
HAL Id: cea-03406884
https://cea.hal.science/cea-03406884

Submitted on 28 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation of Explanations of Possibilistic Inference
Decisions

Ismaïl Baaj, Jean-Philippe Poli, Wassila Ouerdane, Nicolas Maudet

To cite this version:
Ismaïl Baaj, Jean-Philippe Poli, Wassila Ouerdane, Nicolas Maudet. Representation of Explanations
of Possibilistic Inference Decisions. ECSQARU 2021: European Conference on Symbolic and Quanti-
tative Approaches with Uncertainty, Sep 2021, Prague, Czech Republic. pp.513-527, �10.1007/978-3-
030-86772-0_37�. �cea-03406884�

https://cea.hal.science/cea-03406884
https://hal.archives-ouvertes.fr


Representation of Explanations of Possibilistic
Inference Decisions
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Abstract

In this paper, we study how to explain to end-users the inference results
of possibilistic rule-based systems. We formulate a necessary and sufficient
condition for justifying by a relevant subset of rule premises the possibility
degree of each output attribute value. We apply functions to reduce the
selected premises, in order to form two kinds of explanations: the justifica-
tion and the unexpectedness of the possibility degree of an output attribute
value. The justification is composed of possibilistic expressions that are
sufficient to justify the possibility degree of the output attribute value.
The unexpectedness is a set of possible or certain possibilistic expressions,
which are not involved in the determination of the considered inference
result although there may appear to be a potential incompatibility between
them and the considered inference result.

We then define a representation of explanations of possibilistic inference
decisions that relies on conceptual graphs and may be the input of natural
language generation systems. Our extracted justification and unexpected-
ness are represented by nested conceptual graphs. All our constructions
are illustrated with an example of a possibilistic rule-based system that
controls the blood sugar level of a patient with type 1 diabetes.
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1 Introduction
Possibility Theory is a well-known framework for the handling of incomplete or
imprecise information [7, 8] that models the uncertainty by two dual measures
called possibility and necessity. These measures allow to distinguish between
what is possible without being certain at all and what is certain to some extent.
The possibilistic handling of rule-based systems [10, 12] has led to the emer-
gence of possibilistic rule-based systems used for medical diagnostics [4] e.g.,
DIABETO [16]. For safety-critical applications such as medicine, the generation
of explanations of the decisions made by AI systems is now a legitimate demand,
in view of the recent adoption of laws that reinforce users’ rights e.g., GDPR [13].
Recently, an emphasis was put on possibilistic rule-based systems [9], where the
authors highlighted the approach of [11] to develop the explanatory capabili-
ties of these systems. In [11], Farreny and Prade propose to perform a sensitivity
analysis by using a min-max equations system. By an example, the authors
suggest that it is possible to justify an inference result by some rule premises.
They also give a natural language explanation of an inference result of their
example. In fact, their approach aims at generating explanations of possibilistic
inference decisions, which have to be expressed in natural language for end-users.
To generate them with Natural Language Generation techniques [14], authors of
[2] propose to define a representation of the explanations of inference decisions.
In this paper, we elaborate the explanatory capabilities of possibilistic rule-based
systems. Our purpose is twofold. First, we study how to select rule premises
justifying their inference results. Then, we define a graphical representation of
explanations constructed from the selected premises. We first remind the infer-
ence mechanism of a possibilistic rule-based system, introduce useful notations
and give an example of such a system, which will be used to illustrate all the
constructions of the paper (section 2). The inference result of a possibilistic
rule-based system is an output possibility distribution, which assigns to each
output attribute value a possibility degree. In Section 3, we give a necessary
and sufficient condition to justify by rule premises the possibility degree of any
output attribute value. Under this condition, we extract a corresponding subset
of premises.
In Section 4, we define four premise reduction functions and apply them to the
subset of premises of section 3. This leads us to form two kinds of explanations:
the justification and the unexpectedness of the considered output attribute value.
The justification is formed by reducing the selected premises to the structure
responsible for their possibility or necessity degree. It uses two premise reduction
functions. The unexpectedness is a set of possible or certain possibilistic expres-
sions related to the considered inference result in the following sense: although
there may appear to be a potential incompatibility between each of the possi-
bilistic expressions and the considered inference result, they are not involved in
the determination of the inference result. They are extracted by applying the
two other premise reduction functions.
We then propose to represent explanations by conceptual graphs, which provide
a natural way to represent knowledge by concepts and n-ary relations (section 5).
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Using our justification and unexpectedness, we represent explanations by nested
conceptual graphs. Finally, in section 6, we conclude with some perspectives.

