
HAL Id: cea-03410226
https://cea.hal.science/cea-03410226

Submitted on 31 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

scikit-rf: An open source Python package for microwave
network creation, analysis and calibration

Alexander Arsenovic, Julien Hillairet, Jackson Anderson, Henrik Forsten,
Vincent Riess, Michael Eller, Noah Sauber, Robert Weikle, William Barnhart,

Franz Forstmayr

To cite this version:
Alexander Arsenovic, Julien Hillairet, Jackson Anderson, Henrik Forsten, Vincent Riess, et al.. scikit-
rf: An open source Python package for microwave network creation, analysis and calibration. IEEE
Microwave Magazine, In press, �10.1109/MMM.2021.3117139�. �cea-03410226�

https://cea.hal.science/cea-03410226
https://hal.archives-ouvertes.fr

scikit-rf: An Open Source Python Package for

Microwave Network Creation, Analysis and

Calibration

Alexander Arsenovic, Julien Hillairet, Jackson Anderson, Henrik Forsten,

Vincent Rieß, Michael Eller, Noah Sauber, Robert Weikle,

William Barnhart, Franz Forstmayr, and GitHub Contributors∗,

1 Context and Motivations

With the rapid proliferation of telecommunication and radio-frequency (RF) applications, so too has demand

grown for tools to design and characterize these devices. scikit-rf is a Python package designed to make

RF/Microwave engineering both robust and approachable. The package provides a modern, object-oriented

library for RF network analysis, circuit building, calibration, and simulation. Besides offering standard mi-

crowave network operations, such as reading/writing Touchstone files (.sNp files), connecting or de-embedding

N -port networks, frequency/port slicing, concatenation or interpolations, it is also capable of advanced opera-

tions such as Vector Network Analyzer (VNA) calibrations, time-gating, vector fitting, interpolating between

an individual set of networks, deriving network statistical properties and support of Virtual Instruments for

direct communication to VNAs. The package also allows straightforward plotting of rectangular plots (dB,

magnitude, phase, group delay, etc.), Smith Charts or automated uncertainty bounds.

The project was created in 2009 and has been continually developed since. The package is distributed

under the Berkeley Software Distribution (BSD) licence and is actively developed by more than 50 volunteers

on GitHub. The project has users in several universities and research institutes around the world as well as

corporate users from large companies including Keysight, Rohde & Schwarz, National Instruments, Nvidia,

∗https://github.com/scikit-rf/scikit-rf/graphs/contributors

1

https://github.com/scikit-rf/scikit-rf/graphs/contributors

and 3M. As of 2021, the package has been downloaded more than 220,000 times since its creation and has

been used in over thirty publications.

As the package is developed in Python, it makes it naturally compatible with the rich set of modern

scientific Python libraries. Results can be shared and directly reproduced by other researchers using tools

such as Binder or Google Colab. Being a Python library, it is also compatible with the robust testing and

code coverage frameworks developed for the language, with reproducible modelling approaches using online

virtualization services. Being open-source, users of scikit-rf are able to see exactly what the source code is

doing and, if a feature does not exist, are able to freely contribute it to extend the library for their work and

for others. And, of course, it is free.

2 Basic Usage of scikit-rf

Detailed installation instructions can be found in the scikit-rf documentation (https://scikit-rf.readthedocs.

io/en/latest/). For those familiar with Python, it is no different from installing any other package, being

distributed through both pip and Conda. After installation, the package can be imported, which is assumed

for all the following examples:

1 import s k r f

The following sections outline some fundamental features of scikit-rf, and include code snippets to provide

a starting point for new users.

2.1 Reading and Plotting Networks

The central object in the scikit-rf package is a N -port microwave Network object. A Network can be created

in various ways, for example by reading a Touchstone file named measured data.s2p:

1 example network = sk r f . Network (’ measured data . s2p ’)

In order for the reader to reproduce the given examples, a test-case is provided in the package and can be

imported via:

1 >>> from s k r f . data import r i n g s l o t

2 >>> r i n g s l o t

3 2−Port Network : ’ r i ng s l o t ’ , 75.0−110.0 GHz, 201 pts , z0 =[50.+0. j 50.+0. j]

The basic attributes of a microwave network are provided by the following properties of the Network class:

• s: Scattering parameter matrix.

