Alexander Arsenovic

Julien Hillairet

Jackson Anderson

Henrik Forsten

Vincent Rieß

Michael Eller

Noah Sauber

Robert Weikle

William Barnhart

Franz Forstmayr

Github Contributors

scikit-rf: An Open Source Python Package for Microwave Network Creation, Analysis and Calibration

Keywords:

With the rapid proliferation of telecommunication and radio-frequency (RF) applications, so too has demand grown for tools to design and characterize these devices. scikit-rf is a Python package designed to make RF/Microwave engineering both robust and approachable. The package provides a modern, object-oriented library for RF network analysis, circuit building, calibration, and simulation. Besides offering standard microwave network operations, such as reading/writing Touchstone files (.sNp files), connecting or de-embedding N -port networks, frequency/port slicing, concatenation or interpolations, it is also capable of advanced operations such as Vector Network Analyzer (VNA) calibrations, time-gating, vector fitting, interpolating between an individual set of networks, deriving network statistical properties and support of Virtual Instruments for direct communication to VNAs. The package also allows straightforward plotting of rectangular plots (dB, magnitude, phase, group delay, etc.), Smith Charts or automated uncertainty bounds.

The project was created in 2009 and has been continually developed since. The package is distributed under the Berkeley Software Distribution (BSD) licence and is actively developed by more than 50 volunteers on GitHub. The project has users in several universities and research institutes around the world as well as corporate users from large companies including Keysight, Rohde & Schwarz, National Instruments, Nvidia, * https://github.com/scikit-rf/scikit-rf/graphs/contributors 1 and 3M. As of 2021, the package has been downloaded more than 220,000 times since its creation and has been used in over thirty publications.

As the package is developed in Python, it makes it naturally compatible with the rich set of modern scientific Python libraries. Results can be shared and directly reproduced by other researchers using tools such as Binder or Google Colab. Being a Python library, it is also compatible with the robust testing and code coverage frameworks developed for the language, with reproducible modelling approaches using online virtualization services. Being open-source, users of scikit-rf are able to see exactly what the source code is doing and, if a feature does not exist, are able to freely contribute it to extend the library for their work and for others. And, of course, it is free.

Basic Usage of scikit-rf

Detailed installation instructions can be found in the scikit-rf documentation (https://scikit-rf.readthedocs. io/en/latest/). For those familiar with Python, it is no different from installing any other package, being distributed through both pip and Conda. After installation, the package can be imported, which is assumed for all the following examples:

The following sections outline some fundamental features of scikit-rf, and include code snippets to provide a starting point for new users.

Reading and Plotting Networks

The central object in the scikit-rf package is a N -port microwave Network object. A Network can be created in various ways, for example by reading a Touchstone file named measured data.s2p: e x a m p l e n e t w o r k = s k r f . Network (' m e a s u r e d d a t a . s2p ')

In order for the reader to reproduce the given examples, a test-case is provided in the package and can be imported via:

>>> from s k r f . data im por t r i n g s l o t >>> r i n g s l o t 2-Port Network : ' r i n g s l o t ' , 7 5 . 0 -1 1 0 . 0 GHz, 201 pts , z0 = [5 0 . + 0 . j 5 0 . + 0 . j]

The basic attributes of a microwave network are provided by the following properties of the Network class:

• s: Scattering parameter matrix

• frequency: Frequency object.

S-parameters are represented by a (n bf × N × N) NumPy array [START_REF] Harris | Array Programming with NumPy[END_REF] (https://numpy.org/), where n bf is the number of frequency points and N is the number of ports of the network. For example, to inspect the 2 × 2 scattering parameters for the first frequency element:

>>> r i n g s l o t . s [0] # o r r i n g s l o t . s [0 , :] a r r a y ([[-0 . 5 0 3 7 2 3 1 8 + 0 . 4 5 7 8 4 4 8 j , 0 . 6 1 3 4 5 7 1 +0.36678139 j] ,

[0 . 6 1 3 4 5 7 1 +0.36678139 j , -0.19958433+0.6483347 j]])

The Network object has numerous other properties and methods, which can found in the documentation.