2 Background
In this section, following [9], we remind the inference mechanism of possibilistic
rule-based systems. Some notations which will be useful in the rest of the paper
are introduced. We also give an example of a possibilistic rule-based system.
We consider a set of n parallel if-then possibilistic rules R1, R2, · · · , Rn, where
each Ri is of the form: “if pi then qi” and has its uncertainty propagation matrix[
π(qi|pi) π(qi|¬pi)
π(¬qi|pi) π(¬qi|¬pi)

]
=
[

1 si
ri 1

]
. The premise pi of the rule Ri is of the form

pi = pi1∧pi2∧· · ·∧pik, where each pij is a proposition: “aij(x) ∈ P ij ”. The attribute
aij is applied to an item x, where its information is represented by a possibility
distribution πai

j
(x) : Dai

j
→ [0, 1] defined on its domain Dai

j
, which is supposed

to be normalized i.e., ∃u ∈ Dai
j

such that πai
j
(x)(u) = 1. The possibility degree

of pij and that of its negation are computed using the possibility measure Π by
π(pij) = Π(P ij ) = supu∈P i

j
πai

j
(x)(u) and π(¬pij) = Π(P ij ) = sup

u∈P i
j

πai
j
(x)(u)

respectively, where P ij ⊆ Dai
j

and P ij is its complement. As πai
j
(x) is normalized,

we have max(π(pij), π(¬pij)) = 1. The necessity degree of pij is defined with the
necessity measure N by n(pij) = N(P ij ) = 1− π(¬pij) = inf

u∈P i
j

(1− πai
j
(x)(u)).

The possibility degree of pi is π(pi) = minkj=1 π(pij) and that of its negation is
π(¬pi) = maxkj=1 π(¬pij). These formulas π(pi) and π(¬pi) preserve the normal-
ization i.e., max(π(pi), π(¬pi)) = 1 and are respectively noted λi and ρi. The
necessity degree of pi is n(pi) = 1−π(¬pi) = minkj=1(1−π(¬pij)) = minkj=1 n(pij).
The degrees λi and ρi allow to have the following interpretations of pi:
• π(pi) = λi estimates to what extent pi is possible,
• n(pi) = 1− ρi estimates to what extent pi is certain.
The conclusion qi of Ri is of the form “b(x) ∈ Qi”, where Qi ⊆ Db. The possi-
bility degrees of qi and ¬qi are respectively noted αi and βi. They are defined
by
[
π(qi)
π(¬qi)

]
=
[

1 si
ri 1

]
�max

min

[
λi
ρi

]
where the operator �max

min uses min as the

product and max as the addition. The normalization max(π(pi), π(¬pi)) = 1
implies:

αi = max(si, λi) and βi = max(ri, ρi).
The possibility distribution of the output attribute b associated to Ri is defined

for any u ∈ Db by π∗ib(x)(u) =
{
αi if u ∈ Qi
βi if u ∈ Qi

. Finally, with n rules, the output

possibility distribution is defined by a min-based conjunctive combination:

π∗b(x)(u) = min(π∗1b(x)(u), π∗2b(x)(u), · · · , π∗nb(x)(u)). (1)
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We introduce some additional notations. For a set output attribute value u ∈ Db,
the computation of its possibility degree is given by:

π∗b(x)(u) = min(γ1, γ2, · · · , γn), (2)

where γi = π∗ib(x)(u) = max(ti, θi) with (ti, θi) =
{

(si, λi) if γi = αi

(ri, ρi) if γi = βi
. (3)

The relation (2) is a more convenient formulation of (1). According to (3), for
each i = 1, 2, · · · , n, we remark that ti denotes a parameter (si or ri) of the rule
Ri and θi denotes either the possibility degree λi of the premise pi of the rule
Ri or the possibility degree ρi of its negation.
For a premise of a possibilistic rule, the information given by its possibility and
necessity degrees can be represented by the following triplet:

Notation 1 For a premise p, the triplet (p, sem, d) denotes either (p,P, π(p)) or
(p,C, n(p)), where sem ∈ {P,C} (P for possible, C for certain) is the semantics
attached to the degree d ∈ {π(p), n(p)}.

