximum
principle. In such methods, one usually introduces secondary unknowns (for instance vertex-located or edge-
located unknowns) in addition to the primal (cell-located) unknowns. Among others, important contributions
to this field are [3, 20, 30], which propose efficient numerical schemes preserving the positivity of the primary
unknowns. In [24], the requirement of positive secondary unknowns is relaxed. In [4], a non-linear solver
based on an iterative resolution of two problems is described, the primary unknowns of one problem being the
secondary unknowns of the other one. The works [31, 21] explain how to build monotone schemes without
relying on secondary unknowns. In [19, 22, 25], maximum principle preserving schemes are proposed. Cancs
and Guichard obtained moreover an entropy diminishing property in [5], introducing the non-linearity directly
at the continuous level with a change of variables. Some concepts and proofs about the existence of solutions
for these types of scheme can be found in [9, 12]. Recent advances in this field are [29, 28]. All the works
mentioned above concern 2D or 3D low-order (that is at most of order 2) numerical methods.
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We are interested in designing high-order positive scheme (that is at least of order 3). We start, in the
present paper, with the 1D case. Thus, for now on, the system we study is the 1D version of (1), that is,

− d

dx

(
κ
dū

dx

)
+ αū = f in Ω,

βū+ γκ
dū

dn
= g on ∂Ω,

(3)

and we will suppose that Ω =]0, 1[ without loss of generality.
Although this setting is very specific, we believe it can be seen as a first step to tackle the question in

higher dimensions. Let us be more precise about the 1D setting: in such a case, the TPFA scheme is actually
consistent (and monotone), contrary to dimensions d ≥ 2. Thus, the relevant question here is to design a high-
order scheme that satisfies the positivity principle. Of course, as one may expect, a naive extension to higher
orders of the TPFA scheme gives non-positive schemes. In particular, none of the existing [1, 7, 10, 11] arbitrary
high order methods for the problem (1) is monotone. In [9] it is shown how to use Le Potier’s trick [19] to
obtain monotone 1D schemes of order greater than 2. But as this method uses a finite difference discretization
on Cartesian meshes, it seems hard to extend to general meshes even in 1D. In the present paper we propose a
new numerical method that has the following properties:

• it has a provable arbitrarily high order of accuracy, under reasonable stability assumptions;

• it is monotone;

• it is conservative, and

• it operates on general 1D meshes.

The organization of the paper is as follows. In Section 1 we design a high-order Finite-Volume method
by integrating the k-th order Taylor expansion of the unknown. The high-order derivatives of this series are
approximated using to a polynomial reconstruction of the solution while the degrees of freedom are the integral
mean values of the solution on the cells. The monotone behavior of the scheme is enforced using the trick
described in [15], which leads to a non-linear resolution. A symmetric version of the scheme is also proposed,
allowing to obtain a Local Maximum Preserving (LMP) structure (see for instance [12] for a definition) for
the fluxes. In Section 2, we prove the properties of the method: conservation, consistency of the fluxes at
order k, monotonicity (or the LMP structure for the symmetric version) and convergence of the scheme. On
this aspect, our analysis is not completely satisfactory. A first approach consists in applying the fairly general
analysis performed in [23], using the assumption that matrix of the scheme is coercive. This is what we do
in Proposition 2.20 of Subsection 2.4.3, proving convergence at order k. Unfortunately, we do not know how
to prove that the matrix is coercive. Therefore, we propose a different approach, in which we replace such a
coercivity assumption by a form of stability that is more general (see Assumption 2.16 of Subsection 2.4.1, and
Proposition 2.17). We still do not know how to prove such an assumption, and Proposition 2.17 only gives
convergence at order k− 1. Finally in Section 3 we verify the properties previously stated on 1D test problems,
showing that the method is indeed monotone and of order k.

In all the article, C will denote an unspecified strictly positive constant independent of the mesh size.

1 High-order finite volume scheme

Consider a mesh whose cells are numbered from 1 to n. The center of cell i is denoted by xi and its two vertices
are xi− 1

2
and xi+ 1

2
. The length of cell i is hi and the length between the centers xi and xi+1 is hi+ 1

2
, see Fig. 1.

Without loss of generality, we will suppose that

xi < xi+1,∀i ∈ J1, n− 1K. (4)

We will also assume that the mesh is quasi-uniform that is there exists C such that

max
1≤i≤n

(hi) < C min
1≤i≤n

(hi). (5)
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Figure 1: Definition of the mesh: xi are cell centers, xi+ 1
2

are nodes.

We define h = max
1≤i≤n

(hi) and u = (ui)1≤i≤n. The notation u > 0 (resp. u ≥ 0) means that

ui > 0, (resp. ui ≥ 0) ∀i ∈ J1, nK.

Let us introduce some notations for the norms we are going to use. We first define the Lp norm, p ∈ [1,+∞[

‖ · ‖Lp : Rn −→ R

u 7−→

(
n∑
i=1

hi|ui|p
)1/p

(6)

and the L∞ norm

‖ · ‖L∞ : Rn −→ R
u 7−→ max

1≤i≤n
|ui|. (7)

Finally the H1 norm

‖ · ‖H1 : Rn −→ R

u 7−→

√√√√n−1∑
i=1

(ui+1 − ui)2

hi+ 1
2

+

n∑
i=1

hi|ui|2.
(8)

1.1 Finite volume formulation

From now on we note κi+ 1
2

= κ(xi+ 1
2
) and ū ∈ Rn the vector defined by

ūi =
1

hi

∫ x
i+1

2

x
i− 1

2

ū(x)dx. (9)

Let ū ∈ Ck(Ω). The first step to design a finite volume scheme consists in integrating (3) on cell i

−

[
κi+ 1

2

(
dū

dx

)
i+ 1

2

− κi− 1
2

(
dū

dx

)
i− 1

2

]
+ αhiūi = hifi,

with

fi =
1

hi

∫ x
i+1

2

x
i− 1

2

f(x)dx. (10)

Thus we need to define the fluxes

F̄i+ 1
2

= κi+ 1
2

(
dū

dx

)
i+ 1

2

and F̄i− 1
2

= κi− 1
2

(
dū

dx

)
i− 1

2

.
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First of all, the Taylor expansion at order k in the neighborhood of xi+ 1
2

gives

∀x, ū(x) = ū(xi+ 1
2
) +

k∑
`=1

(x− xi+ 1
2
)`

`!

d`ū

dx`
(xi+ 1

2
) +O

(
(x− xi+ 1

2
)k+1

)
. (11)

In order to have mean values as degrees of freedom we integrate (11) from xi+ 1
2

to xi+ 3
2

and divide by hi+1

1

hi+1

∫ x
i+3

2

x
i+1

2

ū(x)dx = ū(xi+ 1
2
) +

1

hi+1

k∑
`=1

∫ x
i+3

2

x
i+1

2

(x− xi+ 1
2
)`

`!

d`ū

dx`
(xi+ 1

2
)dx+O

(
hk+1
i+1

)
,

that is to say

ūi+1 = ū(xi+ 1
2
) +

1

hi+1

k∑
`=1

[
(x− xi+ 1

2
)`+1

(`+ 1)!

]x
i+3

2

x
i+1

2

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1
i+1

)
,

namely

ūi+1 = ū(xi+ 1
2
) +

k∑
`=1

h`i+1

(`+ 1)!

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1
i+1

)
.

In a similar way, by integrating (11) from xi− 1
2

to xi+ 1
2

we obtain

ūi = ū(xi+ 1
2
) +

k∑
`=1

(−1)`h`i
(`+ 1)!

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1
i

)
.

The difference between these last two equalities gives, using (5)

ūi+1 − ūi = hi+ 1
2

dū

dx
(xi+ 1

2
) +

k∑
`=2

h`i+1 − (−1)`h`i
(`+ 1)!

d`ū

dx`
(xi+ 1

2
) +O

(
hk+1

)
,

from which we obtain, using (5) again

dū

dx
(xi+ 1

2
) =

1

hi+ 1
2

(
ūi+1 − ūi −

k∑
`=2

h`i+1 + (−1)`+1h`i
(`+ 1)!

d`ū

dx`
(xi+ 1

2
)
)

+O
(
hk
)
. (12)

Let u = (ui)1≤i≤n be the numerical solution. By mimicking the expression of the exact flux (12) the numerical
flux is defined by

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u)

)
, (13)

with

ri+ 1
2
(u) = − 1

hi+ 1
2

k∑
`=2

h`i+1 + (−1)`+1h`i
(`+ 1)!

d`P

dx`
(xi+ 1

2
), (14)

where P is an interpolation polynomial of u as we will see in the next section.