• z0: Port impedance matrix.

2

https://scikit-rf.readthedocs.io/en/latest/
https://scikit-rf.readthedocs.io/en/latest/

ring slot, S11

ring slot, S12

ring slot, S21

ring slot, S22

(a)

80 90 100 110

Frequency (GHz)

−30

−20

−10

0

M
a
gn

it
u

d
e

(d
B

)

ring slot, S11

ring slot, S12

ring slot, S21

ring slot, S22

(b)

Figure 1: Scattering parameters of the ring slot plotted on a Smith chart (a) and in logarithmic magnitude
(b).

• frequency: Frequency object.

S-parameters are represented by a (nbf ×N ×N) NumPy array [1] (https://numpy.org/), where nbf is

the number of frequency points and N is the number of ports of the network. For example, to inspect the

2× 2 scattering parameters for the first frequency element:

1 >>> r i n g s l o t . s [0] # or r i n g s l o t . s [0 , :]

2 array ([[−0.50372318+0.4578448 j , 0 .6134571 +0.36678139 j] ,

3 [0 .6134571 +0.36678139 j , −0.19958433+0.6483347 j]])

The Network object has numerous other properties and methods, which can found in the documentation.

If you are using IPython[2], the Jupyter Notebook[3] or any advanced Python editor, then these properties

and methods can be ‘tabbed’ out on the command line:

1 >>> r i n g s l o t . s<TAB>

2 r i n g s l o t . s r i n g s l o t . s a r c l

3 r i n g s l o t . s11 r i n g s l o t . s a rc l unwrap . . .

scikit-rf uses the matplotlib package [4] to generate various different types plots for the attributes of a

Network. For example, plotting the ring slot’s scattering parameters on the Smith chart can be done in one

line; with the output shown in Fig. 1(a):

1 >>> r i n g s l o t . p l o t s sm i t h (lw=2)

Frequency ranges of Network’s can also be selected by using human-readable strings. For instance, the

3

https://numpy.org/
https://scikit-rf.readthedocs.io

following line will plot the logarithmic magnitude of S1,1 in decibels for the frequency range of 80− 90 GHz,

expressed in ”natural” language. The output is shown in Fig. 1(b):

1 >>> r i n g s l o t [’ 80−90ghz ’] . p l o t s db (m=0, n=0)

Other parameters are accessible, such as impedance (Z), admittance (Y), transfer (T) or chain (ABCD)

parameters using ring slot.z, ring slot.y, ring slot.t or ring slot.a, respectively. Several other fea-

tures related to network processing can be found in the scikit-rf documentation. The next sections illustrate

a few of them.

2.2 Network Operations

Element-wise mathematical operations on the scattering parameter matrices are accessible through overloaded

operators. Hence, Networks can be added, subtracted, multiplied along frequency and port axes. For example,

to plot the complex difference between a short and a delayshort:

1 >>> from s k r f . data import wr2p2 short as shor t

2 >>> from s k r f . data import wr2p2 de layshort as de l ay sho r t

3 >>> d i f f e r e n c e = (shor t − de l ay sho r t)

4 >>> d i f f e r e n c e . p lot s mag (l a b e l=’Mag o f d i f f e r e n c e ’)

Another common application is calculating the phase difference between two networks using the division

operator (/):

1 >>> (de l ay shor t / shor t) . p l o t s d e g (l a b e l=’ Detrended Phase ’)

2.3 Cascading and De-Embedding

scikit-rf supports the connection of arbitrary ports of N-port networks. Cascading and de-embedding 2-port

networks with scikit-rf can also be done though the Python power operator (**). For example, as shown in

Fig. 2, cascaded connection of two individual 2-port networks line and short, can simply be calculated

with:

1 >>> shor t = s k r f . data . wr2p2 short

2 >>> l i n e = s k r f . data . wr2p2 l ine

3 >>> de l ay sho r t = l i n e ∗∗ shor t

De-embedding can be accomplished by cascading the inverse of a network, as shown in Fig. 3. This is im-

plemented in scikit-rf through the property Network.inv property. To de-embed the short from delayshort:

1 >>> sho r t 2 = l i n e . inv ∗∗ de l ay sho r t

2 >>> sho r t 2 == shor t

3 True

4

Figure 2: Cascading two 2-Port Networks in scikit-rf works with the ** operator.