If you are using IPython [START_REF] Perez | IPython: A System for Interactive Scientific Computing[END_REF], the Jupyter Notebook [START_REF] Granger | Jupyter: Thinking and Storytelling With Code and Data[END_REF] or any advanced Python editor, then these properties and methods can be 'tabbed' out on the command line:

>>> r i n g s l o t . s<TAB> r i n g s l o t . s r i n g s l o t . s a r c l r i n g s l o t . s 1 1 r i n g s l o t . s a r c l u n w r a p . . . scikit-rf uses the matplotlib package [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF] to generate various different types plots for the attributes of a Network. For example, plotting the ring slot's scattering parameters on the Smith chart can be done in one line; with the output shown in Fig. 1(a):

>>> r i n g s l o t . p l o t s s m i t h (lw =2)

Frequency ranges of Network's can also be selected by using human-readable strings. For instance, the following line will plot the logarithmic magnitude of S 1,1 in decibels for the frequency range of 80 -90 GHz, expressed in "natural" language. The output is shown in Fig. 1

Network Operations

Element-wise mathematical operations on the scattering parameter matrices are accessible through overloaded operators. Hence, Networks can be added, subtracted, multiplied along frequency and port axes. For example, to plot the complex difference between a short and a delayshort: De-embedding can be accomplished by cascading the inverse of a network, as shown in Fig. 3. This is implemented in scikit-rf through the property Network.inv property. To de-embed the short from delayshort: As shown in the previous example, Python comparison operators such as == also work with Network objects.

Statistical Analysis

The NetworkSet class is useful for analysing multiple .sNp files initialized as Network objects or read from a directory. NetworkSet's implement the same plotting routines as regular Network's, which is convenient to plot a group of frequency responses. In addition, the NetworkSet class enables statistical analyses, such as calculating and plotting the uncertainty with the method plot uncertainty bounds s db. This is demonstrated in the following example, with the outputs shown in Fig. 4: The standard deviations of data in a NetworkSet can be applied to a variety of attributes. The method uncertainty ntwk triplet can be utilized for gain output, similar to the previous example. For that case, the arguments s mag and 3 are used to specify that the uncertainty bounds should be for the magnitude of the scattering parameters within the range of 3 standard deviations. The Network objects generated by this function can be saved in various formats to be reused later:

from s k r f .
ntwk mean , ntwk lb , ntwk ub = n t w k l i s t . u n c e r t a i n t y n t w k t r i p l e t (' s mag ' , 3)

Interpolation and Concatenation

A common need is to change the number of frequency points of a Network, for instance, but the previous operators and cascading functions require the networks to have matching frequencies:

>>> from s k r f . data im por t w r 2 p 2 l i n e 1 a s l i n e 1

n e x t l i n e f a i l s due t o d i f f e r e n t f r e q u e n c i e s >>> l i n e 1 + l i n e

n e x t l i n e works >>> l i n e . i n t e r p o l a t e f r o m f (l i n e 1 . f r e q u e n c y) + l i n e 1

A related application is the need to combine networks which cover different frequency ranges. Two Networks can be concatenated (stitched) using stitch(), which concatenates the Networks along their frequency axis.

For example, to combine a WR-2.2 Network with a WR-1.5 Network:

>>> from s k r f . data im por t w r 2 p 2 l i n e , w r 1 p 5 l i n e >>> b i g l i n e = s k r f . s t i t c h (w r 2 p 2 l i n e , w r 1 p 5 l i n e)

Port Impedance Re-Normalization

Scattering parameters are defined for a given reference impedance Z 0 . It can be necessary to re-normalize these parameters to a different reference impedance. This example demonstrates how to use scikit-rf to re-normalize the scattering parameters of a Network to different port impedances. Although trivial, this example creates a matched load in 50 Ω and then re-normalizes to a 25 Ω environment, producing a reflection coefficient of 1/3. In case of complex reference impedances, scikit-rf supports both power-waves and pseudowaves scattering parameter definitions [START_REF] Williams | Traveling Waves and Power Waves: Building a Solid Foundation for Microwave Circuit Theory[END_REF]. 3 Calibration

It is possible with scikit-rf to calibrate a device under test (DUT), assuming that an acceptable set of standards have been measured and a corresponding set of ideal responses is known. This may be referred to as offline calibration, because it is not occurring on-board the VNA itself. One benefit of this technique is that it provides maximal flexibility for non-conventional calibrations, and preserves all raw data. Self-calibration algorithms, such as Thru-Reflect-Line (TRL) [START_REF] Engen | Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer[END_REF], do not require predefined ideal responses.