We introduce the following triplets according to the γ1, γ2, · · · , γn appearing in
the relation (2). For i = 1, 2, · · · , n, we set:

(pi, semi, di) =
{

(pi,P, λi) if γi = αi
(pi,C, 1− ρi) if γi = βi

. (4)

Example 1 Possibilistic rule-based systems have been used in medecine e.g., DI-
ABETO [4] enables an improvement in the dietetics of diabetic patients [16]. We
propose a possibilistic rule-based system for controlling the blood sugar level of a
patient with type 1 diabetes (Table 1), according to some factors [3]:

activity (act) current-bloodsugar (cbs) future-bloodsugar (fbs)
R1 dinner, drink-coffee, lunch medium, high high
R2 long-sleep, sport, walking low, medium low
R3 alcohol-consumption, breakfast low, medium low, medium

Table 1: rule base for the control of the blood sugar level.
The premises p1, p2 and p3 of the possibilistic rules R1, R2 and R3 are built using
two input attributes: activity (act) and current-bloodsugar (cbs). The conclu-
sions of the rules use the output attribute future-bloodsugar (fbs). We have Dact
= {alcohol-consumption, breakfast, dinner, drink-coffee, long-sleep, lunch, sport,
walking} and Dcbs = Dfbs = {low, medium, high}. As parameters of the rules,
we take s1 = 1, s2 = 0.7, s3 = 1 and r1 = r2 = r3 = 0. The three rules are
certain [10] because we have π(qi | pi) = 1 and ri = π(¬qi | pi) = 0.
In our example, we assume that πact(x)(drink-coffee) = 1, πcbs(x)(medium) = 1
and πcbs(x)(low) = 0.3, while the others elements of the domains of the input
attributes have a possibility degree equal to zero. The obtained output possibility
distribution is: 〈low : 0.3,medium : 0.3, high : 1〉.
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3 Justifying inference results
Farreny and Prade’s approach [11] focuses on two explanatory purposes for an
output attribute value u ∈ Db, which can be formulated as two questions:

(i) How to get π∗b(x)(u) strictly greater or lower than a given τ ∈ [0, 1]?
(ii) What are the degrees of the premises justifying π∗b(x)(u) = τ?

For these two questions, the parameters of the rules si and ri are set.
Regarding (i), the authors of [11] give a sufficient condition to obtain π∗b(x)(u) > τ

for a particular pair (u,τ) of their example. Taking advantage of the notations (2)
and (3) we note that π∗b(x)(u) ranges between ω = min(t1, t2, · · · , tn) and 1. Fol-
lowing this, a necessary and sufficient condition to obtain π∗b(x)(u) > τ according
to the degrees of premises can be easily stated:

∀i ∈ {j ∈ {1, 2, · · · , n} | tj ≤ τ} we have θi > τ.

And similarly, π∗b(x)(u) < τ with ω < τ ≤ 1 will hold if and only if ∃i ∈
{j ∈ {1, 2, · · · , n} | tj < τ} such that θi < τ . With these assumptions on
θ1, θ2, · · · , θn, we can give suitable conditions on the possibility distributions of
the input attributes.
Regarding (ii), [11] claim that one can directly read the possibility degrees of
the premises involved in the computation of the possibility degree of an output
attribute value. Their claim is sustained by a particular output attribute value
u of their example. In what follows, we elaborate on this question.

3.1 Justifying the possibility degree π∗b(x)(u) = τ

We give a necessary and sufficient condition that allows us to justify π∗b(x)(u) = τ
by degrees of premises. This allows to extract the subset of premises whose
degrees are involved in the computation of π∗b(x)(u). To study how the possibility
degree π∗b(x)(u) = τ with ω ≤ τ ≤ 1 is obtained, we introduce the following
two sets JP and JR in order to compare the parameters t1, t2, · · · tn of the rules
to the degrees θ1, θ2, · · · , θn of the premises in the relation (2). Intuitively, JP
(resp. JR) collect indices where θi is greater (resp. lower) than ti: in other words,
the γi related to the rule Ri can be explained by a degree of the premise (resp.
by a parameter of the rule):

JP = {i ∈ {1, 2, · · · , n} | ti ≤ θi} and JR = {i ∈ {1, 2, · · · , n} | ti ≥ θi}.
We have {1, 2, · · · , n} = JP ∪ JR but JP or JR may be empty. We take:

cθ = min
i∈JP

θi and ct = min
i∈JR

ti (with the convention min
∅

= 1). (5)