Figure 3: Illustration of de-embedding using the inverse and cascade operators in scikit-rf.

As shown in the previous example, Python comparison operators such as == also work with Network

objects.

2.4 Statistical Analysis

The NetworkSet class is useful for analysing multiple .sNp files initialized as Network objects or read from

a directory. NetworkSet’s implement the same plotting routines as regular Network’s, which is convenient

to plot a group of frequency responses. In addition, the NetworkSet class enables statistical analyses,

such as calculating and plotting the uncertainty with the method plot uncertainty bounds s db. This is

demonstrated in the following example, with the outputs shown in Fig. 4:

1 from s k r f . data import ro 1 , ro 2 , ro 3

2 n twk l i s t = s k r f . NetworkSet ([ro 1 , ro 2 , ro 3])

3 n twk l i s t . p l o t s db ()

4 n twk l i s t . p l o t unce r t a in ty bounds s db (l a b e l=’ ro mean with uncerta inty , S11 ’)

The standard deviations of data in a NetworkSet can be applied to a variety of attributes. The method

uncertainty ntwk triplet can be utilized for gain output, similar to the previous example. For that case,

the arguments s mag and 3 are used to specify that the uncertainty bounds should be for the magnitude of

the scattering parameters within the range of 3 standard deviations. The Network objects generated by this

function can be saved in various formats to be reused later:

1 ntwk mean , ntwk lb , ntwk ub = n twk l i s t . un c e r t a i n t y n twk t r i p l e t (’ s mag ’ , 3)

5

500 550 600 650 700 750

Frequency (GHz)

−16

−15

−14

−13

M
a
g
n

it
u

d
e

(d
B

)

ro1, S11

ro2, S11

ro3, S11

(a)

500 550 600 650 700 750

Frequency (GHz)

−16

−15

−14

−13

M
a
g
n

it
u

d
e

(d
B

)

(b)

Figure 4: Logarithmic magnitudes of S11 of the ro example networks. (a) Individual frequency responses.
(b) Calculated average and uncertainty bound (3σ).

2.5 Interpolation and Concatenation

A common need is to change the number of frequency points of a Network, for instance, but the previous

operators and cascading functions require the networks to have matching frequencies:

1 >>> from s k r f . data import wr2p2 l ine1 as l i n e 1

2 # next l i n e f a i l s due to d i f f e r e n t f r e qu en c i e s

3 >>> l i n e 1 + l i n e

4 # next l i n e works

5 >>> l i n e . i n t e r p o l a t e f r om f (l i n e 1 . f requency) + l i n e 1

A related application is the need to combine networks which cover different frequency ranges. Two Networks

can be concatenated (stitched) using stitch(), which concatenates the Networks along their frequency axis.

For example, to combine a WR-2.2 Network with a WR-1.5 Network:

1 >>> from s k r f . data import wr2p2 l ine , wr1p5 l ine

2 >>> b i g l i n e = s k r f . s t i t c h (wr2p2 l ine , wr1p5 l ine)

2.6 Port Impedance Re-Normalization

Scattering parameters are defined for a given reference impedance Z0. It can be necessary to re-normalize

these parameters to a different reference impedance. This example demonstrates how to use scikit-rf to

re-normalize the scattering parameters of a Network to different port impedances. Although trivial, this

example creates a matched load in 50 Ω and then re-normalizes to a 25 Ω environment, producing a reflection

coefficient of 1/3. In case of complex reference impedances, scikit-rf supports both power-waves and pseudo-

waves scattering parameter definitions [5].