1.2 High-order reconstruction by interpolation

In the calculation of the flux, it is necessary to evaluate the derivatives of u in xi+ 1
2
. In this method, the neigh-

boring cells of xi+ 1
2

are used in order to compute the polynomial reconstruction of the solution by considering
that the average of the polynomial in a cell is equal to the average of the solution in this cell.

For a polynomial of degree k, there are k+ 1 coefficients to calculate, so k+ 1 neighboring cells of xi+ 1
2

will
be necessary. When it is possible, the stencil will be centered in xi+ 1

2
, but the closer xi+ 1

2
is to the boundary,
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the more the stencil will be shifted in order to stay in the interior of Ω.

The notation u0, ..., uk denotes the k + 1 values of u used for the calculation. Let us denote by Si+ 1
2

=

{x0, ..., xk} the stencil of the node xi+ 1
2
. The polynomial will be of this form

P (x) = ak(u0, ..., uk)
(
x− xi+ 1

2

)k
+ ...+ a0(u0, ..., uk).

The coefficients of the polynomial P (x) are approximated by

1

xj+ 1
2
− xj− 1

2

∫ x
j+1

2

x
j− 1

2

P (x)dx = uj , ∀j ∈ Si+ 1
2
.

This leads to the following system


1 1

x
0+ 1

2
−x

0− 1
2

∫ x
0+ 1

2
x
0− 1

2

x− xi+ 1
2

. . . 1
x
0+ 1

2
−x

0− 1
2

∫ x
0+ 1

2
x
0− 1

2

(x− xi+ 1
2
)k

...
...

. . .
...

1 1
x
k+1

2
−x

k− 1
2

∫ x
k+1

2
x
k− 1

2

x− xi+ 1
2

. . . 1
x
k+1

2
−x

k− 1
2

∫ x
k+1

2
x
k− 1

2

(x− xi+ 1
2
)k


︸ ︷︷ ︸

=:Mk

 a0

...
ak


︸ ︷︷ ︸

=:a

=

 u0

...
uk

 .

The matrix Mk can be rewritten

Mk =


1

(x
0+ 1

2
−x

i+1
2

)2−(x
0− 1

2
−x

i+1
2

)2

2(x
0+ 1

2
−x

0− 1
2

) . . .
(x

0+ 1
2
−x

i+1
2

)k+1−(x
0− 1

2
−x

i+1
2

)k+1

(k+1)(x
0+ 1

2
−x

0− 1
2

)

...
...

. . .
...

1
(x

k+1
2
−x

i+1
2

)2−(x
k− 1

2
−x

i+1
2

)2

2(x
k+1

2
−x

k− 1
2

) . . .
(x

k+1
2
−x

i+1
2

)k+1−(x
k− 1

2
−x

i+1
2

)k+1

(k+1)(x
k+1

2
−x

k− 1
2

)

 . (15)

Proposition 1.1. Let {xi}1≤i≤n be a mesh satisfying (4). Let k ∈ N∗. The matrix Mk defined by (15) is
invertible.

Proof. Mka = 0 means that the integral of the polynomial P (x) vanishes over k+1 distinct intervals. Therefore,
this polynomial of degree k has at least k + 1 roots. It is therefore zero, and all the coefficients aj , j ∈ J0, kK,
vanish. Thus, this implies that a = 0, so Mk is invertible.

The exact derivatives can then be approximated by

d`ū

dx`
(xi+ 1

2
) ≈ d`P

dx`
(xi+ 1

2
),∀` ∈ J2, kK.

Remark 1.2. A polynomial P is calculated for each node xi+ 1
2
. So, the polynomial P = Pi+ 1

2
can be different

for each node but in order to simplify the notation, we will denote it by P .

1.3 A method to obtain monotonicity

A method borrowed from [15] and developed in the framework of 2D diffusion on arbitrary meshes can be used
to make the scheme monotone. The flux (13) can be rewritten as follows

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

+ r+
i+ 1

2

(u)− r−
i+ 1

2

(u)

)
,

with

r+
i+ 1

2

(u) =
|ri+ 1

2
(u)|+ ri+ 1

2
(u)

2
≥ 0 and r−

i+ 1
2

(u) =
|ri+ 1

2
(u)| − ri+ 1

2
(u)

2
≥ 0.

6



Let us assume that u > 0, the flux then reads as

Fi+ 1
2
(u) = κi+ 1

2

[(
1

hi+ 1
2

+
r+
i+ 1

2

(u)

ui+1

)
ui+1 −

(
1

hi+ 1
2

+
r−
i+ 1

2

(u)

ui

)
ui

]
, (16)

and the coefficients of ui, ui+1 are positive.

1.4 Symmetric version

Let us introduce a coefficient si+ 1
2

depending on u so that Fi+ 1
2

can be rewritten as

Fi+ 1
2
(u) = κi+ 1

2

[(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
ui+1 −

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
ui

]
. (17)

To make the scheme symmetric the coefficients of ui and ui+1 must be equal

1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1
=

1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui
, (18)

which leads to

si+ 1
2
(u) =

uir
+
i+ 1

2

(u)− ui+1r
−
i+ 1

2

(u)

ui+1 − ui
.

To preserve positivity, it is necessary to impose

1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1
=

1

hi+ 1
2

+
ri+ 1

2
(u)

ui+1 − ui
≥ 0,

that is to say

ui+1−ui

h
i+1

2

+ ri+ 1
2
(u)

ui+1 − ui
≥ 0. (19)

In other words, ui+1 − ui and Fi+ 1
2
(u), defined by (13), must have the same sign which seems natural because

if
dū

dx
(xi+ 1

2
) ≥ 0 (resp. ≤ 0), then ū is locally non-decreasing (resp. non-increasing) hence ūi+1 ≥ ūi (resp.

ūi+1 ≤ ūi).

In practice, if

(
ui+1−ui

h
i+1

2

+ ri+ 1
2
(u)

)
(ui+1 − ui) > 0 we use the numerical flux (16), otherwise we use the first

order approximation

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

)
. (20)

1.5 Boundary conditions

In this section we detail how we take into account the boundary conditions.
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1.5.1 Dirichlet boundary condition

Consider problem (3) with β = 1, γ = 0 and consider first the right boundary of the domain. The adaptation
to the left boundary is straightforward. The k-th order Taylor expansion in the neighborhood of xn+ 1

2
gives

∀x, ū(x) = ū(xn+ 1
2
) +

k∑
`=1

(x− xn+ 1
2
)`

`!

d`ū

dx`
(xn+ 1

2
) +O

(
(x− xn+ 1

2
)k+1

)
.

Here again, we integrate this expression in order to use mean values. This gives

1

hn

∫ x
n+1

2

x
n− 1

2

ū(x)dx = ū(xn+ 1
2
) +

1

hn

k∑
`=1

∫ x
n+1

2

x
n− 1

2

(x− xn+ 1
2
)`

`!

d`ū

dx`
(xn+ 1

2
)dx+O

(
hk+1
n

)
,

that is to say

ūn = ū(xn+ 1
2
) +

1

hn

k∑
`=1

[
(x− xn+ 1

2
)`+1

(`+ 1)!

]x
n+1

2

x
n− 1

2

d`ū

dx`
(xn+ 1

2
) +O

(
hk+1
n

)
,

from which we obtain

dū

dx
(xn+ 1

2
) =

2

hn
(ū(xn+ 1

2
)− ūn) + 2

k∑
`=2

(−1)`h`−1
n

(`+ 1)!

d`ū

dx`
(xn+ 1

2
) +O

(
hkn
)
.

The numerical flux is obtained by approximating the derivatives of ū at xn+ 1
2

using a polynomial reconstruction
of the solution

Fn+ 1
2
(u) = κn+ 1

2

(
2

hn
(un+ 1

2
− un) + rn+ 1

2
(u)

)
.

The trick of Section 1.3 can be applied to ensure monotonicity, that is in the non-symmetric version

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u)

un+ 1
2

)
un+ 1

2
−

(
2

hn
+
r−
n+ 1

2

(u)

un

)
un

]
,

and, in the symmetric version

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u) + sn+ 1
2
(u)

un+ 1
2

)
un+ 1

2
−

(
2

hn
+
r−
n+ 1

2

(u) + sn+ 1
2
(u)

un

)
un

]
, (21)

with

sn+ 1
2
(u) =

unr
+
n+ 1

2

(u)− un+ 1
2
r−
n+ 1

2

(u)

un+ 1
2
− un

.

