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Abstract— Grasp planning and most specifically the grasp
space exploration is still an open issue in robotics. This article
presents an efficient procedure for exploring the grasp space of
a multifingered adaptive gripper for generating reliable grasps
given a known object pose. This procedure relies on a limited
dataset of manually specified expert grasps, and use a mixed
analytic and data-driven approach based on the use of a grasp
quality metric and variational autoencoders. The performances
of this method are assessed by generating grasps in simulation
for three different objects. On this grasp planning task, this
method reaches a grasp success rate of 99.91% on 7000 trials.

Index Terms— multifingered gripper, grasp space explo-
ration, variational autoencoder, grasp quality metric

I. INTRODUCTION

Grasping is fundamental in most of the industrial manu-
facturing processes such as pick-and-place, assembly or bin
picking tasks. The grasp planning question is still an active
research topic. It aims at finding a gripper configuration that
allows to grasp an object reliably. This grasp configuration
needs to be kinematically reachable and collision free with
respect to the environment, and the produced grasp needs to
be stable and robust to external perturbation. Finding such a
grasp configuration requires to explore the grasp space, that
is the subset of gripper configurations that effectively grasp
the object. Thus, grasp planning is both object-dependent and
hardware-dependent. Taking into account those constraints
during the exploration is not trivial, as objects can have
complex shapes, and gripper-arm combination can have
complex kinematics.

This is even more true for underactuated or compliant
architectures, which are often chosen for grasping tasks [1].
Indeed, such architecture allows to reduce the controller
complexity by reducing the number of controlled degrees
of freedom, while retaining sufficient kinematic abilities.
Moreover, it tends toward producing robust grasps by their
mechanical structure.

The grasp planner should be able to find in the high dimen-
sional and highly constrained grasp space a configuration that
fulfills a given criterion. There are two main ways to achieve
this: analytic approaches and data-driven approaches [2].
Analytic approaches rely on an analytic description of the
grasping problem [3][4][5]. Data-driven approaches depend
on machine learning methods to predict grasps from object
depth map or point cloud [6][7][8][9][10][11][12].

A shared issue is the grasp dataset creation, that is the
grasp space exploration. A variety of high quality grasps
need to be discovered by exploring the space of possible
grasp configurations. There is two main approaches regarding
this exploration [5]: contact point approaches, and gripper
configuration approaches. In the first case the grasp space
exploration comes down to test various combination of
contact point location on the object surface. However there
is no guarantee that a given combination is kinematically
admissible for a given gripper, and the inverse kinematics can
even be intractable for underactuated or adaptive grippers.
In the second case, the grasp space is explored by testing
several gripper spatial configurations. This is more suited
for underactuated gripper. Nevertheless, there is no assur-
ance that a given gripper configuration is a priori able to
grasp the object without realizing extensive simulation trials
beforehand [11][12].

To circumvent this dimensionality issue related to the huge
size of the grasp space, numerous contact point approaches
limit their search to fingertip contacts [4][6], and gripper
configuration approaches often use a bi-digital gripper and
limit their search to planar grasps [7][8][9][10]. For more
complex grippers, as multifingered and adaptive ones, a
human input is often required. For example, in Santina et
al. [13], authors identified a set of ten grasp primitives
from human examples, and reduced the grasp space to those
primitives only. In Choi et al. [14], authors choose to limit
the search space by discretizing it.

The contribution of this article is a procedure that allows
to explore efficiently the grasp space of a multifingered and
underactuated gripper. It relies on a limited set of object-
dependent primitive gripper configurations, that are likely
to grasp the object based on human experience, around
which the exploration is focused. This allows to reduce the
search space dimensionality, without restricting the kinematic
potential of the gripper with arbitrary and strict hypothesis
such as fingertip contacts or planar grasps. In this article, this
procedure is applied in simulation on three different objects,
and allows to successfully generate relevant grasps.

Section II is dedicated to the problem statement and a
presentation of the used framework. Then, in section III
the general workflow will be explained. In section IV some
implementation details will be given. Finally, the resulting
grasp space exploration algorithm will be tested on grasp



planning trials in section V. To conclude, this work will be
discussed and the planned future works will be presented.

II. PROBLEM STATEMENT & TOOL USED

A. Simulation Setup

The gripper simulated in this work has three fingers,
and is underactuated and adaptive. The compliance and
underactuation allow it to naturally adapt itself to the object
geometry, without the need to carefully control each joint,
thus increasing the robustness of the grasp.