For a given output attribute value, if JP 6= ∅ (resp. JR 6= ∅), cθ (resp. ct) is the
lowest possibility degree justifiable by premises (resp. by the parameters of the
rules). By using the properties of the min function, we establish:

Proposition 1
τ = min(cθ, ct). (6)
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When we can’t explain by degrees of premises. As the degrees θ1, θ2, · · · , θn
of the premises are computed using the possibility distributions of the input at-
tributes, we may have JP = ∅. In that case, cθ = 1, JR = {1, 2, · · · , n} and:

π∗b(x)(u) = ct = min(t1, t2, · · · , tn). (7)

Clearly, it appears that π∗b(x)(u) is independent from θ1, θ2, · · · , θn and we cannot
justify π∗b(x)(u) = τ by degrees of premises. For this reason, we suppose in the
following that JP 6= ∅.
For a set value u ∈ Db, we remind that the triplets (pi, semi, di) are defined in (4)
according to (2) and (3). To the non-empty set JP we associate the following set:

Jb(x)(u) = {(pi, semi, di) | i ∈ JP and θi = τ}. (8)

Then, using (5), the equality (6) and the definition of Jb(x)(u), one can check
directly that we have:

Proposition 2 Jb(x)(u) 6= ∅ ⇐⇒ π∗b(x)(u) = cθ.

This means that when Jb(x)(u) 6= ∅, the set Jb(x)(u) is formed by the premises
justifying π∗b(x)(u) = τ , because if τ = cθ, π∗b(x)(u) is the minimum of some
precise degrees θi of premises pi. However, if Jb(x)(u) = ∅, we have τ = ct < cθ
and then τ is the minimum of some parameters si or ri. In this case, there is no
way for deducing τ from θ1, θ2, · · · , θn and therefore from the premises.

Example 2 For our blood sugar level control system (section 2), according to the
relation (2), we set πfbs(x)(high) = min(γ1, γ2, γ3) with γ1 = α1 = max(s1, λ1),
γ2 = β2 = max(r2, ρ2) and γ3 = β3 = max(r3, ρ3). We have λ1 = ρ2 = ρ3 = 1.
To apply (6), we compute JP = {1, 2, 3} and JR = {1}. The possibility degree
τ = 1 of the output attribute value high can be both justified by degrees of premises
(λ1, ρ2 and ρ3) or a parameter of the rule R1. For rules R2 and R3, justifications
in terms of premises only can be given. As cθ = 1 = πfbs(x)(high), using (8), the
following triplets are selected:

Jfbs(x)(high) = {(p1,P, 1), (p2,C, 0), (p3,C, 0)}.
Now assume that r1 > 0.3. For u = low, (7) holds and the corresponding set JP
is empty: no justification in terms of premises could be given in that case.

4 Justification and unexpectedness
In [1], a method that reduces a premise of a fuzzy if-then rule to the structure re-
sponsible for its activation degree has been defined. In this section, analogously
to the fuzzy case, we define four functions Rπ,Rn,Cπ and Cn that reduce a
compounded premise with respect to a threshold η > 0. The threshold η is set
according to what is modelled by the possibilistic rule-base for the following
purpose: if a possibility (resp. necessity) degree is higher than the threshold, it
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intuitively means that the information it models is relevantly possible (resp. cer-
tain). In order to define these reduction functions for premises, we first introduce
two auxiliary functions Pπ and Pn that are defined for propositions.
Let a be an attribute with a normalized possibility distribution πa(x) on its
domain Da and a proposition p of the form “a(x) ∈ P”, where P ⊆ Da. We
introduce the following two subsets of Da:
Pπ = {v ∈ P | πa(x)(v) = Π(P )} and Pn = P ∪ {v ∈ P | 1− πa(x)(v) > N(P )}.
The proposition related to Pπ (resp. Pn) is noted pπ (resp. pn). Let us notice that:

Proposition 3 Pn = {v ∈ P | 1− πa(x)(v) = N(P )}.

This result is a consequence of N(P ) = infv∈P (1−πa(x)(v)). For the proposition
p with its set P , Pπ reduces P if π(p) ≥ η and Pn reduces P if n(p) ≥ η:

Pπ(p) =
{
pπ if π(p) ≥ η
p if π(p) < η

and Pn(p) =
{
pn if n(p) ≥ η
p if n(p) < η

.