In order to preserve positivity, a condition similar to (19) must be satisfied for the symmetric version of the
scheme

2
hn

(un+ 1
2
− un) + rn+ 1

2
(u)

un+ 1
2
− un

≥ 0,

that is to say that un+ 1
2
− un and Fn+ 1

2
(u) must have the same sign. As above, this condition seems natural

because if
dū

dx
(xn+ 1

2
) ≥ 0 (resp. ≤ 0), then ū is locally increasing (resp. decreasing) so ūn+ 1

2
≥ ūn (resp.

ūn+ 1
2
≤ ūn).
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Applying the boundary condition, (21) becomes

Fn+ 1
2
(u) = κn+ 1

2

[(
2

hn
+
r+
n+ 1

2

(u) + sn+ 1
2
(u)

g(xn+ 1
2
)

)
g(xn+ 1

2
)−

(
2

hn
+
r−
n+ 1

2

(u) + sn+ 1
2
(u)

un

)
un

]
. (22)

For the left boundary we obtain similarly

F 1
2
(u) = κ 1

2

[(
2

h1
+
r+

1
2

(u) + s 1
2
(u)

u1

)
u1 −

(
2

h1
+
r−1

2

(u) + s 1
2
(u)

g(x 1
2
)

)
g(x 1

2
)

]
. (23)

1.5.2 Neumann boundary condition

Consider problem (3) with β = 0, γ = 1. For the left (i = 1) boundary cell, the flux is

F 1
2
(u) = κ 1

2

dū

dx

∣∣∣∣
1
2

= −κ 1
2

dū

dn

∣∣∣∣
1
2

= −g(x 1
2
) (24)

while for the right (i = n) boundary cell, the flux is

Fn+ 1
2
(u) = κn+ 1

2

dū

dx

∣∣∣∣
n+ 1

2

= κn+ 1
2

dū

dn

∣∣∣∣
n+ 1

2

= g(xn+ 1
2
). (25)

1.5.3 Mixed boundary condition

Consider finally problem (3) with β(x) > 0, γ(x) > 0,∀x ∈ ∂Ω. In this case we have for i = 0 or i = n

ū(xi+ 1
2
) =

1

β(xi+ 1
2
)

(
g(xi+ 1

2
)− γ(xi+ 1

2
)κi+ 1

2

dū

dn
(xi+ 1

2
)

)
. (26)

Consider first the right boundary of the domain. The adaptation for the left boundary is straightforward. We
use the same method as for Dirichlet boundary condition in section 1.5.1. Replacing un+ 1

2
by its expression

given by (26) in (21) yields

Fn+ 1
2
(u) =

κn+ 1
2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

)
g(xn+ 1

2
)− β(xn+ 1

2
)κn+ 1

2

(
2
hn

+
r−
n+1

2

(u)+s
n+1

2
(u)

un

)
un

β(xn+ 1
2
) + γ(xn+ 1

2
)κn+ 1

2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

) . (27)

For the left boundary (i = 0) we obtain similarly

F 1
2
(u) =

β(x 1
2
)κ 1

2

(
2
h1

+
r+1
2

(u)+s 1
2

(u)

u1

)
u1 − κ 1

2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

)
g(x 1

2
)

β(x 1
2
) + γ(x 1

2
)κ 1

2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

) . (28)

Remark 1.3. In the expression of the fluxes (28) and (27), if we take β = 0, γ = 1, we obtain the same fluxes
as (24) and (25). Likewise, if we take β = 1, γ = 0, we obtain the same flux as (23) and (22).
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1.6 Summary of the method and matrix form

The scheme reads as

−(Fi+ 1
2
(u)−Fi− 1

2
(u)) + αhiui = hifi, (29)

that is, using (17),

− κi+ 1
2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
ui+1 + κi+ 1

2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
ui

+ κi− 1
2

(
1

hi− 1
2

+
r+
i− 1

2

(u) + si− 1
2
(u)

ui

)
ui − κi− 1

2

(
1

hi− 1
2

+
r−
i− 1

2

(u) + si− 1
2
(u)

ui−1

)
ui−1 + αhiui = hifi.

With a more compact notation, we write this as Au = A(u)u = b, with

bi = hifi ∀i 6= {1, n},

Aij =



−κi+ 1
2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
if j = i+ 1,∀i 6= n,

κi+ 1
2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
+ κi− 1

2

(
1

hi− 1
2

+
r+
i− 1

2

(u) + si− 1
2
(u)

ui

)
+ αhi if j = i,∀i 6= 1, n,

−κi− 1
2

(
1

hi− 1
2

+
r−
i− 1

2

(u) + si− 1
2
(u)

ui−1

)
if j = i− 1,∀i 6= 1,

0 else.
(30)

The expression of the boundary terms depends on the type of boundary conditions. First, in the case of a
Dirichlet boundary condition, we have

b1 = h1f1 + κ 1
2

(
2

h1
+
r−1

2

(u) + s 1
2
(u)

g(x 1
2
)

)
g(x 1

2
), (31)

A1,1 = κ 3
2

(
1

h 3
2

+
r−3

2

(u) + s 3
2
(u)

u1

)
+ κ 1

2

(
2

h1
+
r+

1
2

(u) + s 1
2
(u)

u1

)
+ αh1, (32)

and

bn = hnfn + κn+ 1
2

(
2

hn
+
r+
n+ 1

2

(u) + sn+ 1
2
(u)

g(xn+ 1
2
)

)
g(xn+ 1

2
), (33)

An,n = κn+ 1
2

(
2

hn
+
r−
n+ 1

2

(u) + sn+ 1
2
(u)

un

)
+ κn− 1

2

(
1

hn− 1
2

+
r+
n− 1

2

(u) + sn− 1
2
(u)

un

)
+ αhn. (34)

Next, in the case of a Neumann boundary condition, we have

b1 = h1f1 + g(x 1
2
), (35)

A1,1 = κ 3
2

(
1

h 3
2

+
r−3

2

(u) + s 3
2
(u)

u1

)
+ αh1, (36)

and

bn = hnfn + g(xn+ 1
2
), (37)
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An,n = κn− 1
2

(
1

hn− 1
2

+
r+
n− 1

2

(u) + sn− 1
2
(u)

un

)
+ αhn. (38)

Finally, in the case of a mixed boundary condition, we have

b1 = h1f1 +

κ 1
2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

)

β(x 1
2
) + γ(x 1

2
)κ 1

2

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

)g(x 1
2
), (39)

A1,1 = κ 3
2

(
1

h 3
2

+
r−3

2

(u) + s 3
2
(u)

u1

)
+

κ 1
2

(
2
h1

+
r+1
2

(u)+s 1
2

(u)

u1

)

1 +
γ(x 1

2
)κ 1

2

β(x 1
2

)

(
2
h1

+
r−1
2

(u)+s 1
2

(u)

u 1
2

) + αh1, (40)

and

bn = hnfn +

κn+ 1
2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

)

β(xn+ 1
2
) + γ(xn+ 1

2
)κn+ 1

2

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

)g(xn+ 1
2
), (41)

An,n = κn− 1
2

(
1

hn− 1
2

+
r+
n− 1

2

(u) + sn− 1
2
(u)

un

)
+

κn+ 1
2

(
2
hn

+
r−
n+1

2

(u)+s
n+1

2
(u)

un

)

1 +
γ(x

n+1
2

)κ
n+1

2

β(x
n+1

2
)

(
2
hn

+
r+
n+1

2

(u)+s
n+1

2
(u)

u
n+1

2

) + αhn. (42)

The matrix has been written for the symmetric version of the scheme. For the non-symmetric version, the
matrix is the same with si+ 1

2
(u) = si− 1

2
(u) = 0,∀i ∈ J1, nK.

Remark 1.4. Assuming that f ≥ 0 and g ≥ 0, and that u > 0, the right hand side b has all its components
nonnegative, for any type of boundary conditions.

Remark 1.5. In the case of mixed boundary condition, the right hand side of the nonlinear system depends on
u.

1.7 A fixed point method for handling nonlinearity

The system obtained is of the form Au = b, A being a matrix dependent on the solution. So, a fixed point
algorithm is necessary to solve this system. We start with an initial guess u0, compute the matrix A(u0) and
solve A(u0)u1 = b. Repeating this process, we build a sequence un that, if it converges, tends to the solution
of the scheme. We perform this algorithm until the difference between the solution obtained between two
iterations is small enough. To summarize, the following loop is performed

ν = 0

A(uν)uν+1 = b

While |uν+1 − uν | > ε

A(uν)uν+1 = b

ν = ν + 1.