This gripper has two joints on each finger and one actuator
per finger to control both joints. The second (distal) phalanx
starts moving when the applied effort on the finger is above
a given force threshold. A fourth actuator allows a coupled
and symmetrical abduction-adduction (spread) motion of two
fingers.

This gripper is mounted as end effector of a six degrees
of freedom industrial robot arm.

The simulation setup described above is implemented with
Gazebo simulator [15]. A picture of this simulated setup is
displayed in Figure 1.

B. Problem Statement

An object is placed on a table in the workspace of the
considered robotic setup. It is assumed that the object is
known, as well as the pose in the scene of its associated
frame Fob j. Knowing the pose is not a strong hypothesis, as
there exists methods to extract pose information of known
objects from a point cloud, for example [16].

The goal of the grasp space exploration is to find grasp
configurations with a high quality. The metric used to assess
grasp quality will be described in subsection II-C. In this
work, a grasp configuration is a gripper configuration that is
able to grasp the object without colliding with the table.

A gripper configuration is defined as follows by eight
parameters:

• the pose of the gripper frame Fgrip,

(x,y,z,qx,qy,qz,qw) ∈ R3×SO(3) = SE(3)

with the orientation expressed in quaternion convention;
• the abduction-adduction motion, or spread angle θ , as

shown on Figure 1.

The dimensionality of this configuration space is high,
but this allows to fully leverage the grasping ability and
kinematic potential of the gripper. Thus, the grasp space
is a subset of this configuration space, with an additional
constraint that every gripper configuration is able to grasp
the object without colliding with the table.

To locate the gripper, a dedicated frame Fgrip situated
between the fingers in front of the palm is used. This frame is
displayed on Figure 1. Gripper poses are expressed relatively
to the object frame Fob j, in order to be invariant to object
poses.

(a) Pose of the frame Fgrip used to locate the
gripper relatively to the object frame Fob j .

(b) Spread angle θ .

Fig. 1. Gripper frame and spread angle.

C. Analytical Grasp Quality Metric

A grasp has several properties which can define its quality
[17]. One of them is the force-closure property, that is the
ability to resist external disturbances in any direction. See
Murray et al. [18] and Prattichizzo et al. [19] for more in
depth mathematical description. In particular, it relies on the
concept of grasp map G, a matrix that stores geometrical
information about the grasp.

Several metrics have been developed from the computation
of the grasp map. Some of them are considering algebraic
properties of the matrix, such as the full rank of the G matrix,
and can be used as a proxy for force-closure. In this paper,
the minimum singular value of G, QMSV , has been chosen.
It is worth noting that the proposed grasp space exploration
method could work with an other grasp quality metric. With
σ(G) the vector of singular values of G, QMSV can be simply
expressed as follows:

QMSV = min(σ (G))

QMSV greater than 0 is a necessary condition for force-
closure. The greater QMSV is, the farther the grasp is from
a numerical singularity. However, this is not a sufficient
condition. In the general case, it is difficult to assess if a grasp
is force-closure because it comes down to an optimization
problem with non-linear constraints.

D. Variational Autoencoders

A variational autoencoder (VAE) allows to generate con-
sistent data from its latent space more reliably than a
classic autoencoder, which is designed to learn a compressed
representation of data.

In a VAE, among other features, a supplementary term
is added in the loss function: the Kullback-Leibler (KL)
divergence [20]. This term helps the data to be represented as
a normal distribution in its latent space, and thus regularizing
it.

III. GENERAL WORKFLOW
The idea presented in this paper is to take advantage of the

human ability to find promising grasp configurations. Indeed,
it is easy for a human to find gripper configurations that are
likely to grasp a given object, that is configurations belonging
to the grasp space. However, those primitive grasps do
not necessarily have a high quality. Indeed, it is difficult
for a human to assess a priori the relative and absolute
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Fig. 2. Scheme of the presented workflow.

quality of grasp configurations. Here, it is the role of the
space exploration to focus around those primitive grasps to
constitute a collection of grasps with various quality, and
discover grasps with higher quality than the primitive ones
if such grasps exist.