We notice that π(Pπ(p)) = π(p) and n(Pn(p)) = n(p).
In what follows, we define the four reduction functions and show how we apply
them to a triplet (p, sem, d) (notation 1). We apply Rπ and Rn to the triplets
of Jb(x)(u), see (8), to form the justification of π∗b(x)(u). Similarly, we apply Cπ
and Cn to the same triplets to extract the unexpectedness of π∗b(x)(u).

4.1 Extracting justifications: Rπ and Rn functions
Let p = p1∧p2∧· · ·∧pk be a compounded premise, where pj for j = 1, 2, · · · , k, is a
proposition of the form “aj(x) ∈ Pj” with Pj ⊆ Daj . The function Rπ (resp. Rn)
returns the structure responsible for π(p) (resp. n(p)), which is the conjunction
of propositions Pπ(pj) (resp. Pn(pj)) that make p relevantly possible (resp.
certain) or not.
The reduction function Rπ extends Pπ in the following sense:

Rπ(p) =
{∧k

j=1 Pπ(pj) if π(p) ≥ η∧
pj∈{ps|π(ps)<η for s=1,··· ,k} pj if π(p) < η

.

Similarly, the reduction function Rn extends Pn in the following sense:

Rn(p) =
{∧k

j=1 Pn(pj) if n(p) ≥ η∧
pj∈{ps|n(ps)<η for s=1,··· ,k} pj if n(p) < η

.

We notice that π(Rπ(p)) = π(p) and n(Rn(p)) = n(p).

4.2 Extracting unexpectedness: Cπ and Cn functions
Intuitively, with respect to the threshold η, for a compounded premise p = p1 ∧
p2∧· · ·∧pk that is not relevantly possible (resp. certain), Cπ (resp. Cn) returns a
conjunction of propositions, called an unexpectedness, which is not involved in the
determination of π(p) (resp. n(p)), although relevantly possible (resp. certain).
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When π(p) < η and Aπp = {pj | π(pj) ≥ η for j = 1, · · · , k} 6= ∅, the function Cπ
returns the conjunction of the propositions Pπ(pj) such that π(pj) ≥ η:

Cπ(p) =
∧

pj∈Aπp

Pπ(pj).

If π(p) < η, each proposition pj composing p, is either used in Rπ(p) or in Cπ(p),
according to its possibility degree π(pj).
Similarly, when n(p) < η and Anp = {pj | n(pj) ≥ η for j = 1, · · · , k} 6= ∅, Cn
returns the conjunction of the propositions Pn(pj) such that n(pj) ≥ η:

Cn(p) =
∧

pj∈Anp

Pn(pj).

If n(p) < η, each proposition pj composing p, is either used in Rn(p) or in Cn(p),
according to its necessity degree n(pj).

4.3 Justification and unexpectedness of π∗b(x)(u)
To apply in an appropriate way the reduction functions Rπ and Rn to the premise
p of a triplet (p, sem, d), see notation (1), we introduce the function SR:

SR(p, sem, d) =
{

(Rπ(p), sem, d) if sem = P
(Rn(p), sem, d) if sem = C

.

Similarly, to apply Cπ and Cn, we introduce the function SC :

SC (p, sem, d) =
{

(Cπ(p), sem, π(Cπ(p))) if sem = P, d < η and Aπp 6= ∅
(Cn(p), sem, n(Cn(p))) if sem = C, d < η and Anp 6= ∅

.

The justification of π∗b(x)(u) is formed by applying SR to the triplets of Jb(x)(u),
see (8):

Justificationb(x)(u) = {SR(p, sem, d) | (p, sem, d) ∈ Jb(x)(u)}. (9)
The possibilistic expressions in the triplets of (9) are sufficient to justify “b(x) is
u at a possibility degree π∗b(x)(u)”. By using SC , we obtain the unexpectedness
of π∗b(x)(u) i.e., possible or certain possibilistic expressions, which may appear
to be incompatible with π∗b(x)(u) while not being involved in its determination:

Unexpectednessb(x)(u) = {SC (p, sem, d) | (p, sem, d) ∈ Jb(x)(u)}. (10)
The purpose of an unexpectedness X is to be able to formulate statements such
as “even if X, b(x) is u at a possibility degree π∗b(x)(u)”. It is in the same vein
as the “even-if-because” statements studied in [6].

