
HAL Id: cea-03345836
https://cea.hal.science/cea-03345836v1

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Model-driven architectural framework towards safe and
secure nuclear power reactors

Bassem Ouni, Christophe Aussagues, Saadia Dhouib, Chokri Mraidha

To cite this version:
Bassem Ouni, Christophe Aussagues, Saadia Dhouib, Chokri Mraidha. Model-driven architectural
framework towards safe and secure nuclear power reactors. Sensors, In press, 21 (15), pp.5136.
�10.3390/s21155136�. �cea-03345836�

https://cea.hal.science/cea-03345836v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

sensors

Article

Model-Driven Architectural Framework towards Safe and
Secure Nuclear Power Reactors

Bassem Ouni * , Christophe Aussagues, Saadia Dhouib and Chokri Mraidha

����������
�������

Citation: Ouni, B.; Aussagues, C.;

Dhouib, S.; Mraidha, C.

Model-Driven Architectural

Framework towards Safe and Secure

Nuclear Power Reactors. Sensors 2021,

21, 5136. https://doi.org/10.3390/

s21155136

Academic Editors: Domenico

Balsamo and Rishad Shafik

Received: 14 June 2021

Accepted: 21 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

CEA LIST, University of Paris-Saclay, 91120 Palaiseau, France; Christophe.Aussagues@cea.fr (C.A.);
Saadia.Dhouib@cea.fr (S.D.); Chokri.Mraidha@cea.fr (C.M.)
* Correspondence: bassem.ouni@cea.fr

Abstract: Sensor-based digital systems for Instrumentation and Control (I&C) of nuclear reactors
are quite complex in terms of architecture and functionalities. A high-level framework is highly
required to pre-evaluate the system’s performance, check the consistency between different levels
of abstraction and address the concerns of various stakeholders. In this work, we integrate the
development process of I&C systems and the involvement of stakeholders within a model-driven
methodology. The proposed approach introduces a new architectural framework that defines various
concepts, allowing system implementations and encompassing different development phases, all
actors, and system concerns. In addition, we define a new I&C Modeling Language (ICML) and a set
of methodological rules needed to build different architectural framework views. To illustrate this
methodology, we extend the specific use of an open-source system engineering tool, named Eclipse
Papyrus, to carry out many automation and verification steps at different levels of abstraction. The
architectural framework modeling capabilities will be validated using a realistic use case system
for the protection of nuclear reactors. The proposed framework is able to reduce the overall system
development cost by improving links between different specification tasks and providing a high
abstraction level of system components.

Keywords: architectural framework; Model-Driven Engineering; modeling language; Instrumenta-
tion and Control; nuclear reactor; safety and protection

1. Introduction

With the increasing architectural and functional complexity of systems, designers
faced challenges in terms of specification, architecture definition, integration, qualification
and certification. Accordingly, they deployed a Document-Based System Engineering
(DBSE) approach carrying out text-based specifications. However, the DBSE approach
raised several issues related to project management, system development process, specifi-
cations, trace-ability, collaborative work and standards compliance [1]. To overcome these
weaknesses, system designers adapt the Model-Driven Engineering approach, known as
MDE [2]. MDE attracted a lot of research interest in recent decades due to its ability to
overcome the complexity challenges of systems. Moreover, MDE-based approaches allow
analyzing the behavior, implementing and checking the safety of these systems where
models act as the main development feature. The MDE area covers various standardized
modeling languages, such as the Unified Modeling Language (UML) [3], and domain-
specific languages (DSLs) [4]. DSLs can be based on the UML extension mechanism, called
UML profiles, or on meta-models. Considering this, modeling stakeholders harness the
capabilities of MDE to reduce a system’s complexity in many research fields and applica-
tions areas, including health [5,6], telecommunication [7], systems security [8], Internet
of things [9,10], Robotics [11], Big Data [12,13], Aerospace applications [14], automotive
systems [15], Cyber-Physical systems [16] and Climate change [17]. MDE languages allow
the modeling of various constituents of systems, including the structure and the behavior.
Thanks to model-based tools, the system performance can be pre-evaluated, and its design

Sensors 2021, 21, 5136. https://doi.org/10.3390/s21155136 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6534-9295
https://doi.org/10.3390/s21155136
https://doi.org/10.3390/s21155136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155136
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155136?type=check_update&version=2

Sensors 2021, 21, 5136 2 of 25

can be visualized at the early stages of development. Consequently, developers can reduce
risks during the design phase with the early detection of errors. Moreover, models can ease
the maintenance of systems during their operational phase [18].