Several calibration routines are available in scikit-rf, for single port, two-ports or multi-ports networks.

Traditional 12-terms [START_REF] Marks | Formulations of the Basic Vector Network Analyzer Error Model Including Switch-Terms[END_REF] or 16-terms [START_REF] Silvonen | Calibration of 16-Term Error Model[END_REF] error models are available, as well as 8-terms models [START_REF] Speciale | A Generalization of the TSD Network-Analyzer Calibration Procedure, Covering n-Port Scattering-Parameter Measurements, Affected by Leakage Errors[END_REF], Short-Open-Load-Thru (SOLT) [START_REF] Kruppa | An Explicit Solution for the Scattering Parameters of a Linear Two-Port Measured with an Imperfect Test Set (Correspondence)[END_REF], overdetermined one-port [START_REF] Bauer | De-Embedding and Unterminating[END_REF], Unknown-Thru [START_REF] Ferrero | Two-Port Network Analyzer Calibration Using an Unknown 'Thru[END_REF], Short-Delay-Delay-Load (SDDL) [START_REF] Liu | A Reflectometer Calibration Method Resistant to Waveguide Flange Misalignment[END_REF], and some special algorithms developed by our contributors. In some cases, it may be necessary or desirable to use a one-port network analyser to determine the full set of scattering parameters of a twoport device. This technique is called one-port two-tier calibration [START_REF] Ou | Determine Two-Port S-Parameters from One-Port Measurements Using Calibration Substrate Standards[END_REF] and is also implemented in scikit-rf. A complete list can be found on the scikit-rf website and only a single one-port is given as an example in this section.

One-Port Example

Multi-Line TRL Calibration

scikit-rf can also be used for wideband Thru-Reflect-Line (TRL) calibration using multiple lines [START_REF] Marks | A Multiline Method of Network Analyzer Calibration[END_REF]. The necessary calibration standards in TRL calibration involve at least two transmission lines of different lengths and one or more reflective loads. Exact responses of the transmission lines and reflective loads does not need to be known and will be solved during the calibration. Ordinary SOLT or LRRM [START_REF] Davidson | LRM and LRRM Calibrations with Automatic Determination of Load Inductance[END_REF] calibration usually moves the reference plane after the calibration to the SMA connector or probe tip used to contact the calibration standards. TRL calibration can be used to move the reference planes to the transmission lines on the substrate being measured if every measured standard includes a similar launch to the transmission lines. This makes TRL calibration very useful when accurate short, open, load and thru standards cannot be manufactured, or when the measurement reference plane needs to be on the substrate being measured.

Time-Domain and Gating

Time-gating is a processing technique which is commonly used to pinpoint a response of interest in the presence of multiple reflections in order to isolate their effects [START_REF] Cronson | Time-Domain Measurements of Microwave Components[END_REF][START_REF] Bennett | Time-Domain Electromagnetics and Its Applications[END_REF]. This is commonly done on-board a VNA.

However, if instead the time-gating occurs offline on a computer, the user can keep the raw measurements separate from the processed results. This is important so that the processing algorithm can be altered in the future without remeasuring the data.

In the following example, the time-gating functions of scikit-rf are used to filter out the effects of an undesired reflection. This can be done by using the method Network.time gate, and provide it an appropriate centre and span (in nanoseconds): To see the effects of the gate, both the original and gated response are compared. As shown in Fig. 5, the original response shows an interference pattern in the frequency-domain due to this undesirable reflection at 0.2 ns. After gating, the response is cleaned.

Circuit Building

scikit-rf enables the building of a circuit with arbitrary topology, consisting of an arbitrary number of N -port Network's connected together. Similar to an electronic circuit simulator, the circuit must have one or more ports connected to the circuit. With the Circuit object, the combined responses of the M -port network can be calculated (and thus its network parameters: S, Z, etc.), where M is the number of ports defined.