6

1 >>> match at 50 = s k r f . wr10 . match ()

2 >>> match at 50

3 1−Port Network : ’ ’ , 75.0−110.0 GHz, 1001 pts , z0 =[50.+0. j]

4 >>> match at 50 . s [0] # S−parameter f o r the f i r s t f requency po int

5 array ([[0 . + 0 . j]])

6 >>> match at 50 . r enorma l i z e (25)

7 >>> match at 50

8 1−Port Network : ’ ’ , 75.0−110.0 GHz, 1001 pts , z0 =[25.+0. j]

9 >>> match at 50 . s [0]

10 array ([[0 . 33333333+0 . j]])

3 Calibration

It is possible with scikit-rf to calibrate a device under test (DUT), assuming that an acceptable set of standards

have been measured and a corresponding set of ideal responses is known. This may be referred to as offline

calibration, because it is not occurring on-board the VNA itself. One benefit of this technique is that it

provides maximal flexibility for non-conventional calibrations, and preserves all raw data. Self-calibration

algorithms, such as Thru-Reflect-Line (TRL)[6], do not require predefined ideal responses.

Several calibration routines are available in scikit-rf, for single port, two-ports or multi-ports networks.

Traditional 12-terms [7] or 16-terms [8] error models are available, as well as 8-terms models [9], Short-

Open-Load-Thru (SOLT) [10], overdetermined one-port [11], Unknown-Thru [12], Short-Delay-Delay-Load

(SDDL) [13], and some special algorithms developed by our contributors. In some cases, it may be necessary

or desirable to use a one-port network analyser to determine the full set of scattering parameters of a two-

port device. This technique is called one-port two-tier calibration [14] and is also implemented in scikit-rf. A

complete list can be found on the scikit-rf website and only a single one-port is given as an example in this

section.

3.1 One-Port Example

A calibration in scikit-rf is generated using the Calibration object. In general, Calibration objects require

two arguments: a list of measured Network’s and a list of ideal Network’s. The following example assumes

that a set of measured and ideal network standards are stored in separate directories named ideals and

measured, for example a conventional short-open-load (SOL) calibration kit. These are used to create a

one-port Calibration and to subsequently correct a measured DUT:

1 from s k r f . c a l i b r a t i o n import OnePort

2 # reads a l l Touchstone f i l e s l o ca t ed in the s p e c i f i e d d i r e c t o r y

7

3 my idea l s = s k r f . l o a d a l l t o u c h s t o n e s i n d i r (’ i d e a l s / ’)

4 my measured = sk r f . l o a d a l l t o u c h s t o n e s i n d i r (’ measured/ ’)

5 # crea t e a Ca l i b ra t i on in s t anc e

6 c a l = s k r f . OnePort (\

7 i d e a l s = [my idea l s [k] f o r k in [’ shor t ’ , ’ open ’ , ’ load ’]] ,

8 measured = [my measured [k] f o r k in [’ shor t ’ , ’ open ’ , ’ load ’]] ,

9)

10 # run c a l i b r a t i o n a lgor i thm

11 c a l . run ()

12 # apply i t to a DUT

13 dut = s k r f . Network (’my dut . s1p ’)

14 dut ca l ed = ca l . app l y ca l (dut)

3.2 Multi-Line TRL Calibration

scikit-rf can also be used for wideband Thru-Reflect-Line (TRL) calibration using multiple lines [15]. The

necessary calibration standards in TRL calibration involve at least two transmission lines of different lengths

and one or more reflective loads. Exact responses of the transmission lines and reflective loads does not

need to be known and will be solved during the calibration. Ordinary SOLT or LRRM [16] calibration

usually moves the reference plane after the calibration to the SMA connector or probe tip used to contact the

calibration standards. TRL calibration can be used to move the reference planes to the transmission lines

on the substrate being measured if every measured standard includes a similar launch to the transmission

lines. This makes TRL calibration very useful when accurate short, open, load and thru standards cannot

be manufactured, or when the measurement reference plane needs to be on the substrate being measured.

4 Time-Domain and Gating

Time-gating is a processing technique which is commonly used to pinpoint a response of interest in the pres-

ence of multiple reflections in order to isolate their effects [17, 18]. This is commonly done on-board a VNA.