In this work, we will focus on using MDE to reduce the development complexity of
digital systems dedicated to safety and security of civil nuclear reactors, named Instrumen-
tation and Control (I&C) systems.

In this context, several studies have been carried out that focus on the usage of MDE
approaches and tools for safety and security of systems [19]. Accordingly, innovative
model-based tools have assisted in the development of safety and security systems, taking
into account their functional and non-functional requirements.

In [20], the authors explored the modeling issues that are currently being faced by
a specific nuclear power plant monitoring system when managing regulatory safety re-
quirements, standards and practices. They focused on studying requirements modeling
techniques to understand their benefits and limits according to their company’s needs.
The authors illustrated different facets of this problem by refining and analyzing the de-
velopment process of I&C systems. The problematic has not been formalized, and the
proposed approach is not generic and is only applied to their specific use-case. Furthermore,
no architectural framework has been carried out.

The work in [21] focused on the user interface flexibility in model-driven engineering
in order to scale up from simple applications to real case studies. The authors present
three kinds of flexibility for improving the design and development of process models:
the variability for equivalent choices, granular-ability for various abstraction levels and
completeness for possibly optional and predefined reusable components. The authors
validated their approach on a nuclear power plant use case.

Linnosmaa et al. [22] focused on the challenges pertaining to the overall safety of the
I&C architectural design and, more specifically, the modeling and assessment of nuclear
safety I&C systems at the architectural level. This paper describes the design process of
early conceptual overall safety I&C architecture from a modeling point of view. Further-
more, the authors defined the requirements for a model-based approach to support the
design and analysis of the design solution using the Architecture Analysis and Design
Language (AADL). The authors reviewed the capabilities of this language for modeling
overall safety I&C architectures and modeled a simplified example architecture of an APR-
1400 nuclear power plant. In this work, the hardware architecture has not been refined.
The researchers found that AADL is not adapted for modeling the overall I&C architecture
due to the lack of analysis possibilities and standardized modeling approaches.

The authors in [23] addressed the question of formalizing the regulatory requirements
for the nuclear domain expressing multiple different concerns, scatter and hinder the
domain knowledge capitalization. They focused on improving the meta-model of tacit
(non-written) requirements and practices. Accordingly, they proposed a dual Model-Driven
Engineering (MDE) and Information Retrieval (IR) approach to address the nuclear reg-
ulatory requirements domain definition and assisted trace-ability based on the acquired
requirements’ model. Their work focuses more on requirements but not on system compo-
nents and their behavior.

Poirier et al. [24] presented a model-based engineering framework covering the I&C
design process from the requirements to the design of I&C architectures. This framework
is developed based on Increment and Papyrus open-source tools. It provides an extensible
modeling environment as well as traceability and verification features. The physical
components have not been considered. Compared with this work, our work will propose a
new framework that is guided by an innovative approach covering all levels of abstraction
and will be validated in a use case.

Cai et al. [25] compare two methodologies for designing interfaces of a primary cooling
circuit of a pressurized water reactor (PWR). These methodologies are the Abstraction
Hierarchy (AH) and Multi-Level Flow Modeling (MFM). They target to understand whether
AH and MFM have provided a satisfactory answer. They conclude that AH and MFM are

Sensors 2021, 21, 5136 3 of 25

complementary in terms of their functions, and neither of them has provided a satisfactory
answer to the foregoing question. The authors figure out the criteria for a more satisfactory
answer, but the methodology to satisfy these criteria were to be considered in future work.
We will compare our contribution with these two approaches in the results section.

Lin et al. [26] study the principles of interface design. They identify problems with
Ecological Interface Design (EID) and proposed a new principle for human–machine
interface design called Function Behavior State (FBS). They carried out a comparative study
for EID and FBS on a simulated process plant system. We will compare our framework
with FBS and EID in the results section.

Table 1 summarizes the advantages and disadvantages of the related work approaches.
Various approaches missed the field problematic formalism, are not generic and are only
applied to a specific use-case. In addition, no architectural framework has been designed
for the modeling of I&C systems. In other works, the hardware architecture has not
been refined. Other researchers found that the used language (for instance AADL) is not
adapted for modeling the overall I&C architecture due to the lack of analysis possibilities
and standardized modeling approaches.

Table 1. Related works comparison

Approach Pros Cons

Linnosmaa et al. [22]
- Modeling and assessment

of nuclear safety I&C systems at
an architectural level

- A lack of analysis possibilities and
standardized modeling
approaches (AADL)

Ceret et al. [21]

- Scaled the user interface, variability
for equivalent choices, granular- ability
for various abstraction levels and
completeness for possibly optional
and predefined reusable components.