Unfortunately, we have no proof of convergence of this algorithm. Nevertheless, the numerical tests we have
performed did not provide any situation in which the above fix-point algorithm does not converge.
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Remark 1.6. We thus have two different schemes: the first one is linear and (expected to be) of high order,
defined by the fluxes (13). Its definition does not require the unknown u to be positive, and its stencil is
approximately of size k/2. The second one is nonlinear, and defined by the fluxes (16). We need u to be
positive in order to define it, and its stencil is equal to 1. If it has a (positive) solution, then it is a solution of
the linear scheme. Thus, two situations may occur:

1. the solution of the linear scheme is positive; then, it is also a solution to the nonlinear scheme;

2. the solution of the linear scheme has non-positive entries. Then, the nonlinear scheme cannot have a
solution (otherwise it would be positive, hence solution to the linear scheme). We nevertheless expect the
above fix-point algorithm to converge to some u that is non-negative, but is not a solution to the nonlinear
scheme (nor to the linear scheme).

What we observe numerically (see Section 3 below) is that the fix-point algorithm always converges, to a ”solu-
tion” u that is an approximation of order k to the exact solution ū.

2 Properties

2.1 Conservation

Proposition 2.1. Assume that u > 0 and consider homogeneous Neumann boundary conditions, then the
scheme defined by (29) is conservative. Indeed it satisfies the equality

α

n∑
i=1

hiui =

n∑
i=1

hifi,

that is to say

n∑
i=1

(−Fi+ 1
2
(u) + Fi− 1

2
(u)) = 0.

Proof. The sum is telescopic so only the boundary terms remain. The homogeneous Neumann boundary
condition means that the boundary terms are zero, which leads to

n∑
i=1

(−Fi+ 1
2
(u) + Fi− 1

2
(u)) = 0,

that is to say

α

n∑
i=1

hiui =

n∑
i=1

hifi.

The scheme is conservative.

2.2 Monotonicity and Local Maximum Principle (LMP) structure

Definition 2.2. A matrix A = (aij) is an M-matrix if it satisfies the following inequalities

∀i 6= j, aij ≤ 0,

and

∀i,
n∑
j=1

ai,j ≥ 0. (43)

Moreover, if (43) is strict for all i ∈ J1, nK, we say that A is a strict M-matrix.
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2.2.1 Non-symmetric version: property of the matrix

Proposition 2.3. Assume that u > 0, the matrix A(u) defined by (30) and (31) through (34), or (35) through (38),
or (39) through (42) depending on the boundary conditions, with si+ 1

2
= 0, is such that AT (u) is a strict M-

matrix.

Remark 2.4. In the following proof we have considered Dirichlet boundary conditions, but the result also holds
with other boundary conditions. For mixed boundary conditions, the sum of the first and the last column have
also two positive terms. For Neumann boundary conditions, the sum of the first and the last column are also

positive but the first term vanishes, that is to say
∑
i

Ai,1 = αh1 > 0 and
∑
i

Ai,n = αhn > 0.

Proof of Proposition 2.3. The matrix satisfies

∀i 6= j, Aij(u) ≤ 0 and ∀j,
n∑
i=1

Ai,j(u) > 0.

Indeed, for the first column there are only two elements in the sum∑
i

Ai,1(u) = A1,1(u) +A2,1(u),

which leads to

∑
i

Ai,1(u) = κ 3
2

(
1

h 3
2

+
r−3

2

(u)

u1

)
+ κ 1

2

(
2

h1
+
r+

1
2

(u)

u1

)
− κ 3

2

(
1

h 3
2

+
r−3

2

(u)

u1

)
+ αh1,

that is to say

∑
i

Ai,1 = κ 1
2

(
2

h1
+
r+

1
2

(u)

u1

)
+ αh1 > 0.

And for the last column, ∑
i

Ai,n = An−1,n +An,n,

which leads to

∑
i

Ai,n = −κn− 1
2

(
1

hn− 1
2

+
r+
n− 1

2

(u)

un

)
+ κn+ 1

2

(
2

hn
+
r−
n+ 1

2

(u)

un

)
+ κn− 1

2

(
1

hn− 1
2

+
r+
n− 1

2

(u)

un

)
+ αhn,

that is to say

∑
i

Ai,n = κn+ 1
2

(
2

hn
+
r−
n+ 1

2

(u)

un

)
+ αhn > 0.

Besides, for other columns ∑
i

Ai,j = Aj−1,j +Aj,j +Aj+1,j ,

which leads to

∑
i

Ai,j = −κ(j−1)+ 1
2

(
1

h(j−1)+ 1
2

+
r+
(j−1)+ 1

2

(u)

u(j−1)+1

)
+ κj+ 1

2

(
1

hj+ 1
2

+
r−
j+ 1

2

(u)

uj

)
+ αhj

+ κj− 1
2

(
1

hj− 1
2

+
r+
j− 1

2

(u)

uj

)
− κ(j+1)− 1

2

(
1

h(j+1)− 1
2

+
r−
(j+1)− 1

2

(u)

u(j+1)−1

)
,
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that is to say ∑
i

Ai,j = αhj > 0.

2.2.2 Monotonicity of the method

Proposition 2.5. Assume that f ≥ 0, g ≥ 0, and either ‖f‖L2(Ω) > 0, g(0) > 0 or g(1) > 0. Assume moreover
that u0 > 0. Then ∀ν,uν > 0.

To prove this property, we need to introduce the concept of irreducible matrix. We quote here [26, Defini-
tion 1.15].

Definition 2.6. An n× n matrix A is reducible if there exits an n× n permutation matrix P such that

PAPT =

[
A1,1 A1,2

0 A2,2

]
,

where A1,1 is an r × r submatrix and A2,2 is an (n − r) × (n − r) submatrix, where 1 ≤ r < n. If no such
permutation matrix exists, then A is irreducible.

The matrix of the scheme can be proven to be irreducible in view of the following Lemma (see [26, Theo-
rem 1.17]).

Lemma 2.7. To any n×n matrix A we associate the graph of nodes 1, 2, ..., n and of directed edges connecting
i to j if Aij 6= 0. Then A is irreducible if and only if for any pair i 6= j there exists a chain of edges that allows
to go from i to j,

Ai,k1 6= 0→ Ak1,k2 6= 0→ · · · → Akm,j 6= 0.

With these definitions we can make use of the following theorem (see [26], Corollary 3.20).

Theorem 2.8. If A is an irreducible strict M-matrix, then it is invertible and ∀i, j : (A−1)ij > 0.

We are now in position to prove Proposition 2.5.

Proof of Proposition 2.5. We argue by induction on the index ν. We assume that uν > 0. Thus AT (uν) is a
strict M -matrix (see Proposition 2.3). It is easy to check that AT (uν) is also irreducible. Thus all the entries
of A−T (uν) are positive, using Theorem 2.8, and consequently all the entries of A−1(uν) are positive. Using
Remark 1.4, we know that all components of b are non-negative. Moreover, because of the assumption that
either ‖f‖L2(Ω) > 0, g(0) > 0 or g(1) > 0, at least one component of b is non zero. We thus have

∀i ∈ J1, nK : uν+1
i =

n∑
j=1

A−1
ij bj > 0,

since all terms of this sum are non-negative, with one at least that is positive.

Proposition 2.5 shows that the condition uν > 0 remains satisfied during the fixed point procedure, which
allows to always define A(uν).

2.2.3 Symmetric version: LMP structure

Proposition 2.9. Assume that u > 0, the matrix A defined by (30) and (31) through (34), or (35) through (38),
or (39) through (42), depending on the boundary conditions, is symmetric.

Proof. Let xi+ 1
2
, be an interior vertex of the mesh. If condition (19) is satisfied for this vertex, we use the

definition of the flux (17), then symmetrization condition leads to Ai,i+1 = Ai+1,i. Otherwise the flux is defined
by (20), and once again Ai,i+1 = Ai+1,i.
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Proposition 2.10. Assume that u > 0, let A be defined by (30) and (31) through (34), or (35) through (38),
or (39) through (42), depending on the boundary conditions, then the matrix A is a strict M-matrix.

Proof. As for Proposition 2.3, it can be proved that the matrix A is the transpose of a strict M-matrix. Besides,
A is symmetric, so A is itself a strict M-matrix.