Example 3 For our blood sugar level control system (section 2), we take η = 0.1
and obtain the justification of πfbs(x)(high) and its unexpectedness:
• Justificationfbs(x)(high) = {(Rπ(p1),P, 1), (Rn(p2),C, 0), (Rn(p3),C, 0)}.
• Unexpectednessfbs(x)(high) = {(Cn(p2),C, 1)}.
For the premise of the rule R1, Rπ returns the conjunction of “act(x) ∈ {drink-
coffee}” and “cbs(x) ∈ {medium}”. By applying Rn to the premise of R2, we
obtain the proposition “act(x) ∈ {long-sleep, sport, walking}”. For the premise
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of R3, Rn returns “act(x) ∈ {alcohol-consumption, breakfast}”. For the premise
of R2 and that of R3, Cn returns for both “cbs(x) ∈ {low, medium}”.

5 Representing explanations of possibilistic in-
ference decisions

In this section, we represent graphically two explanations: the justification and
the unexpectedness of π∗b(x)(u), (see (9) and (10)) in terms of conceptual graphs.
The resulting conceptual graphs are visual representations of the outcomes of sev-
eral analytical operations performed on the rule base that constitute explanations.
Conceptual graphs are multi-graphs composed of concept nodes representing en-
tities and relation nodes representing relationships between these entities. They
were introduced by Sowa [15] and enriched by Chein and Mugnier [5]. We rely
on the work of [5] for our definitions.
In the following, a possibilistic conceptual graph is defined as a conceptual graph
where each concept node is gifted with a degree and a semantics. For each rep-
resentation, we first specify its input which we call an explanation query. We
associate an explicit explanation query to the justification of π∗b(x)(u) and another
one to its unexpectedness. Each explanation query gives rise to a vocabulary,
which is a simple ontology from which we define possibilistic conceptual graphs
representing statements and a conceptual graph representing the structure of
the explanation. One statement is called an observed phenomenon and repre-
sents the possibility degree π∗b(x)(u). Depending on the chosen explanation
query, the other statements represent either the justification of π∗b(x)(u) or its
unexpectedness. Each representation is obtained by nesting the possibilistic con-
ceptual graphs representing the statements in the conceptual graph represent-
ing the structure.

5.1 Explanation query
To describe the vocabularies of the two explanations, we introduce the notion
of explanation query:

Definition 1 An explanation query is formed by a triplet E = (T , b, u) such that:
• T = {(p, sem, d)} is a finite set of triplets (notation 1),
• b is an attribute of domain Db with a possibility distribution π∗b(x) : Db → [0, 1],
• u ∈ Db is an attribute value for which the justification or the unexpectedness
of its possibility degree π∗b(x)(u) is requested.

Let us set an explanation query E = (T , b, u), where m = card(T ) ≥ 1 for which
we adopt the following notations:

Notation 2 We index the triplets of T as follows:
T = {v(1), v(2), · · · , v(m)} ; v(i) = (p(i), sem(i), d(i)).
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For each triplet v(i) = (p(i), sem(i), d(i)) ∈ T , we set a decomposition p(i) =
p

(i)
1 ∧ p

(i)
2 ∧ · · · ∧ p

(i)
ki

where for each j = 1, 2, · · · , ki we have:
• p(i)

j is the proposition “a(i)
j (x) ∈ P (i)

j ”, where a(i)
j is an attribute with a normal-

ized possibility distribution π
a

(i)
j

: D
a

(i)
j

→ [0, 1], P (i)
j ⊆ Da

(i)
j

and x is an item.

• A(i) = {a(i)
1 , a

(i)
2 , · · · , a(i)

ki
} with card(A(i)) = ki,

• S(i) = {P (i)
1 , P

(i)
2 , · · · , P (i)

ki
} with card(S(i)) = ki.

We take the disjoint unions: A =
⋃

1≤i≤mA(i) and S =
⋃

1≤i≤m S(i). These
disjoint unions will allow us to define an application δ: S → A verifying δ(P (i)

j ) =
a

(i)
j and are necessary because the domains of two distinct attributes a(i)

j and
a

(i′)
j′ with i 6= i′ may have a non-empty intersection. Therefore, the sets P (i)

j and
P

(i′)
j′ of the two propositions p(i)

j and p
(i′)
j′ may be equal.

