

Confinement properties in the large aspect ratio, full tungsten environment of the WEST tokamak

V Ostuni, J Morales, C Bourdelle, J-F Artaud, P Manas, R Dumont, N

Fedorczak, M Goniche, P Maget, Y Sarazin

▶ To cite this version:

V Ostuni, J Morales, C Bourdelle, J-F Artaud, P Manas, et al.. Confinement properties in the large aspect ratio, full tungsten environment of the WEST tokamak. 25th Joint EU-US TTF Meeting - EU-US Transport Task Force, Sep 2021, E-Conference, United Kingdom. . cea-03349956

HAL Id: cea-03349956 https://cea.hal.science/cea-03349956

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Confinement properties in the large aspect ratio,

full Tungsten environment of the WEST tokamak

V. Ostuni¹, J. Morales¹, C. Bourdelle¹, J-F. Artaud¹, P. Manas¹, R. Dumont¹, N. Fedorczak¹, M. Goniche¹, P. Maget¹, Y. Sarazin¹ and the WEST team [1]

¹CEA, IRFM, F-13108 Saint Paul-lez-Durance, France.

INTRODUCTION Core radiative collapse modelling with RAPTOR WEST is a metallic tokamak operating in L mode since December 2016. Its specificities Two different confinement states coexist in the WEST L-mode operation. The hot branch, is are an aspect ratio value of 5-6 and the inner wall covered with tungsten tiles plus characterized by a high central electron ITER like PFU on lower divertor. Its plasmas are dominantly electron heated (ICRH and LHCD) and torque free (no NBI). [1] [Bucalossi et al submitted to NF 2021] temperature, internal inductance and neutron flux and a low tungsten peaking. In this work, we analyze extensively the database of WEST plasmas to characterize the operational domain, based on plateaus of quasi-steady phases of power and current. Thanks to the bolometry tomography it is In WEST database, 20% of the detected plateaus are affected by a rapid collapse of possible to compute the power emission density 50 0.75 1.00 1.25 1.50 1.75 $P_{tot}/n_{e,vol}$ [MW/10¹⁹ m^{-3}] the central electron temperature or do not reach more than 1.5 keV at the core. Since profile. reaching plasmas with enhanced stability is fundamental to obtain high tokamak Above 1keV all the radiated power is due to performances, the core radiative collapse is modelled using RAPTOR to understand $W_{peak} =$ tungsten emission. the causality leading to colder plasma core. [2][3] tungsten density peaking WEST database based on plateau phases sion profile 8<t<8 The performed studies take into account statistics calculated on plateaus of total power intersecting plasma current plateaus (quasi-steady states). Different diagnostic measurements are time averaged on each plateaus and added to the database. The plasma energy content computed from polarimetry constrained equilibrium reconstructions is chosen for the analysis. [Faugeras Fusion Engineering and Design 2020] $\tau_{mhd} = \frac{W_{mhd}}{P_{tot} - \frac{dW}{dt}} = \frac{\frac{3}{2} \int_{V} P \, dV}{P_{ohmic} + P_{aux} - \frac{dW}{dt}}$ 1 25 150 175 Example of plateau $P_{tot}/n_{e,vol}$ [MW/10¹⁹m⁻³] In WEST L-mode database 20% of the detected plateaus are affected by a rapid collapse of the central electron temperature or do not reach more than 1.5 keV. The WEST database contains more tha 0.20 <u>x 10 W @ Open ADAS/50</u> 1000 entries: Σ 0.15 unstable L-mode pulses (P_{aux}>0.5MW); Ë deuterium only pulses; 0.10 ≷ 2 heated by lower hybrid and ion; 0.05 Shot 55539 cyclotron resonance heating; 3 4 Te (keV) 2 Lower single null configuration. $T_e(0)$ [eV] time[s] $P_{tot}/n_{e,vol}$ [MW/10¹⁹m⁻³] The parametric dependence of the confinement time with The 1D transport code RAPTOR is used to model the collapse. T_{e} Current diffusion T_i P_{rad} Heat transport reconstructed with METIS Computed to match P_{rad} BgB fixed, by interferometry ADAS predictive predictive Comparison WEST with ITER96L scaling law 2×10 [Puetterich PPCF 2008] S 6×10 4×10 3×10 3×10-4×10-2 6×10-10-2 × 10 TITERL96 [S] The density rises leading to slight $T_e(0)$ drop. The acceleration of the $T_e(0)$ drop is A weaker dependence on density is concomitant with an increase of the core W peaking. found. But WEST confinement time is well aligned with ITER96-L At first a flat W profile is found to reproduce well the measured P_{rad}, then, a peaked core W profile is assumed to reproduce the core bolometer chords increase. Aspect ratio ITER96-L database WEST database 350 The increase of the tungsten in the center of the plasma of shots 300 is not sufficient to reproduce the collapse. 250 The central value of the LHCD power deposition is