Definition 2.11. This definition is taken from [12]. We say that a scheme for (3) has the local maximum
principle structure (LMP structure for short) if it can be written in the form

∀i ∈ J1, nK :

n∑
j=1

λi,j(u)(ui − uj) + λi, 12 (u)(ui − u 1
2
) + λi,n+ 1

2
(u)(ui − un+ 1

2
) = fihi, (44)

for some functions λi,j : Rn → R+ satisfying,

λ1, 12
> 0, λn,n+ 1

2
> 0, and ∀i ∈ J1, n− 1K : λi,i±1 > 0. (45)

Theorem 2.12. Assume that f ≥ 0, g ≥ 0, and either ‖f‖L2(Ω) > 0, g(0) > 0 or g(1) > 0. Let A and
b be defined by (30) and (31) through (34), or (35) through (38), or (39) through (42), depending on the
boundary conditions. Assume that we have applied the symmetrization procedure defined in Section 1.4. Then
A−1b = u ≥ 0. If moreover α = 0, the scheme has the LMP structure.

Proof. For interior vertices, we consider two cases:

• if condition (19) is satisfied, then the coefficients of the fluxes are defined by (18), and we have

λi+ 1
2

:= κi+ 1
2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1

)
= κi+ 1

2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui

)
,

which is positive because of (19).

• if condition (19) is not satisfied, then the coefficients of the fluxes are defined by (20), and

λi+ 1
2

:=
κi+ 1

2

hi+ 1
2

,

which is positive.

Substituting λi+ 1
2

in equation (17) and using the definition of the scheme (29) with α = 0 yields

λi+ 1
2
(ui − ui+1) + λi− 1

2
(ui − ui−1) = hifi.

In other words, we have (44), with λi,i±1 = λi± 1
2
> 0, and λij = 0 if |i − j| > 1. The proof is similar for

boundary vertices, see equation (21).

In addition to monotonicity, schemes with the LMP structure enjoy local stability properties as the nonoscil-
lating property (Proposition 1.5 of [12]). In the present case, this reads as follows. Let f = 0 and u
be a solution to the symmetric scheme; we have ∀i ∈ J2, n − 1K, min(ui−1, ui+1) ≤ ui ≤ max(ui−1, ui+1),
min(u 1

2
, u2) ≤ u1 ≤ max(u 1

2
, u2), and min(un−1, un+ 1

2
) ≤ un ≤ max(un−1, un+ 1

2
). Another very interesting

property, the preservation of initial bounds (Proposition 1.6 of [12]), holds for the parabolic version of the
scheme.

2.3 Consistency of the fluxes

In order to state the following result (Proposition 2.14), we need to assume that the interpolation matrix Mk

defined by (15) satisfies some regularity assumption in the limit h→ 0. Loosely speaking, we expect column j
of Mk to be of order hj . More precisely, we assume that

Mk = Nk


1 0 . . . 0

0 h
. . .

...
...

. . .
. . . 0

0 . . . 0 hk

 , (46)
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where the matrix Nk converges as h→ 0, the limit N0
k being invertible:

lim
h→0

Nk = N0
k , det(N0

k ) 6= 0. (47)

Remark 2.13. Assumption (46)-(47) may be seen as a regularity assumption of the mesh. It is clearly satisfied
by a regular mesh, for which an explicit computation gives (46), where the matrix Nk does not depend on h.

We have the following result:

Proposition 2.14. Let k ∈ N∗ and {xi}1≤i≤n be a mesh satisfying (4), (5), (46) and (47) Let ū ∈ Ck+1(Ω).
The fluxes defined by (13) are consistent of order k. More precisely, the vector ū being defined by (9), we have∣∣∣∣Fi+ 1

2
(ū)− κi+ 1

2

dū

dx
(xi+ 1

2
)

∣∣∣∣ ≤ C1

∥∥∥ū(k+1)
∥∥∥
L∞

hk,

where the constant C1 depends only on k, on the constant C in (5) and on the norm of the matrix
(
N0
k

)−1
,

where N0
k appears in (46)-(47). In particular it does not depend on ū nor on i.

Proof. Since ū ∈ Ck+1(Ω), a Taylor expansion gives

ū(x) =

k∑
`=0

d`ū

dx`
(xi+ 1

2
)
(x− xi+ 1

2
)
`

`!
+ ρ(x) = Q(x) + ρ(x),

where Q is the k-th order polynomial

Q(x) =

k∑
`=0

d`ū

dx`
(xi+ 1

2
)
(x− xi+ 1

2
)
`

`!
,

such that

d`Q

dx`
(xi+ 1

2
) =

d`ū

dx`
(xi+ 1

2
), ∀` ∈ J1, kK. (48)

The remainder ρ satisfies the estimate

|ρ(x)| ≤ 1

(k + 1)!

∥∥∥ū(k+1)
∥∥∥
L∞

∣∣∣x− xi+ 1
2

∣∣∣k+1

. (49)

Applying our expression of the flux to ū gives

Fi+ 1
2
(ū) = Fi+ 1

2
(Q) + Fi+ 1

2
(ρ) = κi+ 1

2
Q′(xi+ 1

2
) + Fi+ 1

2
(ρ) = κi+ 1

2

dū

dx
(xi+ 1

2
) + Fi+ 1

2
(ρ),

where Q (resp. ρ) is the vector defined as ū with the function Q (resp. ρ) instead of ū (see (9)). Here, we
have used first that the flux is linear, second that it is exact for polynomials of degree k (see Appendix A), and
finally (48) with ` = 1.

Proving the result thus amounts to show that
∣∣∣Fi+ 1

2
(ρ)
∣∣∣ ≤ Chk. To this end, we write it as follows:

Fi+ 1
2
(ρ) =

(
0 1 0 . . . 0

)
M−1
k ρ,

and use (46)-(47):
Fi+ 1

2
(ρ) =

(
0 h−1 0 . . . 0

)
N−1
k ρ.

It is clear from estimate (49) that for each index `, we have

|ρ`| ≤ Ck
∥∥∥ū(k+1)

∥∥∥
L∞

hk+1,

where Ck depends only on k and on the constant appearing in (5). Hence,∣∣∣Fi+ 1
2
(ρ)
∣∣∣ ≤ Ck ∥∥N−1

k

∥∥hk.
Finally, property (47) allows to prove that

∥∥N−1
k

∥∥ is bounded independently of h, at least for h small enough.
This concludes the proof.

Remark 2.15. This proposition can be extended to the boundary fluxes. Indeed, for a Neumann boundary
condition, the consistency is obvious and for Dirichlet or mixed boundary conditions, the proof is similar.
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2.4 Convergence

Consider again problem (3) with α > 0, β = 0, γ = 1,
− d

dx

(
κ
dū

dx

)
+ αū = f in Ω,

κ
dū

dn
= 0 on ∂Ω.

(50)

We will start by proving that the scheme is convergent at order k − 1 in L1 norm. Next, this will allow us
to prove the convergence of the fluxes at order k − 1 in L2 norm.

2.4.1 Convergence at the order k − 1

The scheme reads as

−Fi+ 1
2
(u) + Fi− 1

2
(u) + αhiui = hifi, ∀i ∈ J1, nK, (51)

with ∀i ∈ J1, n− 1K,

Fi+ 1
2
(u) = κi+ 1

2

(
ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u)

)
= κi+ 1

2

(
1

hi+ 1
2

+
r+
i+ 1

2

(u)

ui+1

)
ui+1−κi+ 1

2

(
1

hi+ 1
2

+
r−
i+ 1

2

(u)

ui

)
ui, (52)

and

F 1
2
(u) = Fn+ 1

2
(u) = 0. (53)

In order to state our convergence result, we need the following stability property:

Assumption 2.16. If b ≥ 0 and Au = b, with bi = hifi,∀i, then ∀i, u−i ≤ C‖f‖L2(Ω), where u−i is the negative
part of ui and C > 0 a constant independent of h, b and u.

Note that, if the scheme is convergent of order 1
2 , then Assumption 2.16 is satisfied. Let us be more precise:

we assume that, denoting by ū the exact solution and u the numerical one, we have

‖u− ū‖L2 ≤ C
√
h‖f‖L2 ,

where the vector ū is defined by (9), the vector f is defined by (10), and C is a universal constant. Assuming
that f ≥ 0, we have ū ≥ 0, and this estimate implies∑

ui<0

hi (ui − ūi)2
+
∑
ui≥0

hi (ui − ūi)2 ≤ Ch‖f‖2L2 .

The second term in the right-hand side is non-negative, and, when ui < 0, (ui − ui)2
=
(
−u−i − ui

)2 ≥ (u−i )2 .
Hence,

n∑
i=1

hi
(
u−i
)2 ≤ C2h‖f‖2L2 .

Using (5), we infer that u−i ≤ C‖f‖L2 , that is, Assumption 2.16.
We now prove the following convergence result.