For our explanations, we take the following explanation queries using the justifi-
cation and the unexpectedness of an output attribute value u, see (9) and (10):

EJ = (Justificationb(x)(u), b, u) and EU = (Unexpectednessb(x)(u), b, u).
(11)

5.2 Vocabulary construction
Let VE = (TC , TR, I, δ, σ) be the vocabulary associated to the explanation query
E = (T , b, u), where TC is the set of concept types, TR is the set of relation
symbols, I is the set of individual markers, δ : I → TC is an individual typing
function and a relation symbol signature σ, which gives for each relation symbol
of TR the concept type of each of its arguments [5]. In VE , the attribute b and
the attributes in A are concept types. The set {u} is an individual marker
representing the attribute value u. The sets in S are individual markers. To any
triplet v(i), we associate a relation symbol inferredv(i) of arity ki+ 1. Therefore,
a conceptual graph based on VE may contain:

• a concept node of type b and individual marker {u},
• a concept node of type a

(i)
j and individual marker P (i)

j , which gives a
representation of the proposition p

(i)
j ,

• a relation node of type inferredv(i) , which will be linked by multi-edges
to the concept node of type b and the concept nodes representing the
propositions p(i)

1 , p
(i)
2 , · · · , p(i)

ki
.

Additionally, for structuring the explanations, VE includes: two concept types:
Phenomenon and e, a relation symbol t, and m+ 1 individual markers that are
named Statements. In a conceptual graph based on VE , we may find a concept
node of type Phenomenon and marker Statement0, m concept nodes of type e
and marker Statementi for i = 1, 2, · · · ,m and a relation node of type t, which
will be linked by multi-edges to the m+ 1 concept nodes that we just described.
We explicitly define VE as follows:
• TC = {b} ∪ A ∪ {e} ∪ {Phenomenon} with card(TC) = 3 +

∑m
i=1 ki.
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• TR = {inferredv(i) |v(i) ∈ T } ∪ {t} with card(TR) = m + 1 and such that
arity(inferredv(i)) = ki + 1 and arity(t) = m+ 1.
• I = {{u}} ∪ S ∪ {Statement0,Statement1, · · · ,Statementm} with card(I) =
m+ 2 +

∑m
i=1 ki.

• δ : I → TC such that:
• {u} 7→ b ; P

(i)
j 7→ a

(i)
j

• Statement0 7→ Phenomenon ; Statementi 7→ e for i = 1, 2, · · · ,m.
• The signature map σ is given by:

• σ(inferredv(i)) = (b, a(i)
1 , a

(i)
2 , · · · , a(i)

ki
) for v(i) ∈ T

• σ(t) = (Phenomenon, e, e, · · · , e).
In the vocabulary VEJassociated to the explanation query EJ , see (11), the
concept type e is noted “Justification” and the relation symbol t is noted “isJus-
tifiedBy”. In VEU of EU , see (11), we respectively note them “Unexpectedness”
and “evenIf”.

5.3 Possibilistic conceptual graphs
We introduce possibilistic conceptual graphs that extend basic conceptual graphs
(BG) [5] by adding two additional fields to the labels of concept nodes:

Definition 2 A possibilistic conceptual graph (PCG) is a BG G = (C,R,E, l),
where C is the concept nodes set, R the relation nodes set, E is the multi-edges
set and the label function l is extended by allowing a degree and a semantics in
the label of any concept node c ∈ C:

l(c) = (type(c) : marker(c)|semc, dc)

The definition of a star BG [5] i.e., a BG restricted to a relation node and its
neighbors, is naturally extended as a star PCG.

5.4 Conceptual graphs based on the vocabulary VE

Given an explanation query E = (T , b, u) (definition 1), let us specify, in a PCG
G = (C,R,E, l) built on the vocabulary VE , the definition of the labels of the
following concept nodes:
• for a concept node c ∈ C such that type(c) = b and marker(c) = {u}, we put:

semc = P and dc = π∗b(x)(u). (12)

• for a concept node c ∈ C such that type(c) = a
(i)
j and marker(c) = P

(i)
j , we

take:

semc = sem(i) and dc =
{
π(p(i)

j ) if sem(i) = P
n(p(i)

j ) if sem(i) = C
. (13)

For the other concept nodes, we specify neither a degree nor a semantics.
On the vocabulary VE , let us define m+ 1 PCG D,N1, N2, · · · , Nm and a BG R:

Definition 3 D is defined as the PCG reduced to one concept node with label
(b : {u} | P, π∗b(x)(u)). It is a graphical representation of a statement, which
describes an observed phenomenon.