 $\Omega_i \tau = \rho_*^{x_{\rho_*}} \beta^{x_{\beta}} \nu_*^{x_{\nu_*}} q^{x_q} M^{x_M} \varepsilon^{x_{\varepsilon}} B^{z_{\varepsilon}}$

reduced in an ad-hoc manner.

respect to the aspect ratio

The engineering parameters scaling law for the energy confinement time

 $\tau = C I p^{\alpha_p} B^{\alpha_B} P_{tot}^{\alpha_p} n_e^{\alpha_{ne}} M^{\alpha_M} R^{\alpha_R} \varepsilon^{\alpha_{\varepsilon}} k^{\alpha_k}$

is applied on WEST database accounting only plasma current, the line averaged electron density and the total power.

	α_{Ip}	$\alpha_{ne_{bar}}$	$\alpha_{P_{tot}}$	RMSE
$ au_{ITER96L}$	0.96	0.40	-0.73	18.9
$ au_{WEST}$	1.28	-0.19	-0.72	13

WEST data are added to the existing ITER96L database with machines having aspect ratio (A) ranging from 2.41 to 7.78, but with few shots in the range 5-6 [4].

The engineering coefficients are combined through the Kadomtsev transformation to compute the dimensionless scaling law. [Y.Sarazin, NF, 2020]

[Luce, PPCF,	2008]
--------------	-------

Variable	ITER96-L	ITER96+WEST
q	-3.74	-3.88
B _T	0	0
k	3.22	3.26
R/a	0.04	0
M_{eff}	0.67	0.67
$ ho_*$	-1.85	-1.91
ν_{*}	0.19	0.18
β	-1.41	-1.45
Entries	1313	2400
WEST entries	-	1087
RMSE	15.8%	16.3%

The aspect ratio does not play an important role in the scaling. Even if WEST has an aspect ratio larger than the other tokamaks in ITER96L database, the regression coefficient still close to zero.

This reduction follows the trend observed in the central emissivity profile reconstruction from the hard X rays 60-80 keV camera.

With both conditions the speed of the collapse is reproduced.

CONCLUSION

- WEST L mode energy content agrees with ITER96L scaling predictions;
- The scaling coefficients do not change significantly adding WEST shots directly to ITER96L confirming the weak aspect ratio dependence reported in the ITER96L;
- Two different confinement states coexist in the WEST operation: one with Te(0)>3keV and one with Te(0) <1.5 keV at the same power/<n>;
- The core T_a rapid collapse from 3 to 1.5 keV cannot be explain solely by an increase of the density. An increase of the core W peaking as well as an off-axis shift of the LHCD power deposition are necessary to reproduce the observed $T_{a}(0)$ collpase.

References [1] http://west.cea.fr/WESTteam. [2] F. Felici et al, Nucl. Fusion, 51(8):083052, aug 2011.
[3] K. L. van de Plassche et al, Physics of Plasmas, 27(2):022310, 2020.
[4] S.M. Kaye and ITER Confinement Database working Group 1997 Nucl. Fusion 37 1657