The general workflow used to achieve this is described
below, and is decomposed as follows:
A. the constitution of a primitive grasp dataset
B. the training of a Human-initiated Grasp Generator Vari-

ational Autoencoder (HGG)
C. a dataset extension & grasp quality estimation phase
D. the training of a Quality-oriented Grasp Generator Vari-

ational Autoencoder (QGG)
This procedure is summarized on Figure 2.

A. Primitive Grasp Dataset

To leverage the human ability to find gripper configu-
rations belonging to the grasp space, an object-dependent
primitive grasp dataset is built. Concretely, a primitive grasp
is a handcrafted gripper configuration, with its pose and
spread angle human-chosen so that it is collision free and
likely to grasp the object. The spread angle (shown in Fig-
ure 1) is chosen between four discrete values corresponding
to main gripper internal layouts: θ = 0, θ = π/6, θ = π/4,
and θ = π/2.

The dataset stores the eight parameters describing each
primitive grasp along with the four parameters of the tabletop
plane Cartesian equation in object frame. Indeed, many
objects have different possible stable positions on the table.
This is a critical information to avoid collisions with it. Some
grasps may collide with the table in a given stable position,
while being suitable for an other stable position. Expressing
the grasp configuration in the object frame is still useful as
it allows an invariance to a position change and to a rotation
around a vertical axis.

B. Human-initiated Grasp Generator Variational Autoen-
coder (HGG)

The goal of the Human-initiated Grasp Generator VAE
(HGG) is to extract the correlations existing between the
parameters of different grasp primitives. Such correlations
exist because primitive grasps are in the grasp space, and
the grasp space is a subset of the gripper configuration
space. A VAE is able to use those correlations to build an

efficient mapping of the grasp space in its latent space, with
fewer parameters than the initial gripper configuration space.
This efficient dimension reduction allows to generate grasps
sufficiently close to primitive grasps to remain pertinent,
while exploring the configuration space around it, by simply
sampling in the VAE latent space. In this case, a mono-
dimensional latent space has been chosen, because it allows
the strongest compression. The main drawback is that if the
true dimensionality of the grasp space is greater than one,
there will be information loss during compression. The effect
of a latent space of higher dimension on the grasp space
exploration needs to be investigated in future work.

The HGG is trained on the primitive grasp dataset. Its
inputs and outputs are summarized on Figure 3.

inputs

gripper configuration in frame Fob j

tabletop plane
Cartesian equation in

frame Fob j
x y z qx qy qz qw θ a b c d

outputs

Fig. 3. HGG inputs and outputs data. This input-output architecture is
similar to Conditional VAE architecture introduced in [21]. The generated
grasp configuration is conditioned by the tabletop plane equation.

For the gradient descent during the training, a Mean
Square Error (MSE) is computed for each gripper parameter.

Each of these errors is averaged on each batch. Then, the
global loss for each batch is computed as the sum of these
averaged errors together with the KL-divergence loss.

C. Dataset Extension & Grasp Quality Estimation

Sampling in the latent space of the HGG allows to explore
the grasp space. This sampling is more efficient than a
sampling around expert grasp in the gripper configuration
space. Indeed, the HGG takes into account the correlations
existing between the parameters of the grasp configurations,
and thus maps the grasp space.

Each sampled configuration is then tested in simulation
along with each primitive grasp to check its success.

A configuration is successful if the following conditions
are met:
• it does not collide with the table
• it successfully lifts the object from the table
• its QMSV is greater than 0.



For each successful configuration, the computed QMSV
quality value is registered. For failed configurations, a null
value is registered as quality value.

This allows to extend the primitive dataset by exploring
extensively the grasp space. Thus, a collection of grasps with
various quality values can be constituted, and if better grasps
than the primitive ones exist, they can be discovered.

D. Quality-oriented Grasp Generator Variational Autoen-
coder (QGG)

The goal of the Quality-oriented Grasp Generator VAE
(QGG) is to reliably generate grasps with their corresponding
grasp quality.

The QGG is trained on the extended set formed by
merging the primitive grasp set with the generated grasp set
(both successful and failed). Learning failed grasps together
with successful ones reduces the risk of predicting a high
quality for a failing grasp when some failing configurations
are close to successful ones. The inputs-outputs are the
same as for the HGG with the grasp quality added as a
supplementary output. This way, the QGG decoder learns to
predict the grasp quality while reconstructing the other grasp
configuration parameters. Moreover, the dataset extension
allows to represent more accurately and more reliably the
grasp space.