Moreover, the Circuit object also allows calculating the scattering matrix S of the entire circuit, that is the "internal" scattering matrices for the various intersections in the circuit. The calculation algorithm is based on [START_REF] Hallbjörner | Method for Calculating the Scattering Matrix of Arbitrary Microwave Networks Giving Both Internal and External Scattering[END_REF]. [(network1 , 1) , (network2 , 0) , (network5 , 0)] ,

[(network1 , 2) , (network3 , 0)] ,

[

[(network2 , 2) , (p o r t 2 , 0)] ,

[

In this example, the Circuit elements port1, port2, ground1 and all the network1 to network5 are assumed to be scikit-rf Network objects with the same Frequency attribute. The individual networks can have different (real) reference impedances and mismatches are taken into account. Note that port 1 of network4 is left open, so is not described in the connection list. Once the connection list is defined, the Circuit is built with: r e s u l t i n g c i r c u i t = s k r f . C i r c u i t (c o n n e c t i o n s)

The resulting 2-ports Network is obtained with Circuit.network: r e s u l t i n g n e t w o r k = r e s u l t i n g c i r c u i t . network

Vector Fitting

Microwave circuit design requires simulations in the time or frequency-domain with accurate models of all involved circuit elements. For passive structures, electromagnetic field simulations or measurements can provide accurate network models in the form of sampled frequency responses, but these cannot directly be used in circuit simulators such as SPICE. To translate the sampled frequency responses of a N -port network into a model for circuit simulations, scikit-rf provides an implementation of the well-known vector fitting algorithm to fit the samples in the frequency-domain [START_REF] Gustavsen | Rational Approximation of Frequency Domain Responses by Vector Fitting[END_REF]. The rational basis functions used for the fit enable the subsequent generation of linear equivalent circuits based on resistors, capacitors, inductors, and controlled current and voltage sources to be used in most types of circuit simulators [START_REF] Antonini | SPICE Equivalent Circuits of Frequency-Domain Responses[END_REF].

To summarize the vector fitting approach, the vector H(s) represents the stack of fitting functions for the N • N individual network responses defined in the Laplace domain with s = σ + jω:

H(s) = d + s e + K k=1 z k s -p k . (1)
In (1), H(s) includes a series of K rational fractions with a common set of poles p k for all the responses of the network, but with individual zero vectors z k , as well as individual constant and proportional vectors d and e, respectively.

For example, the scattering parameters of a 2-port can be subjected to vector fitting with K poles. The objective is therefore to match the original network samples at all sampling frequencies

ω m ∈ [ω 1 , ω 2 , • • • , ω M]:          S 11 (ω m) S 12 (ω m) S 21 (ω m) S 22 (ω m)          ! =         
         . (2)
The fitting process involves running an iterative least-squares algorithm [START_REF] Gustavsen | Rational Approximation of Frequency Domain Responses by Vector Fitting[END_REF], which is implemented in scikit-rf including the speed improvements proposed in [START_REF] Gustavsen | Improving the Pole Relocating Properties of Vector Fitting[END_REF] and [START_REF] Deschrijver | Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method[END_REF].

In scikit-rf, the class VectorFitting is instanced with the Network to be fitted. A subsequent call of the vector fit routine starts the fitting process with the number of real and complex-conjugate poles defined

Figure 1 :

 1 Figure 1: Scattering parameters of the ring slot plotted on a Smith chart (a) and in logarithmic magnitude (b).

>>>Fig. 2 ,

 2 Fig. 2, cascaded connection of two individual 2-port networks line and short, can simply be calculated with: >>> s h o r t = s k r f . data . w r 2 p 2 s h o r t >>> l i n e = s k r f . data . w r 2 p 2 l i n e >>> d e l a y s h o r t = l i n e * * s h o r t

>>> s h o r t 2 =

 2 l i n e . i n v * * d e l a y s h o r t >>> s h o r t 2 == s h o r t True

Figure 2 :

 2 Figure 2: Cascading two 2-Port Networks in scikit-rf works with the ** operator.

Figure 3 :

 3 Figure 3: Illustration of de-embedding using the inverse and cascade operators in scikit-rf.

Figure 4 :

 4 Figure 4: Logarithmic magnitudes of S 11 of the ro example networks. (a) Individual frequency responses. (b) Calculated average and uncertainty bound (3σ).