However, if instead the time-gating occurs offline on a computer, the user can keep the raw measurements

separate from the processed results. This is important so that the processing algorithm can be altered in the

future without remeasuring the data.

In the following example, the time-gating functions of scikit-rf are used to filter out the effects of an unde-

sired reflection. This can be done by using the method Network.time gate, and provide it an appropriate

centre and span (in nanoseconds):

1 probe s11 = s k r f . Network (’ . / probe . s2p ’) . s11

8

−0.5 0.0 0.5

Time (ns)

−120

−100

−80

−60

−40

−20
M

a
g
n

it
u

d
e

(d
B

)

Probe, S11

Gated probe, S11

(a)

500 550 600 650 700 750

Frequency (GHz)

−50

−40

−30

−20

−10

M
a
g
n

it
u

d
e

(d
B

)

Probe, S11

Gated probe, S11

(b)

Figure 5: Comparison of the original network response S11 with its gated version. (a) In the time-domain.
(b) In the frequency-domain.

2 probe s11 . name = ’ Probe ’

3 probe s11 gated = probe s11 . t ime gate (c en t e r =0, span=0.2)

4 probe s11 gated . name = ’Gated probe ’

5 # time−domain p l o t :

6 s11 . p l o t s db t ime ()

7 s11 gated . p l o t s db t ime ()

8 # frequency−domain p l o t :

9 s11 . p l o t s db ()

10 s11 gated . p l o t s db ()

To see the effects of the gate, both the original and gated response are compared. As shown in Fig. 5, the

original response shows an interference pattern in the frequency-domain due to this undesirable reflection at

0.2 ns. After gating, the response is cleaned.

5 Circuit Building

scikit-rf enables the building of a circuit with arbitrary topology, consisting of an arbitrary number of N -port

Network’s connected together. Similar to an electronic circuit simulator, the circuit must have one or more

ports connected to the circuit. With the Circuit object, the combined responses of the M -port network

can be calculated (and thus its network parameters: S, Z, etc.), where M is the number of ports defined.

Moreover, the Circuit object also allows calculating the scattering matrix S of the entire circuit, that is the

”internal” scattering matrices for the various intersections in the circuit. The calculation algorithm is based

on [19].

9

Figure 6: Example of a Circuit made of various kinds of N -port Network’s.

Fig. 6 illustrates a network with 2 ports, Network elements Ni and intersections. In order to define such a

circuit, the connection list needs to be defined, which describes how the networks are connected:

1 connec t i ons = [

2 [(network1 , network1 port nb) , (network2 , network2 port nb) , (network2 , network2 port nb) ,

. . .] ,

3 . . .

4]

The connection list to construct the Circuit illustrated in Fig. 6 could be:

1 >>> connec t i ons = [

2 [(port1 , 0) , (network1 , 0) , (network4 , 0)] ,

3 [(network1 , 1) , (network2 , 0) , (network5 , 0)] ,

4 [(network1 , 2) , (network3 , 0)] ,

5 [(network2 , 1) , (network3 , 1)] ,

6 [(network2 , 2) , (port2 , 0)] ,

7 [(network5 , 1) , (ground1 , 0)]

8]

In this example, the Circuit elements port1, port2, ground1 and all the network1 to network5 are

assumed to be scikit-rf Network objects with the same Frequency attribute. The individual networks can

have different (real) reference impedances and mismatches are taken into account. Note that port 1 of

network4 is left open, so is not described in the connection list. Once the connection list is defined, the

Circuit is built with:

1 r e s u l t i n g c i r c u i t = s k r f . C i r cu i t (connec t i ons)

The resulting 2-ports Network is obtained with Circuit.network:

1 r e su l t i ng ne two rk = r e s u l t i n g c i r c u i t . network

10

6 Vector Fitting

Microwave circuit design requires simulations in the time or frequency-domain with accurate models of all

involved circuit elements. For passive structures, electromagnetic field simulations or measurements can

provide accurate network models in the form of sampled frequency responses, but these cannot directly be

used in circuit simulators such as SPICE. To translate the sampled frequency responses of a N -port network

into a model for circuit simulations, scikit-rf provides an implementation of the well-known vector fitting

algorithm to fit the samples in the frequency-domain [20]. The rational basis functions used for the fit enable

the subsequent generation of linear equivalent circuits based on resistors, capacitors, inductors, and controlled

current and voltage sources to be used in most types of circuit simulators [21].