Proposition 2.17 (Convergence at order k − 1 in L1 norm). Let k ∈ N∗, ū ∈ Ck+1(Ω) be the exact solution
of (50) and assume that ū ≥ 0. Let e = (ūi − ui)1≤i≤n, where u is the solution of the scheme (51)-(52)-(53).
Assume that Assumption 2.16 is satisfied. Then, we have

‖e‖L1 ≤ Chk−1,

with ‖ · ‖L1 defined by (6).
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Proof. On the one hand the numerical flux defined by (52) satisfies (51) and on the other hand, the exact flux

F̄i+ 1
2

= κi+ 1
2

dū

dx
(xi+ 1

2
) satisfies

−F̄i+ 1
2

+ F̄i− 1
2

+ αhiūi = hifi, ∀i ∈ J1, nK.

Subtracting (51) from this equation gives

−(F̄i+ 1
2
−Fi+ 1

2
(u)) + (F̄i− 1

2
−Fi− 1

2
(u)) + αhi(ūi − ui) = 0, ∀i ∈ J1, nK.

Besides, the consistency of the fluxes gives that there exists a constant C > 0 such as

Fi+ 1
2
(ū) = F̄i+ 1

2
+Ri+ 1

2
, ∀i ∈ J1, n, K with |Ri+ 1

2
| ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk, where k is the order. (54)

These last two equations imply

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhiei = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK.

By choosing ∆ = 1
α max

1≤i≤n

(
Ri+ 1

2
−Ri− 1

2

hi

)
∈ R+, that is to say 0 ≤ ∆ ≤ C

∥∥ū(k+1)
∥∥
L∞

hk−1 such that

−Ri+ 1
2

+Ri− 1
2

+ αhi∆ ≥ 0, ∀i ∈ J1, nK,

and adding it to ei leads to

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhi(ei + ∆) = −Ri+ 1

2
+Ri− 1

2
+ αhi∆ ≥ 0, ∀i ∈ J1, nK.

The flux is not modified since the remainder only involves derivatives (∆ being a constant, it no longer appears
in the derivatives)

Fi+ 1
2
(e + ∆) = κi+ 1

2

(
ei+1 + ∆− ei −∆

hi+ 1
2

+ ri+ 1
2
(e)

)
= Fi+ 1

2
(e), ∀i ∈ J1, nK.

The corresponding matrix system writes

A(e + ∆) = R + αh∆,

with

(e + ∆)i = ei + ∆, (R + αh∆)i = −Ri+ 1
2

+Ri− 1
2

+ αhi∆ ≥ 0, ∀i ∈ J1, nK.

Using Assumption 2.16, we can deduce that

(ei + ∆)− ≤
∥∥∥∥ 1

hi

(
−Ri+ 1

2
+Ri− 1

2

)
+ α∆

∥∥∥∥
L2

≤
∥∥∥∥ 1

hi

(
−Ri+ 1

2
+Ri− 1

2

)∥∥∥∥
L2

+ α|∆| ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk−1. (55)

Summing this inequalities over i, we obtain

n∑
i=1

hi (ei + ∆)
− ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk−1. (56)

Next, we sum the equalities −Fi+ 1
2
(e) + Fi− 1

2
(e) + αhi(ei + ∆) = −Ri+ 1

2
+Ri− 1

2
+ αhi∆, finding∣∣∣∣∣α

n∑
i=1

hi (ei + ∆)

∣∣∣∣∣ ≤ C ∥∥∥ū(k+1)
∥∥∥
L∞

hk−1 + α∆ ≤ C
∥∥∥ū(k+1)

∥∥∥
L∞

hk−1,

where we have used (54) and the above bound on ∆. Since ei + ∆ = (ei + ∆)
+ − (ei + ∆)

−
, this implies

α

n∑
i=1

hi (ei + ∆)
+ ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk−1 + α

n∑
i=1

hi (ei + ∆)
−

18



Using (56), we conclude that
n∑
i=1

hi (ei + ∆)
+ ≤ C

∥∥∥ū(k+1)
∥∥∥
L∞

hk−1. (57)

Collecting (56) and (57), we conclude the proof.

2.4.2 Convergence of the fluxes

Let us denote by HM = {(ui)1≤i≤n} the set of cell values, HE = {(fi+ 1
2
)1≤i≤n−1} the set of node values and

consider homogeneous Neumann boundary conditions, that is, for all f ∈ HE

f 1
2

= fn+ 1
2

= 0. (58)

Let us define the scalar products 
(u|v)HM

=

n∑
i=1

hiuivi,

(f |g)HE
=

n−1∑
i=1

hi+ 1
2
fi+ 1

2
gi+ 1

2
,

(59)

and the operators
D : HM −→ HE defined by (Du)i+ 1

2
=
ui+1 − ui
hi+ 1

2

, 1 ≤ i ≤ n− 1,

D∗ : HE −→ HM defined by (D∗f)i = −
fi+ 1

2
− fi− 1

2

hi
, 1 ≤ i ≤ n.

(60)

Proposition 2.18. If condition (58) is satisfied the operators D and D∗ are adjoints of each other, that is to
say that (Du|f)HE

= (u|D∗f)HM
, ∀u ∈ HM , ∀f ∈ HE.

Proof. The definition of the scalar product gives

(Du|f)HE
=

n−1∑
i=1

hi+ 1
2
(Du)i+ 1

2
fi+ 1

2
,

which means

(Du|f)HE
=

n−1∑
i=1

(ui+1 − ui)fi+ 1
2
.

The two sums can be separated

(Du|f)HE
=

n−1∑
i=1

ui+1fi+ 1
2
−
n−1∑
i=1

uifi+ 1
2
.

We shift the index of the first sum, which gives

(Du|f)HE
=

n∑
i=2

uifi− 1
2
−
n−1∑
i=1

uifi+ 1
2
.

Then, the sums can be recombined as follows

(Du|f)HE
= unfn− 1

2
− u1f 3

2
−
n−1∑
i=2

ui(fi+ 1
2
− fi− 1

2
).

Condition (58) allows us to insert the boundary terms which are zero
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(Du|f)HE
= un(fn− 1

2
− fn+ 1

2
)− u1(f 3

2
− f 1

2
)−

n−1∑
i=2

ui(fi+ 1
2
− fi− 1

2
) = −

n∑
i=1

ui(fi+ 1
2
− fi− 1

2
) = (u, D∗f)HM

.

Thus, the operators D∗ and D are adjoints of each other.

Proposition 2.19 (Convergence of the fluxes at order k − 1). Let k ∈ N∗, ū ∈ Ck(Ω) be the exact solution of
(50) and assume that ū ≥ 0. Let us denote r(e) ∈ HE the vector whose components are ri+ 1

2
(e),∀i ∈ J0, nK

the remainders defined by (14) and the vector e ∈ HM defined by ei = ūi − ui,∀i ∈ J1, nK. Assume that
ui > 0,∀i ∈ J1, nK. Then we have

‖F(u)− F̄‖HE
≤ Chk−1,

where F(u) ∈ HE is defined by (F(u))i+ 1
2

= Fi+ 1
2
(u),∀i ∈ J0, nK, with Fi+ 1

2
given by (52) and (53), and F̄ is

defined by (F̄)i+ 1
2

= F̄i+ 1
2
, with F̄i+ 1

2
= κi+ 1

2

dū

dx
(xi+ 1

2
),∀i ∈ J0, nK.

Proof. The scheme

−Fi+ 1
2
(u) + Fi− 1

2
(u) + αhiui = hifi, ∀i ∈ J1, nK,

can be written as

D∗κ(Du + r(u)) + αu = f .

Besides, the exact flux F̄i+ 1
2

= κi+ 1
2

dū

dx
(xi+ 1

2
),∀i ∈ J1, nK also satisfies

−F̄i+ 1
2

+ F̄i− 1
2

+ αhiūi = hifi, ∀i ∈ J1, nK.

Since the fluxes are consistent there exists C such that

Fi+ 1
2
(ū) = F̄i+ 1

2
+Ri+ 1

2
, with |Ri+ 1

2
| ≤ Chk, ∀i ∈ J1, nK. (61)

Thus, we have

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhiei = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK,

that can be written

D∗κ(De + r(e)) + αe = D∗R.

Given v ∈ HM , we take the scalar product of this equation with v

(D∗κ(De + r(e))|v)HM
+ (αe|v)HM

= (D∗R|v)HM
,

that is to say

(D∗(κ(De + r(e))−R)|v)HM
+ (αe|v)HM

= 0.

Besides κ(De + r(e))−R can be rewritten as

κi+ 1
2
(De + r(e))i+ 1

2
−Ri+ 1

2
= −Fi+ 1

2
(u) + Fi+ 1

2
(ū)−Ri+ 1

2
= −Fi+ 1

2
(u) + F̄i+ 1

2
, ∀i ∈ J1, nK,

and Fi+ 1
2
(u) and F̄i+ 1

2
satisfy (58), so κ(De + r(e))−R satisfies (58) too.