The latent space dimension and the loss function are the
same as the ones used for the HGG. Regarding the grasp
quality, a MSE is computed and added to the loss.

The QGG can be used to generate high quality grasps by
sampling in its latent space and selecting only grasps having
their quality above a given threshold.

IV. WORKFLOW IMPLEMENTATION

The workflow described above is performed on three
different objects. Implementation details will be given in this
section.

A. Objects & Primitive Grasps

Fig. 4. The chosen objects and their frame Fob j in their different stable
positions: bent pipe (first row), cinder block (second row), and pulley (third
row)

The chosen objects are:
• a connector bent pipe
• a pulley
• a small cinder block
Their CAD model used in the simulation in their different

stable positions are visible on Figure 4. Those object were
chosen for their relative complexity and diversity in term of
shapes.

A set of primitive gripper configurations is determined for
each of those objects for each of their stable position. These
primitive gripper configurations can be sorted in different
grasp types presented on Figure 5. For each of these grasp
type, several variants are created.

For each object is gathered the following number of
primitive grasps:
• bent pipe: 145 samples
• cinder block: 141 samples
• pulley: 118 samples
Around one hour is needed for a given object to register

all those primitives.

Fig. 5. Primitive grasp types for the three chosen objects. On the first row
the grasp types for the bent pipe, on the second row for the cinder block,
and on the third row for the pulley

B. VAEs Training & Quality Metric Computation

The architecture used for both HGG and QGG is displayed
in Figure 6.

before the training, the inputs and outputs data are nor-
malized. This allows a faster training as the network does
not have to scale its data by itself.

To make sure that the quaternion outputs by the decoder
is a unit quaternion, a custom activation function is used to
normalize the quaternion on the output layer of the decoder.

For each object, a HGG network is trained on the primitive
grasp dataset, with the input-output architecture described in
Figure 3.

After the HGG training, 2000 grasps for each stable
position of each object are generated by sampling in the
HGG latent space and tested in simulation to compute their
quality metric, in order to create the extended dataset for the
QGG training. Some statistics about generated and primitive
grasps quality are summarized on Figure 7.

The grasp quality mean and median of the primitive and
generated grasps are close. This is expected as the VAE tries
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Fig. 6. HGG architecture. In blue the input layers, in green the hidden neural networks (NN) and in red the output layers. The hidden NN inner layers
are fully connected layers, with hyperbolic tangent activation functions. The main encoding and main decoding NN have symmetrical inner architecture.
The latent space dimensionality is one. The supplementary input for the tabletop equation allows to ensure that the generated grasp depends on it [21].
This architecture is implemented with Tensorflow [22] and Keras [23] python libraries. The QGG has the same architecture, with an added output to the
decoder for the grasp quality, with its associated output layer and hidden output NN. HGG and QGG have around 12000 trainable parameters each.

to reproduce the underlying distribution of the learning set.
The goal is to explore the grasp space around the primitive
grasps, and discover a collection of grasps with various
quality.

generated set primitive set

bent pipe

total number of grasps 4000 145

number of successful
grasps 2845 141

metric
statistics

median 0.1022 0.1018

mean 0.1035 0.1047

maximum 0.2128 0.2257

cinder
block

total number of grasps 6000 141

number of successful
grasps 5690 141

metric
statistics

median 0.0675 0.0670

mean 0.0535 0.0563

maximum 0.1877 0.1041

pulley

total number of grasps 4000 118

number of successful
grasps 3591 111

metric
statistics

median 0.0739 0.0730

mean 0.0653 0.0648

maximum 0.3115 0.1195

Fig. 7. information summary about primitive and HGG generated grasps
(step C of the workflow). The metric statistics are taking into account
successful grasps only.

For Two objects, a global maximum better than the primi-
tive grasps is found in the generated grasps. Indeed, the VAE

learns to interpolate between the primitive grasps: in case a
better grasp is "between" two primitive grasps, it is able to
generate it.

Regarding the bent pipe, no generated grasps are better
than the best primitive grasp. Two possible explanations are:
• The global maximum may already be in the primitive

dataset. It is not unlikely, as it is a human-crafted set of
configuration, and humans tend to produce high quality
grasps.