To summarize the vector fitting approach, the vector H(s) represents the stack of fitting functions for the

N ·N individual network responses defined in the Laplace domain with s = σ + jω:

H(s) = d + s e +

K∑
k=1

zk
s− pk

. (1)

In (1), H(s) includes a series of K rational fractions with a common set of poles pk for all the responses

of the network, but with individual zero vectors zk, as well as individual constant and proportional vectors

d and e, respectively.

For example, the scattering parameters of a 2-port can be subjected to vector fitting with K poles. The

objective is therefore to match the original network samples at all sampling frequencies ωm ∈ [ω1, ω2, · · · , ωM]:



S11(ωm)

S12(ωm)

S21(ωm)

S22(ωm)


!
=



d11 + jωme11 +
∑K

k=1
zk,11

jωm−pk

d12 + jωme12 +
∑K

k=1
zk,12

jωm−pk

d21 + jωme21 +
∑K

k=1
zk,21

jωm−pk

d22 + jωme22 +
∑K

k=1
zk,22

jωm−pk


. (2)

The fitting process involves running an iterative least-squares algorithm [20], which is implemented in

scikit-rf including the speed improvements proposed in [22] and [23].

In scikit-rf, the class VectorFitting is instanced with the Network to be fitted. A subsequent call of the

vector fit routine starts the fitting process with the number of real and complex-conjugate poles defined

in the function arguments. Once the fitting is finished, the function write spice subcircuit s can be

called to generate a SPICE subcircuit file based on the fitted poles p, zeros z, constants d, and proportional

coefficients e of the scattering parameter responses:

1 nw = sk r f . Network (’ example . s4p ’)

2 vf = s k r f . Vec to rF i t t ing (nw)

11

0 1 2 3 4 5

Frequency (GHz)

0.0

0.2

0.4

0.6

0.8

1.0
M

a
g
n

it
u

d
e

S1,1
S2,1 S3,1 S4,1

(a)

0 1 2 3 4 5

Frequency (GHz)

10−6

10−5

10−4

10−3

10−2

A
b

so
lu

te
E

rr
o
r

S1,1 S2,1 S3,1 S4,1

(b)

0 5e8 1e9 1.5e9 2e9 2.5e9 3e9 3.5e9 4e9 4.5e9 5e9
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

n
g
sp

ic
e
/a

c.
s1

1

n
g
sp

ic
e
/a

c.
s2

1

n
g
sp

ic
e
/a

c.
s3

1

n
g
sp

ic
e
/a

c.
s4

1

(c)

Figure 7: Selected scattering parameter responses of a vector fitted noisy 4-port example network. (a) Mag-
nitudes in linear scale with markers for the samples and solid lines for the fit. (b) Absolute error
magnitudes of the respective fits: absolute error = |Sfit,i,1 − Ssample,i,1|. (c) Simulation of the
scattering parameters with ngspice using the exported SPICE subcircuit.

3 vf . v e c t o r f i t (n p o l e s r e a l =2, n po le s cmplx=32)

4 vf . w r i t e s p i c e s u b c i r c u i t s (’ example . sp ’)

In Fig. 7(a) and 7(b), four of the 16 vector fitted scattering parameter responses of the example network are

plotted and compared to the original network samples, showing an absolute error of less than 0.01. SPICE

simulations using the exported subcircuit file in ngspice [24] achieve a similar accuracy. The simulated

scattering parameter obtained from an AC simulation are shown in Fig. 7(c).

The quality of the fit strongly depends on the choice of real and complex-conjugate starting poles, which

should suit the number of resonances in the responses. Measurement noise in the sampled responses, as

included in this 4-port example, further contributes to the deviation of the fit with the smooth basis functions

12

used by the vector fitting method. The translation of the fitting parameters into the SPICE equivalent

subcircuit is straightforward, and the accuracy is only limited by rounding errors. However, the accuracy of

the simulation results also depends on the tolerance settings of the simulator.