- Graphical interface is not
extensible and not dynamic

Sannier et al. [23]
- Refined and improved the nuclear

regulatory requirements domain

- Focused only on the requirements
but not on the system components
and their behavior.

Poirier et al. [24]
- An extensible modeling environment.
- Traceability and verification features.

- The physical components
were not considered

- Not guided by an approach and not
validated with a realistic use case.

MFM approach
(Cai et al. [25]) - Modeled the processes

- Fixed and not extensible
graphical representation.

- No dynamic representation of
system behavior

AH approach
(Cai et al. [25]) - Modeled the domain

- No consideration of specific application
tasks, activities, processes or events.

- Did not fulfill a complete design or
specification of tasks or events
that the user needs to do

FBS approach
(Lin et al. [26])

- Modeled the system behavior
- Produced an explicit representation

of failures and redundant functions

- Focused only on modeling particular
aspects, such as the user’s role,
values and needs.

- The hardware platform was not modeled

EID approach
(Lin et al. [26]) Interface the system design

- the display of information can distract
the operator

- Overlapping between different
levels of information

- No time consideration

Sensors 2021, 21, 5136 4 of 25

Other approaches used languages that have their own graphical model and symbols.
These graphical models are neither customizable nor extensible. They focus more on
requirements but not on the system’s physical components and their behavior. Furthermore,
some approaches consider only application tasks, activities, processes or events and do not
fulfill a complete design or specification of tasks or events that the user needs to do.

To overcome these challenges, we propose a new collaborative methodology to model
the I&C systems and communication between them at different levels of abstraction and
check the consistency between them. The methodology is customizable and extensible.
These models are used for I&C system design, performance evaluation, verification and
validation. The proposed architectural framework covers various concepts, allowing
system implementation, and includes different development phases and system concerns.
Furthermore, we proposed a new I&C modeling language, including the different modeling
rules needed to build different architectural framework views.

The architecture of I&C devices dedicated to the control and protection of nuclear
reactors is quite complex. To overcome this issue, in this work, we aim to significantly
reduce the development costs of these systems in terms of engineering time and equipment
aspects. In order to address the cost improvement objectives of the engineering part, a new
MDE-based methodology is proposed. To validate this approach, we extend the specific use
of the open-source system engineering tool base, Papyrus [27], for the control and protection
of nuclear reactors. The integration of this methodology within this tool encapsulates the
main stages of use-case system engineering and carries out many automation steps and
consistency checks between different design stages. In addition, it also improves the links
between different tasks during the specification, design and development of the system.

The rest of this paper is organized as follows: The next section introduces a detailed
description of the Model-Driven methodology for I&C systems engineering. Section 3
refines the Instrumentation and Control modeling language (ICML). Then, Section 4 illus-
trates the proposed approach on a nuclear reactor protection system. Finally, the conclusion
and future works are drawn in the last section.

2. Model-Driven Methodology for I&C Systems
2.1. Architecture Framework for I&C Systems

Before defining a methodology to design and develop complex systems efficiently,
it is mandatory to set up a coherent modeling framework that defines various concepts,
allowing the design and implementation. This framework encompasses different develop-
ment phases, all actors and various system concerns. This approach, called “architectural
framework”, was standardized in [28], it is defined as “the set of conventions, principles
and practices for the description of architectures established in a specific application do-
main and/or a community of stakeholders”. Key concepts of refining systems and their
architectures are defined below as context for understanding the practice of architecture de-
scription:

• Stakeholders: an individual, team or organization that has concerns about the consid-
ered system in relation to its environment. A concern may be held by one or more
stakeholders.

• Concerns: Throughout the life cycle of the system, concerns arise from system needs
and requirements, design choices, implementation and operation considerations.

• Architecture view and viewpoints: an architecture description includes one or more
architecture views. An architectural view addresses one or more concerns of system
stakeholders. It expresses the architecture of the system of interest in accordance with
a viewpoint. A viewpoint has two aspects: the concerns it expresses to stakeholders
and the conventions it establishes on views. A view is governed by its viewpoint: the
viewpoint establishes the conventions for constructing, interpreting and analyzing the
view to address the concerns expressed by that viewpoint. Viewpoint conventions can
include languages, notations, model types, design rules and/or modeling methods,
analysis techniques etc.

Sensors 2021, 21, 5136 5 of 25

• Architecture models: an architecture view is made up of one or more architectural
models. An architectural model uses the modeling conventions appropriate to the
concerns to be addressed [29]. These conventions are specified by the Model Kind
governing this model. In an architectural description, an architectural model can be
part of one or more architectural views.