11



Definition 4 Each Ni is the star PCG where the unique relation node ri is of
type inferredv(i) with v(i) ∈ T . The graph Ni contains ki + 1 concept nodes:
c

(i)
b , c

(i)
a1 , c

(i)
a2 , · · · , c

(i)
aki

of type b, a(i)
1 , a

(i)
2 , · · · , a(i)

ki
and marker {u}, P (i)

1 , P
(i)
2 , · · · ,

P
(i)
ki

, as in (12), (13). The multi-edges are labeled (ri, 0, c(i)
b ) and (ri, j, c(i)

aj ) for
j = 1, 2, · · · , ki. Each Ni represents graphically either a statement justifying
the phenomenon represented by D or an unexpectedness statement. The link
between the phenomenon and the justification statement or the unexpectedness
statement is represented by a relation node of type inferredv(i) .

Definition 5 The graph R is the star BG where the unique relation node r is
of type t and the m + 1 concept nodes are noted c0, c1, · · · , cm, where c0 is of
type “Phenomenon” and c1, c2, · · · , cm are of type e. Their individual markers
are respectively Statement0,Statement1, · · · ,Statementm. The multi-edges are
labeled (r, j, cj) for j = 0, 1, · · · ,m. R structures the explanation by representing
the link between the observed phenomenon D and the statements N1, N2, · · · , Nm.

In Figure 1a and 1b we give examples of Ni and R respectively, with m = 3, e
= “Justification” and t = “isJustifiedBy”.

inferred

Current-bloodsugar: {Medium} | P,1

activity: {Drink-coffee} | P, 1

Future-bloodsugar: {High} | P,1
1

2
0

(a) Example of Ni.

isJustifiedBy

Justification: Statement1

Justification: Statement2 Justification: Statement3

Phenomenon: Statement0

1

2 3

0

(b) Example of R.

Figure 1: Examples of graphs. Nodes with a rectangular shape are concept nodes
and those with an oval shape are relation nodes.

5.5 Representation of explanations
We define the representation of an explanation as a nested conceptual graph G
defined by its associated tree as in [5], which is denoted Tree(G) = (VT , UT , lT ).
For our representation, the PCG D,N1, N2, · · · , Nm are nested in the concept
nodes of R:

Definition 6 Tree(G) = (VT , UT , lT ) is given by:
• VT = {R,D,N1, N2, · · · , Nm} is the set of nodes,
• UT = {(R,D), (R,N1), (R,N2), · · · , (R,Nm)} is the set of edges and the node
R is the root of Tree(G),
• the labels of the edges are given by lT (R,D) = (R, c0, D) and lT (R,Ni) =
(R, ci, Ni) for i = 1, 2, · · · ,m.

Taking the explanation queries EJ and EU (11), we get by definition 6, two nested
conceptual graphs that represent explanations of possibilistic inference decisions.
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Example 4 We represent an explanation (Figure 2) of a decision of our blood
sugar control system (section 2). It is a justification of πfbs(x)(high) = 1 built
using EJ = (Justificationfbs(x)(high), fbs, high) that could be in natural language:
“It is possible that the patient’s blood sugar level will become high. In fact, his
activity is drinking coffee and his current blood sugar level is medium. In addition,
it is assessed as not certain that he chose sport, walking, sleeping, eating breakfast
or drinking alcohol as an activity.” Its unexpectedness can also be represented.

Phenomenon: Statement0

Future-bloodsugar: {High} | P, 1

Justification: Statement1

inferredFuture-bloodsugar: {High} | P, 1
Current-bloodsugar: {Medium} | P, 1

activity: {Drink-coffee} | P, 1
0 1

2

Justification: Statement2

inferred activity: {Sport, Walking, Long-sleep} | C, 0Future-bloodsugar: {High} | P, 1 0 1

Justification: Statement3

inferred activity: {Alcohol-consumption, Breakfast} | C, 0Future-bloodsugar: {High} | P, 1 10
isJustifiedBy

0
1

2

3

Figure 2: Representation of an explanation.

6 Conclusion
In this paper, we introduced a method to justify by a subset of rule premises
the possibility degree of an output attribute value obtained by the inference of
a possibilistic rule-based system. We used it to represent two kinds of expla-
nations of possibilistic inference decisions. Natural Language Generation sys-
tems may use our representation to produce natural language explanations.
Question-answering applications may also rely on our representation, as the con-
ceptual graphs framework provides a mechanism for querying. This may lead
to the development of more general extraction justification methods. Moreover,
the representation of explanation may be adapted for the case of a cascade [9]
and fuzzy systems.
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