 >>> m a t c h a t 5 0 = s k r f . wr10 . match () >>> m a t c h a t 5 0 1-Port Network : ' ' , 7 5 . 0 -1 1 0 . 0 GHz, 1001 pts , z0 = [5 0 . + 0 . j] >>> m a t c h a t 5 0 . s [0] # S-p a r a m e t e r f o r t h e f i r s t f r e q u e n c y p o i n t a r r a y ([[0 . + 0 . j]]) >>> m a t c h a t 5 0 . r e n o r m a l i z e (25) >>> m a t c h a t 5 0 1-Port Network : ' ' , 7 5 . 0 -1 1 0 . 0 GHz, 1001 pts , z0 = [2 5 . + 0 . j] >>> m a t c h a t 5 0 . s [0] a r r a y ([[0 . 3 3 3 3 3 3 3 3 + 0 . j]])

A

 calibration in scikit-rf is generated using the Calibration object. In general, Calibration objects require two arguments: a list of measured Network's and a list of ideal Network's. The following example assumes that a set of measured and ideal network standards are stored in separate directories named ideals and measured, for example a conventional short-open-load (SOL) calibration kit. These are used to create a one-port Calibration and to subsequently correct a measured DUT: from s k r f . c a l i b r a t i o n i mpo rt OnePort # r e a d s a l l Touchstone f i l e s l o c a t e d i n t h e s p e c i f i e d d i r e c t o r y m y i d e a l s = s k r f . l o a d a l l t o u c h s t o n e s i n d i r (' i d e a l s / ') my measured = s k r f . l o a d a l l t o u c h s t o n e s i n d i r (' measured / ') # c r e a t e a C a l i b r a t i o n i n s t a n c e c a l = s k r f . OnePort (\ i d e a l s = [m y i d e a l s [k] f o r k i n [' s h o r t ' , ' open ' , ' l o a d ']] , measured = [my measured [k] f o r k i n [' s h o r t ' , ' open ' , ' l o a d ']] ,) # run c a l i b r a t i o n a l g o r i t h m c a l . run () # a p p l y i t t o a DUT dut = s k r f . Network (' my dut . s1p ') d u t c a l e d = c a l . a p p l y c a l (dut)

p r o b e s 1 1 1 -

 11 = s k r f . Network (' . / probe . s2p ') . s 1

Figure 5 :

 5 Figure 5: Comparison of the original network response S 11 with its gated version. (a) In the time-domain. (b) In the frequency-domain.

Figure 6 :

 6 Figure 6: Example of a Circuit made of various kinds of N -port Network's.

Fig. 6]

 6 Fig. 6 illustrates a network with 2 ports, Network elements N i and intersections. In order to define such a circuit, the connection list needs to be defined, which describes how the networks are connected: c o n n e c t i o n s = [[(network1 , n e t w o r k 1 p o r t n b) , (network2 , n e t w o r k 2 p o r t n b) , (network2 , n e t w o r k 2 p o r t n b) , . . .] ,

 in the function arguments. Once the fitting is finished, the function write spice subcircuit s can be called to generate a SPICE subcircuit file based on the fitted poles p, zeros z, constants d, and proportional coefficients e of the scattering parameter responses:

Figure 7 :•---

 7 Figure 7: Selected scattering parameter responses of a vector fitted noisy 4-port example network. (a) Magnitudes in linear scale with markers for the samples and solid lines for the fit. (b) Absolute error magnitudes of the respective fits: absolute error = |S fit,i,1 -S sample,i,1 |. (c) Simulation of the scattering parameters with ngspice using the exported SPICE subcircuit.

 (b):

	>>> r i n g s l o t [' 80-90 ghz '] . p l o t s d b (m=0 , n=0)
	Other parameters are accessible, such as impedance (Z), admittance (Y), transfer (T) or chain (ABCD)
	parameters using ring slot.z, ring slot.y, ring slot.t or ring slot.a, respectively. Several other fea-
	tures related to network processing can be found in the scikit-rf documentation. The next sections illustrate
	a few of them.

 d 11 + jω m e 11 +

		K	z k,11
		k=1	jωm-p k
	d 12 + jω m e 12 +	K k=1	z k,12 jωm-p k
	d 21 + jω m e 21 +	K k=1	z k,21 jωm-p k
	d 22 + jω m e 22 +	K k=1	z k,22 jωm-p k

nw = s k r f . Network (' example . s4p ')

v f = s k r f . V e c t o r F i t t i n g (nw)

v f . v e c t o r f i t (n p o l e s r e a l =2 , n p o l e s c m p l x =32)

v f . w r i t e s p i c e s u b c i r c u i t s (' example . sp ')

Acknowledgment scikit-rf would not be possible without the feedback, bug fixes, and new features contributed by its user community. Visit https://github.com/scikit-rf/scikit-rf/graphs/contributors to see a full list of contributors.