• Model Kind: all conventions for a type of modeling. For instance, a model kind could
be data flow diagrams, class diagrams, Petri nets or state/transition diagrams, etc.

According to the ISO architectural framework working group [30], there is no archi-
tectural framework already established by a national or international community in the
field of I&C of nuclear reactors. Then, following the architecture description standard,
below, we define the basic concepts of the proposed I&C systems architectural framework,
depicted in Figure 1.

Figure 1. Class diagram of I&C systems Architectural Framework.

• Stakeholders:

- The client: The client provides a list of I&C functions to be performed and defines
the associated specifications.

- The system engineer: The system engineer is responsible for translating the
functions to be implemented (and associated specifications) into a high-level
architecture. The functions are translated to functional diagrams (FD), and this
representation is independent of the implementation technology. This level is
then refined, as the system development progresses, to Equipment Diagrams
(ED), including technological details of implementation. The processing and

Sensors 2021, 21, 5136 6 of 25

functions at (FD) level are allocated to different (ED) level equipment of the sys-
tem.

- Software (SW) engineer: The software engineer can participate in collabora-
tion with the system engineer in the development of (FD) functions. He is
responsible for the application of system specifications to be carried out in the
software/Hardware detailed design.

- Hardware (HW) engineer: The HW engineer can participate in collaboration
with the system engineer in the development of the system specifications. Fur-
thermore, he is responsible, with the software engineer, for the application of
system specifications in the software/hardware detailed design phase.

• The concerns:

- Overall system design
- Detailed hardware and software design

• The viewpoints:

- Specification: This point of view establishes the conventions for the construction
of architectural views, allowing the translation of customer specifications into
system architectures regardless of technological implementation constraints.

- Design: This point of view establishes the conventions for the construction of
functional architectural views, taking into account technological implementa-
tion constraints.

- Implementation: This point of view establishes the conventions for the construc-
tion of behavioral views, which contain all the information necessary for the
manufacture of I&C cabinets.

• Model kinds:

- System Functional Architecture: It describes the system functional entities and
the relationships between them and their sub-functions without considering the
technological implementation.

- System Physical Architecture: It describes the hardware entities at a high level
of abstraction and the relationship between them to represent the equipment
behavior taking technological constraints into account.

- Hardware Design Diagram: It refines the hardware devices of different sys-
tem devices.

- Software Design Diagram: It includes the software behavior and the relationship
of different software applications running on various system devices.

2.2. I&C Modeling Language

The architectural framework presented in the previous section defines three view-
points that establish the conventions for developing I&C architectural views. These views
must be developed using a graphical modeling language, such as an Architecture Descrip-
tion Language, that will encapsulate all of the concepts and modeling rules needed to build
these views. The proposed language is named the Instrumentation and Control modeling
Language (ICML). The latter is the result of the aggregation of a domain-specific modeling
language (DSML) [31], as shown in Figure 1.

The development of ICML and the associated graphical editors follows the flow as
depicted in Figure 2. Considering the I&C specification and the study of existing standards
for I&C systems graphical notation [32], the ICML is designed based on these two syntaxes:

- An abstract syntax or Metamodel: The metamodel defines different concepts manipu-
lated in the domain and structures the relationships between these concepts and their
semantics into a coherent unit. UML is used to formalize these concepts and define
the relationships between them. The concept’s semantics can be modeled textually or
formally via a dedicated language, such as OCL (Object Constraint Language) [33].

Sensors 2021, 21, 5136 7 of 25

- A concrete syntax: This defines the textual or graphical notations for the modeling
language. The links between the abstract syntax concepts and the concrete syntax
notations are also defined. Several concrete syntaxes can be defined for the same
abstract syntax, which allows several representations for the same metamodel. To
develop the ICML concrete syntax, the UML profile is used, which is to say, we define
stereotypes extending the UML meta-classes. The major advantage of using the UML
profiling approach is to benefit from a set of existing tools, both commercial and
open-source.

Standards on I&C systems design
and specifications

ICML MetaModel

ICML UML Profile

ICML graphical modeling tools development

System architecture
diagrams Functional diagrams

Hardware equipments
diagrams

Export to I&C toolsDocument generation Functional Simulation

1

2

3

3.1 3.2 3.3

4 5 6

Figure 2. The ICML and associated model-based tools development process.