7 Conclusion

scikit-rf is an open-source Python package produced for RF/Microwave engineering. The package provides a

modern, object-oriented library for RF network analysis, circuit building and calibration. Below is a current

non-exhaustive feature list of scikit-rf (as of version 0.18).

• Microwave network operations

– Read/Write touchstone (.sNp) files

– S/Z/Y/ABCD/T - parameter conversions

– Arithmetic operations on scattering parameters

– Mixed mode and single ended port conversion

– Cascade/De-embed Networks

– Frequency and port slicing and concatenation.

– Assembly of multiple-port networks

– Vector fitting (S, Z, Y parameters) and export of equivalent SPICE subcircuits (based on S pa-

rameters only)

• Sets of Networks:

– Statistical properties of a set of Network

– Interpolation between a set of Network (frequency or parametric)

– Methods to sort and visualize set behaviour

• Plotting abilities:

– Rectangular plots (dB, magnitude, phase, group delay)

– Smith chart

– Automated uncertainty bounds

• Calibration Routines:

– One-Port: SOL, Least Squares, SDDL

13

– Two-Port: TRL, Multiline TRL, SOLT, Unknown Thru, 8/16-Term

– Partial : Enhanced Response, One-Port Two-Path

• Virtual Instruments (completeness varies by model)

– VNAs: PNA, PNAX, ZVA, HP8510, HP8720

– SA: HP8500

– Others: ESP300

• Transmission Line Physics:

– Distributed Circuit, Coaxial/Coplanar/Rectangular/Circular Waveguides, Free-space,

– Transmission line voltage, current, power and losses calculations

– Complex characteristic impedance support

In addition to these rich features, there are also GUIs for time gating and sNp file viewing, with source

code available at https://github.com/scikit-rf/dash-apps and functional demos hosted by Plotly at

https://dash-gallery.plotly.host/Portal/.

8 Contributing

scikit-rf is a free and open-source project. For those seeking help or reporting bugs, there is a public mailing

list and GitHub issues tracker which can be found on the scikit-rf website (https://scikit-rf.org). If

you would to participate in development, first join GitHub (https://github.com) and then take a look at

the scikit-rf development pages. For companies or individuals who need private support and development

services, feel free to contact 810 Labs LLC (http://810lab.com/).

Acknowledgment

scikit-rf would not be possible without the feedback, bug fixes, and new features contributed by its user

community. Visit https://github.com/scikit-rf/scikit-rf/graphs/contributors to see a full list of

contributors.

References

[1] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,

J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,

14

https://github.com/scikit-rf/dash-apps
https://dash-gallery.plotly.host/Portal/
https://skrf.org
https://github.com
http://810lab.com/
https://github.com/scikit-rf/scikit-rf/graphs/contributors

J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,

H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array Programming with NumPy,” Nature, vol. 585,

no. 7825, pp. 357–362, 2020.

[2] F. Perez and B. E. Granger, “IPython: A System for Interactive Scientific Computing,” Computing in

Science Engineering, vol. 9, no. 3, pp. 21–29, 2007.

[3] B. E. Granger and F. Pérez, “Jupyter: Thinking and Storytelling With Code and Data,” Computing in

Science Engineering, vol. 23, no. 2, pp. 7–14, 2021.

[4] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineering, vol. 9,

no. 3, pp. 90–95, 2007.

[5] D. Williams, “Traveling Waves and Power Waves: Building a Solid Foundation for Microwave Circuit

Theory,” IEEE Microw. Mag., vol. 14, no. 7, pp. 38–45, 2013.

[6] G. Engen and C. Hoer, “Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port

Automatic Network Analyzer,” IEEE Trans. Microw. Theory Techn., vol. 27, no. 12, pp. 987–993, 1979.

[7] R. B. Marks, “Formulations of the Basic Vector Network Analyzer Error Model Including Switch-Terms,”

in Proc. 50th ARFTG Conf. Dig., vol. 32, pp. 115–126, 1997.