• Some configurations of the dataset, among which prim-
itives with best quality, are reconstructed poorly be-
cause of the trade-off between reconstruction and KL-
divergence. The model may not generate configurations
sufficiently close to those primitives to efficiently ex-
plore this part of the grasp space. This may be due to a
too high compression, linked to a too small latent space.

Regarding the QGG network, it is trained for each object
on the extended dataset constituted of the primitive grasps
and the HGG generated grasps. Its performances are assessed
on a grasp planning task in section V.

C. QGG Latent Space

The Figure 8 shows how the QGG network has extracted
the correlations between the gripper configuration parameters
and the grasp quality value for the pulley object. The prim-
itive grasps are evenly spread in the latent space, which is a
direct consequence of the KL-divergence loss component.
This is at the cost of a higher reconstruction error, but
allows to sample in the latent space safely, without producing
inconsistent configuration.

Due to contact points volatility in simulation, the com-
puted metric has a variability and is not fully deterministic



for a given configuration. Despite that, the QGG has suc-
cessfully captured the overall tendency, without over-fitting
on the noise.
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Fig. 8. QGG latent space representation for the pulley object. The curves
are obtained by sampling values in [−4.5,4.5] and passing them through
the decoder. The outputs are gripper configurations stored in the latent
space of the QGG. The scatter plots are obtained by passing some pulley
primitive configurations through the encoder (only one third of the primitives
displayed for readability).

V. GRASP PLANNING TRIALS

To validate the grasp space exploration workflow, grasp
planning trials are conducted on each object. The grasp
planning algorithm is described in Algorithm 1.

This planning procedure is executed on 1000 distinct
object poses for each stable position of each object. The

Algorithm 1 Grasp planning algorithm.
1: grasp candidate list ← /0
2: while length(grasp candidate list) < 3 do
3: configuration ← QGG decoding of a sampled value in its latent

space
4: if configuration predicted grasp quality > threshold then
5: if configuration is collision free and kinematically reachable then
6: append configuration to grasp candidate list
7: end if
8: end if
9: end while

10: execute the grasp with highest predicted grasp quality among grasp
candidate list

position of the object frame projection on the tabletop plane
is chosen randomly inside a 10× 10 centimeters square,
and its orientation relative to the vertical axis is also drawn
randomly between 0 and 2π .

Three parameters are monitored to assess the performances
of the presented workflow:

1) the grasp success rate.
2) the number of collision and reachability checking it-

erations needed to find three admissible grasps (Algo-
rithm 1 line 5), as it is the most time consuming step.
Indeed, the presented workflow is object-centric. It does
not take into account the arm kinematic and environ-
ment, so depending on the object pose in the robot
workspace, the probability of sampling an admissible
configurations in the QGG latent space vary.

3) the grasp quality relative prediction error.
These parameters are shown on Figure 9.

1) success rate
(%)

2)
Algorithm 1
line 5 mean

iterations

3) mean
quality

prediction
error (%)

bent pipe 100 7.6 15.6
cinder block 100 5.8 7.5
pulley 99.7 7.4 14.8

Fig. 9. Performances on grasp planning trials.

The mean relative prediction error has the same order of
magnitude than the computed metric noise.

The low number of collision and reachability checking
iterations shows that all grasp types and their variants are
evenly distributed in the latent space. Indeed, some grasp
types or variants within a grasp type are reachable only for
some object poses relative to the robot.

The low failure rate shows that the procedure presented
in this work successfully explore and reproduce the grasp
space, as it is able to generate reliably high quality grasps
for various object poses.

VI. CONCLUSION
This work presents an efficient method for grasp space

exploration. It explores a high dimensional grasp space by
focusing the search around human inputs, and take into
account analytic grasp quality criterion. This procedure was
then used to successfully plan grasps in simulation.

Various tracks can be investigated in future works. First,
the effect of a latent space of higher dimension on the
grasp space exploration needs to be assessed. Indeed, using
a larger latent space may improve the exhaustiveness of the
exploration by reducing information loss due to compression.
Moreover, a reduction of the number of human inputs
required per object would be useful to scale this method to
several objects. Furthermore, in this study, the grasp planning
performances were assessed in simulation only. These results
need to be confirmed on a real setup. Finally, this space
exploration procedure could be used to constitute a grasp
dataset with high quality grasps to be learned by a data-
driven grasp planner. Indeed, this may allow to generalize to
unseen objects.
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