Using Proposition 2.18 provides

(κ(De + r(e))|Dv)HE
+ (αe|v)HM

= (R|Dv)HE
.
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We define v ∈ HM by induction as follow
v1 = 0,

vi+1 = hi+ 1
2
κi+ 1

2

(
ei+1 − ei
hi+ 1

2

+ ri+ 1
2

)
+ vi ∀i ∈ J1, n− 1K,

whence Dv = κ(De + r(e)). We thus have

‖κ(De + r(e))‖2HE
+ (αe|v)HM

= (R|κ(De + r(e)))HE
.

The Cauchy-Schwarz inequality leads to

‖κ(De + r(e))‖2HE
+ (αe|v)HM

≤ ‖R‖HE
‖κ(De + r(e))‖HE

. (62)

Besides, we have

(αe|v)HM
= α

n∑
i=1

hieivi.

Replacing vi by its expression leads to

(αe|v)HM
= α

n∑
i=1

hiei

i−1∑
j=1

hj+ 1
2
κj+ 1

2

(
ej+1 − ej
hj+ 1

2

+ rj+ 1
2

)
.

The Cauchy-Schwarz inequality gives

|(αe|v)HM
| ≤ α

n∑
i=1

hi|ei|

i−1∑
j=1

hj+ 1
2

(
κj+ 1

2

(
ej+1 − ej
hj+ 1

2

+ rj+ 1
2

))2
1/2i−1∑

j=1

hj+ 1
2

1/2

,

hence

|(αe|v)HM
| ≤ α

(
n∑
i=1

hi|ei|

)
‖κ(De + r(e))‖HE

.

Inserting this estimate into (62), we have

‖κ(De + r(e))‖2HE
≤ α

(
n∑
i=1

hi|ei|

)
‖κ(De + r(e))‖HE

+ ‖R‖HE
‖κ(De + r(e))‖HE

,

hence

‖κ(De + r(e))‖HE
≤ ‖R‖HE

+ α

n∑
i=1

hi|ei|.

Equation (61) gives

‖κ(De + r(e))‖HE
≤ Chk + α

n∑
i=1

hi|ei|.

Proposition 2.17 gives
‖κ(De + r(e))‖HE

≤ Chk + αChk−1. (63)

Recalling that
(κ(De + r(e)))i+ 1

2
= Fi+ 1

2
(e) = Fi+ 1

2
(ū)−Fi+ 1

2
(u),

we infer

‖F(u)− F̄‖HE
= ‖F(u)−F(ū) + R‖HE

≤ ‖F(u)−F(ū)‖HE
+ ‖R‖HE

≤ Chk−1.

So the fluxes are convergent at order k − 1.
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2.4.3 Convergence at order k

Proposition 2.20 (Convergence at order k). Let k ∈ N∗, ū ∈ Ck+1(Ω) be the exact solution of (50) and assume
that ū ≥ 0. Let e = (ūi − ui)1≤i≤n, where u is the solution of the scheme (52)-(53). Assume that the matrix
A defining this scheme is uniformly coercive, that is, there exists a constant Cc > 0 independent of h such that

∀x ∈ Rn : xTAx ≥ Cc‖Dx‖2L2 ,

where the operator D is defined by (60). Then, we have

‖e‖L2 ≤ C‖u(k+1)‖L∞hk,

where the constant C does not depend on ū, u, h.

Proof. As in the proof of Proposition 2.17, we use the consistency of the flux to obtain that

−Fi+ 1
2
(e) + Fi− 1

2
(e) + αhiei = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK.

with |Ri+ 1
2
| ≤ C

∥∥ū(k+1)
∥∥
L∞

hk. The corresponding matrix system writes

Ae = R,

with
(e)i = ei, (R)i = −Ri+ 1

2
+Ri− 1

2
, ∀i ∈ J1, nK.

Taking line i of the system Ae = R, we multiply it by ei and sum over i:

eTAe =

n∑
i=1

(
−Ri+ 1

2
+Ri− 1

2

)
ei

Using a discrete integration by parts, then the Cauchy-Schwarz inequality, we have:

eTAe =

n−1∑
i=0

Ri+ 1
2
hi+ 1

2
(De)i+ 1

2
≤

(
n−1∑
i=0

hi+ 1
2
R2
i+ 1

2

)1/2(n−1∑
i=0

hi+ 1
2
(De)i+ 1

2

)1/2

≤ Chk‖De‖L2 .

The coercivity condition then gives
Cc‖De‖L2 ≤ Chk.

We then conclude the proof using a discrete Poincaré inequality.

2.4.4 Asymptotic behavior of the symmetry condition

Lemma 2.21. Let {xi}1≤i≤n be a mesh satisfying (4) and (5). Let k ∈ N∗, k > 2, ū ∈ Ck(Ω) be the exact
solution of (50) and assume that ū ≥ 0. Let u ∈ Rn be the solution of (51), (52) and (53) and assume that
ui > 0,∀i ∈ J1, nK. Assume moreover that dū

dx 6= 0 on Ω, then the condition (19) is asymptotically fulfilled as
h→ 0.

Proof. Proposition 2.19 shows that

ui+1 − ui
hi+ 1

2

+ ri+ 1
2
(u) =

dū

dx
(xi+ 1

2
) +O(hk−1),

and Proposition 2.17 that

ui+1 − ui = ūi+1 − ūi +O(hk−2) = hi+ 1
2

(
dū

dx
(xi+ 1

2
) +O(h)

)
.

Then since dū
dx (xi+ 1

2
) 6= 0, for h small enough these two quantities have the same sign.
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2.5 The case of discontinuous diffusion coefficient κ

In the case where κ is discontinuous at the node xi+ 1
2
, we compute two fluxes FL

i+ 1
2

(u) and FR
i+ 1

2

(u). The first

one is computed using a Taylor expansion in [xi, xi+ 1
2
] while the second one is computed via a Taylor expansion

on [xi+ 1
2
, xi+1]. Thus, we use two polynomial reconstructions, one on the left and the other on the right of

xi+ 1
2
. For each node, we shift the stencil so that it does not cross the node where the discontinuity is located.

Let us denote

FRi+ 1
2
(u) = κRi+ 1

2

(
ui+1 − ui+ 1

2

hi+1

2

+ rRi+ 1
2
(u)

)
and FLi+ 1

2
(u) = κLi+ 1

2

(
ui+ 1

2
− ui

hi

2

+ rLi+ 1
2
(u)

)
,

with

κRi+ 1
2

= κ(xi+ 1
2

+ ε) and κLi+ 1
2

= κ(xi+ 1
2
− ε),

where rR
i+ 1

2

(u) (resp. rL
i+ 1

2

(u)) denotes the remainder associated with the polynomial reconstruction of the

solution using the cells located at the right (resp. left) of the node xi+ 1
2
.

Thus, the continuous problem imposing the equality of the fluxes, we also impose it at the discrete level, that
is to say FR

i+ 1
2

(u) = FL
i+ 1

2

(u) which leads to

κRi+ 1
2

(
ui+1 − ui+ 1

2

hi+1

2

+ rRi+ 1
2
(u)

)
= κLi+ 1

2

(
ui+ 1

2
− ui

hi

2

+ rLi+ 1
2
(u)

)
,

which yields

ui+ 1
2

=
hihi+1

2(hi+1κLi+ 1
2

+ hiκRi+ 1
2

)

[
2

(
κR
i+ 1

2

ui+1

hi+1
+
κL
i+ 1

2

ui

hi

)
+ κRi+ 1

2
rRi+ 1

2
(u)− κLi+ 1

2
rLi+ 1

2
(u)

]
.

Replacing ui+ 1
2

by its expression in FL
i+ 1

2

or FR
i+ 1

2

gives

Fi+ 1
2
(u) = FLi+ 1

2
(u) = FRi+ 1

2
(u) =

2κL
i+ 1

2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

[
(ui+1 − ui) +

1

2

(
hi+1r

R
i+ 1

2
(u) + hir

L
i+ 1

2
(u)
)]
,

that is

Fi+ 1
2
(u) = α̃i+ 1

2
(ui+1 − ui) + r̃i+ 1

2
(u) (64)

with

α̃i+ 1
2

=
2κL

i+ 1
2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

, r̃i+ 1
2
(u) =

hi+1κ
L
i+ 1

2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

rRi+ 1
2
(u) +

hiκ
L
i+ 1

2

κR
i+ 1

2

hi+1κLi+ 1
2

+ hiκRi+ 1
2

rLi+ 1
2
(u).