[8] K. J. Silvonen, “Calibration of 16-Term Error Model,” Electronics Letters, vol. 29, no. 17, pp. 1544–1545,

1993.

[9] R. Speciale, “A Generalization of the TSD Network-Analyzer Calibration Procedure, Covering n-Port

Scattering-Parameter Measurements, Affected by Leakage Errors,” IEEE Trans. Microw. Theory Techn.,

vol. 25, no. 12, pp. 1100–1115, 1977.

[10] W. Kruppa and K. Sodomsky, “An Explicit Solution for the Scattering Parameters of a Linear Two-Port

Measured with an Imperfect Test Set (Correspondence),” IEEE Trans. Microw. Theory Techn., vol. 19,

no. 1, pp. 122–123, 1971.

[11] R. Bauer and P. Penfield, “De-Embedding and Unterminating,” IEEE Trans. Microw. Theory Techn.,

vol. 22, no. 3, pp. 282–288, 1974.

[12] A. Ferrero and U. Pisani, “Two-Port Network Analyzer Calibration Using an Unknown ’Thru’,” IEEE

Microw. Guided Wave Lett., vol. 2, no. 12, pp. 505–507, 1992.

[13] Z. Liu and R. Weikle, “A Reflectometer Calibration Method Resistant to Waveguide Flange Misalign-

ment,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 6, pp. 2447–2452, 2006.

15

[14] J. Ou and M. Caggiano, “Determine Two-Port S-Parameters from One-Port Measurements Using Cal-

ibration Substrate Standards,” in Proc. 2005 Electron. Compon. and Techn. (ECTC), pp. 1765–1768

Vol. 2, 2005.

[15] R. Marks, “A Multiline Method of Network Analyzer Calibration,” IEEE Trans. Microw. Theory Techn.,

vol. 39, no. 7, pp. 1205–1215, 1991.

[16] A. Davidson, K. Jones, and E. Strid, “LRM and LRRM Calibrations with Automatic Determination of

Load Inductance,” in Proc. 36th ARFTG Conf. Digest, vol. 18, pp. 57–63, 1990.

[17] H. M. Cronson and P. G. Mitchell, “Time-Domain Measurements of Microwave Components,” IEEE

Trans. Instrum. Meas., vol. 22, no. 4, pp. 320–325, 1973.

[18] C. Bennett and G. Ross, “Time-Domain Electromagnetics and Its Applications,” Proc. IEEE, vol. 66,

no. 3, pp. 299–318, 1978.

[19] P. Hallbjörner, “Method for Calculating the Scattering Matrix of Arbitrary Microwave Networks Giving

Both Internal and External Scattering,” Microw. Opt. Technol. Lett., vol. 38, no. 2, pp. 99–102, 2003.

[20] B. Gustavsen and A. Semlyen, “Rational Approximation of Frequency Domain Responses by Vector

Fitting,” IEEE Trans. Power Del., vol. 14, no. 3, pp. 1052–1061, 1999.

[21] G. Antonini, “SPICE Equivalent Circuits of Frequency-Domain Responses,” IEEE Trans. Electromagn.

Compat., vol. 45, no. 3, pp. 502–512, 2003.

[22] B. Gustavsen, “Improving the Pole Relocating Properties of Vector Fitting,” IEEE Trans. Power Del.,

vol. 21, no. 3, pp. 1587–1592, 2006.

[23] D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of Multiport Systems

Using a Fast Implementation of the Vector Fitting Method,” IEEE Microw. Wireless Compon. Lett.,

vol. 18, no. 6, pp. 383–385, 2008.

[24] “Website of the ngspice project.” http://ngspice.sourceforge.net/. [Online].

16

http://ngspice.sourceforge.net/

	Context and Motivations
	Basic Usage of scikit-rf
	Reading and Plotting Networks
	Network Operations
	Cascading and De-Embedding
	Statistical Analysis
	Interpolation and Concatenation
	Port Impedance Re-Normalization

	Calibration
	One-Port Example
	Multi-Line TRL Calibration

	Time-Domain and Gating
	Circuit Building
	Vector Fitting
	Conclusion
	Contributing

