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Introduction
Plasma rotation plays a key role in plasma 

confinement [1][2]; 

Control of plasma rotation in reactor-sized 
tokamak is challenging [3]; 

Intrinsic bulk plasma rotation is driven by 
turbulence and Neoclassical Toroidal Viscosity 
(NTV); 

Magnetic field ripple is responsible for the 
NTV.

Objective: Understand the 
competition/synergy between turbulence and 
NTV with gyrokinetic simulations.

Neoclassical friction

Ripple is responsible for magnetic braking𝓂
in the toroidal direction : the NTV;

Neoclassical theory [6][7] with ripple gives : 

𝓂 = −𝝂𝝋 𝑉𝑇 − 𝑘𝑇
𝛻𝑇

𝑒𝐵𝑃

Friction Thermal drive

GYSELA code shows good agreement with
neoclassical predictions;

𝜈𝜑 increases with the ripple amplitude.

Conclusion

Ripple is responsible for a neoclassical friction that 
constrains the toroidal velocity;

Turbulence is a source of intrinsic rotation;

Evolution of mean toroidal flow ruled by competing 
turbulent stress and ripple drag forces;

The radial electric field grows in response to the 
modification of the toroidal velocity;

Simulations suggest that neoclassic drag overcomes 
turbulent stress for typical realistic ripple amplitudes 
in WEST;

Future work taking into account boundary physics 
with realistic WEST ripple amplitude is necessary to 

understand the shape of 
𝑑𝐸𝑟

𝑑𝑟
and the transition toward 

high-confinement modes.

FIG.1 – Kinetic effects induced by ripple : drift of banana bounce 
points (a) and toroidal trapping between coils (b). Neoclassical 
friction 𝜈𝜑 comes from the collisions between trapped populations.

FIG.2 – Snapshot of the turbulent structures seen
through a colormap on the electric potential. From
rest, 𝑉𝑇 grows due to wave-particle interactions.

Goal: Obtain coefficients of turbulent momentum transport from simulations and use neoclassical friction 𝝂𝝋
predictions to find the ripple amplitude threshold for which neoclassical effects overcome turbulence. 

Theoretical model

(b)

(a)

𝑹

𝜽

𝜕𝑉𝑇
𝜕𝑡

= Neoclassical Toroidal Viscosity + Turbulent torque

Ripple constrains 𝑉𝑇 through neoclassical friction 𝜈𝜑 Turbulence constrains 𝑉𝑇 through turbulent viscosity 𝜒𝑡𝑢𝑟𝑏

A reduced model based on the mean toroidal velocity 𝑉𝑇 reads :

See FIG.6

Complete model reads :

Boundary physics not in the model  radially
gaussian ripple (cf FIG.5)

Model verification using 2 simulations :
• With dominant neoclassical friction

• With dominant turbulent viscosity

Main result FIG.7 
• 𝛿0 = 0.1% case dominated by turbulence

• 𝛿0 = 1.0% case driven by neoclassical friction 
 increase of 𝐸𝑟 to fulfill force balance

FIG.6 – Radial profiles of estimated 
turbulent relaxation frequency and 
predicted neoclassical frictions.

FIG.7 – Time evolution of 𝑉𝑇 and 𝐸𝑟 in the range 
0.45 < 𝜌 < 0.55 for different ripple amplitudes.
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FIG.5 – Polar map of the 
ripple amplitude used for 
simulations.

𝜕𝑉𝑇
𝜕𝑡

≈ 𝓂 − 𝛁.𝚷𝝋 ⇒

Competition ripple/turbulence

𝜏𝑉 ∼ 𝑚𝑎𝑥
𝜒𝑡𝑢𝑟𝑏

𝐿𝑉
2 , 𝜈𝜑

−1

𝑽𝑻 relaxation time

𝑽𝑻 gradient’s length

Turbulent momentum transport
Turbulence impacts 𝑉𝑇 through the toroidal Reynold’s stress Π𝜑

Axisymmetric theory [4][5] :

Obtention of 𝝌𝒕𝒖𝒓𝒃, 𝓥 and 𝚷𝒓𝒆𝒔 using gyrokinetic simulations :

• Simulations of turbulent plasma without ripple with different initial toroidal velocity 

 FIG.3 shows the dominance of the viscosity :  −𝜒turb
𝜕𝑉𝑇

𝜕𝑟
;

• Eq.1 defines a plane in the (VT, 𝜕rVT, Π𝜑) space;

• Mean square plane fit using simulations output gives an estimation of 𝝌𝒕𝒖𝒓𝒃 within 
a radial range (see FIG.4 for an example).

Π𝜑 = −𝜒turb
𝜕𝑉𝑇

𝜕𝑟
+ 𝒱𝑉𝑇 + Π𝑟𝑒𝑠 (Eq.1)

Viscosity Pinch Residual

FIG.3 - Radial profiles of 𝑉𝑇, 𝜕𝑟𝑉𝑇 and Π𝜑 taken at turbulent saturation for 

simulations initialized at different toroidal velocity 𝑉𝑇 𝑡 = 0 = 𝑉0𝑒
4 𝜌−0.5 2

FIG.4 - Plane fit of Π𝜑 using point cloud from 

simulations giving an estimation of the 
turbulent viscosity within a radial range.