The coefficient α̃i+ 1
2

being positive the trick to obtain monotonicity (Section 1.3) and the step of symmetrization
can be done again for this scheme. Besides, the previous analysis applies to this case. In the case where the
condition of symmetrization is not satisfied, the flux (64) is replaced by the first-order approximation

Fi+ 1
2
(u) = α̃i+ 1

2
(ui+1 − ui).

Remark 2.22. In the case of a discontinuous right hand side f , we use the same type of strategy. In such a
case, the second derivative of the solution ū is discontinuous. Thus, the reconstruction is made on each side of
the discontinuity.
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3 Numerical experiments

Before giving numerical results, we explain how we deal with possibly vanishing denominators. The definition
of the nonlinear scheme requires ui > 0,∀i ∈ J1, nK, but in practice, ui may vanish. In order to circumvent
this difficulty, it is possible to add a term proportional to hk to the denominator in the flux (as well as in the
expression of si+ 1

2
). Let ε > 0, the flux is given by1

Fi+ 1
2
(u) = κi+ 1

2

[(
1

hi+ 1
2

+
r+
i+ 1

2

(u) + si+ 1
2
(u)

ui+1 + εhk

)
ui+1 −

(
1

hi+ 1
2

+
r−
i+ 1

2

(u) + si+ 1
2
(u)

ui + εhk

)
ui

]
.

Let us now turn to numerical tests.

Given Ω =]0, 1[, κ a diffusion coefficient and g a function defined on ∂Ω consider Problem (3) with α = 0,
β = 1, γ = 0 −

d

dx

(
κ
dū

dx

)
= f in Ω,

ū = g on ∂Ω.

(65)

We will use three types of meshes:

1. regular meshes such that the possible discontinuities of the diffusion coefficient κ are placed at their
vertices,

2. deformed meshes, whose deformation is given by: x→ x+ 0.65x(1− x)(0.5− x) sin(0.8π),

3. random meshes, an example of which with 8 cells being given in Figure 2.

•
x 1

2

0
•
x 3

2 •
x 5

2 •
x 7

2 •
x 9

2 •
x 11

2 •
x 13

2 •
x 15

2 •
x 17

2

1

Figure 2: A random mesh with 8 cells.

3.1 L2 convergence for polynomial solutions

Given κ = 1, f(x) = −6x (resp. f(x) = −72x7), g(0) = 1 and g(1) = 2, the function ū(x) = x3 + 1 (resp.
ū(x) = x9 + 1) is solution to (65). We perform a convergence study for these problems on a deformed mesh
with 64 cells. The L2-error between the exact ū and approximated u solutions are reported in the Table 1.
The proof of exactness for polynomial of degree k (see appendix A) shows that the numerical solution must be
exact for an order greater than 3 (resp. 9). The table of convergence (1) agrees with the theory since the error
is zero, to machine precision, for the order greater than 3 (resp. 9).

1In the benchmarks we have chosen ε = 10−11.
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Order ū(x) = x3 + 1 ū(x) = x9 + 1

1 1.64e-04 1.56e-03
2 3.46e-06 7.00e-04
3 4.53e-15 2.70e-04
4 3.79e-15 1.39e-06
5 8.15e-15 7.43e-07
6 2.57e-14 5.24e-10
7 4.21e-15 7.07e-09
8 5.02e-15 6.58e-13
9 7.86e-15 8.17e-15

Table 1: The L2-error between the exact ū and approximated u solutions.

3.2 L2 convergence for a smooth diffusion coefficient

Given κ = exp(x), f(x) = 4 exp(x) + 4x exp(x)− π cos(πx) exp(x) + π2 exp(x) sin(πx) (note that f is positive),
g(0) = 4 and g(1) = 2, the function ū(x) = sin(πx) − 2x2 + 4 is solution to (65). We perform a convergence
study for this problem with the non-symmetric and symmetric schemes on the deformed mesh. The L2-error
and the L2-error of the fluxes between the exact ū and approximated u solutions are reported in Figures 3.
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Figure 3: L2-error (at the left) and L2-error of the fluxes (at the right) with the non-symmetric scheme for problem of
Sec. 3.2.

The results show that the numerical convergence order is at worst equal to the theorical order k (for the
theorical order 4 one obtains convergence at order 4) or better (for the theorical order 3 one obtains the order
4). Besides, the results are qualitatively the same for the symmetric case and for the non-symmetric case
(the results are only given for the non symmetric case because the figures are similar). We observe similar
convergence orders in L2 norm and in L2 norm of the fluxes. We also perform a convergence study for the same
problem on the random mesh: see Figures 4 to 5.
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Figure 4: L2-error with non-symmetric scheme and random mesh for problem of Sec. 3.2.
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Figure 5: L2-error on the fluxes with non-symmetric scheme and random mesh for problem of Sec. 3.2.

3.3 Comparison with a non-monotone scheme

Given κ = 1, f = π2 sin(πx) (note that f is positive), g(0) = g(1) = 0, the function ū(x) = sin(πx) is solution
to (65). We perform a study for this problem on a deformed mesh for the symmetrical scheme at order 3.
Results are summarized in Table 2. We can see that the solution obtained with the monotone scheme is always
positive while the one obtained with the non-monotone scheme has a negative component.
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Number of cells High order monotone scheme High order non monotone scheme
8 0 74
16 0 8
32 0 4
64 0 37
128 0 4

Table 2: Comparison of the number of negative components at the end of the fixed point algorithm between the monotone
and non-monotone schemes.

3.4 Discontinuous diffusion coefficient κ

Given κ such that

κ(x) =


1 if x ≤ 1

2
,

2 if x >
1

2
,

and f(x) = π2 sin(πx), the function

ū(x) = (sin(πx) + 2x)1{x≤ 1
2}

(x) +

(
1

2
sin(πx) + x+ 1

)
1{x> 1

2}
(x),

is solution to (65). We perform a convergence study for this problem, using the method described in Section 2.5,
on a cartesian mesh for order 1 to 9. Results are summarized in Figure 6. These graphs show that, in the case
of a discontinuous κ, the results are similar to those of the continuous case.
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Figure 6: L2-error with symmetric scheme and discontinuous κ for problem of Sec. 3.4.

4 Concluding remarks

In this paper we have proposed an arbitrary-order monotone scheme for the elliptic problem (3), on arbitrary
1D meshes. The properties of convergence at a given order, and the preservation of the positivity of the discrete
solution have been proven. We also proposed a symmetrized version of the method. We have shown how to
extend these schemes to the case of a discontinuous diffusion coefficient. These properties have been illustrated
numerically up to the order 9. In future works, we aim to extend these schemes to higher spatial dimensions
and to parabolic problems. We are quite confident in the fact that our scheme can be extended to 2D because
we used the same method to enforce monotonicity than Gao et al [15], who have applied it in the context of
2D diffusion on arbitrary meshes.
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A Exactness for polynomials of degree k

To simplify the calculation let us take a polynomial of degree k centered on xi+ 1
2

as an exact solution in order

to demonstrate that the approximation of
dū

dx
(xi+ 1

2
) is exact for polynomials of degree k. For

ū(x) =

k∑
p=0

ai+ 1
2 ,p

(x− xi+ 1
2
)p,

we obtain

d`ū

dx`
(x) =

k∑
p=`

p!

(p− `)!
ai+ 1

2 ,p
(x− xi+ 1

2
)p−`,

that is

d`ū

dx`
(xi+ 1

2
) = `!ai+ 1

2 ,`
.

Besides, mean values were used to estimate the values of u at the centers of the cells, so

ūi+1 =
1

hi+1

∫ x
i+3

2

x
i+1

2

k∑
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ai+ 1
2 ,p

(x− xi+ 1
2
)p =
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ai+ 1
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p+ 1
,

and
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2 ,n
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2
)p =

k∑
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2 ,p
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The flux is

Fi+ 1
2
(ū) =

κi+ 1
2

hi+ 1
2

[
ūi+1 − ūi −

k∑
p=2

hpi+1 + (−1)p+1hpi
(p+ 1)!
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2
)

]
,

where P is an interpolation polynomial of ū. Besides, P = ū in that case since ū is a polynomial of degree k
and P leaves invariant polynomials of degree k. The flux becomes

Fi+ 1
2
(ū) =

κi+ 1
2

hi+ 1
2

([
k∑
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(p+ 1)!
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2 ,p

)
,

that is to say
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2
(ū) = κi+ 1
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2 ,1
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.

The flux is exact for polynomials of degree k.
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