Based on meta-models, we developed an architectural framework for I&C systems
with the graphical editors. These model-based editors, which correspond to the model
kinds in the architectural framework presented in Figure 1, are developed as supporting
graphical tools for the ICML language. The modeling language tool used for developing
the architectural model-based framework is Papyrus [27]. Papyrus is an open-source
model-driven engineering tool and available in the Eclipse platform [34]. Various modeling
features of Eclipse Papyrus are designed to be customized and to maximize reuse. Therefore,
we adapt this modeling environment to shape the proposed ICML language, taking into
account I&C systems development methodology and requirements.

The developed framework allows modeling I&C devices at system, functional and
physical levels. The ICML models will be used to achieve the simulation of system func-
tional behavior, export data to other I&C tools and generate dedicated documentation.

2.3. Architectural-Based Methodology Formalism

As explained in the previous section, the architectural framework encompasses vari-
ous system development phases. The refinement of these phases is mandatory to enrich
the ICML language to cover various concepts of I&C in civil nuclear power plants. For this
reason, we divide the I&C systems development process into steps and involve the partici-
pation of stakeholders throughout this process within an architecture-based methodology.

The I&C systems engineering process involves several steps, each of which has impact
on the next one.

Sensors 2021, 21, 5136 8 of 25

The first step consists of defining the system architecture diagrams that abstract the
overall outline of this system and the inter-operability between its components. Further-
more, experts define the set of the inputs/outputs of the overall system, taking into account
several naming rules. Then, the functional behavior of the system is defined; it is described
as a sequence of functions, their sub-functions and their interactions with whatever their
technological implementation. This functional level, named Functional Diagram (FD) level,
takes the form of various diagrams including these functions. Finally, designers define the
Equipment diagram (ED) level, where the allocation of system functions on the hardware
platform is detailed. Figure 3 depicts different steps of the I&C systems development
process. Different phases are detailed below:

• Phase 1—Client Requirements: In this step, documents expressing customer needs in
terms of safety requirements and functions (from the overall I&C systems architecture)
are defined. These documents, provided in mainly document formats (Word and
Excel, etc..), are the main inputs of the system architecture specification (phase 2) and
will also serve as the functional design (phase 3).

• Phase 2—I&C Architecture and Network Design: In this phase, the specifications of
the I&C system network architecture and global architecture are defined, taking into
account the customer specifications. The global architecture is then used for the I&C
safety functions high-level description in Phase 3.

• Phase 3—Functional behavior design: This describes the system as an arrangement of
functions, their sub-functions and their interactions, with the abstraction of technolog-
ical implementation, of which FDs represent the behavior. It is a customer exchange
medium. For this behavior definition, various files of global architecture in Phase 2
are used.

• Phase 4—Network design: In this step, designers define the way the system equip-
ment are structured to efficiently transit data between different system blocks. Fur-
thermore, the network design takes into account the functional behavior and the
physical architecture to define system input and output data and how the data are
transferred over the I&C system.

• Phase 5—Equipment design: During this phase, the physical devices are designed
considering the network architecture and are used for the generation of hardware
documentation as well as for the software design in Phase 6.

• Phase 6—Software design: The behavior of various equipment is manually devel-
oped and integrated into a design environment for model-based design, simulation,
verification and code generation.

• Phase 7—This phase consists of system tests & verification. Furthermore, documenta-
tion verification and functional tests are carried out. The outcome of this last step will
be used for modeling physical architecture, simulation and code generation.

• Phase 8—Hardware devices configuration and deployment: Using specific software
tools, experts generate executable binaries on target boards for production and simu-
lation purposes.

• Phase 9—Simulation and production: This step consists of running simulations and
codes on the hardware platforms, as well as the documentation of the I&C system.

Sensors 2021, 21, 5136 9 of 25

Client requirements
& Specification

I&C System
architecture
Specification

I&C Safety
functions
high level

description

Phase 1 Phase 4Phase 2 Phase 3

I&C system
Network

Architecture
Specification

Network
Architecture
Design and

documentation

Hardware
Equipment

Design

Phase 6 Phase 7

-Refinement of
Software blocks
describing the
behavior of safety
functions.
-Document and
code generation

Phae 8 Phase 9

-Physical target
configuration
-Automatic
Verification

- Code export
- System
simulation

Client requirements
I&C architecture &

Network Design
Functional behaviour

Design
Network Design Equipement Design Test and verification

Verification
and Tests

Software Design Hardware deployment Simulation and
production

System Software HardwareLevel

Phase 5

Stakeholder

Figure 3. Methodological flow of the I&C systems development process.

Sensors 2021, 21, 5136 10 of 25

Throughout the methodological flow, stakeholders are involved to develop, validate
or verify the various phases of development process.

2.4. Proposed Approach

Based on ICML, a new model-driven approach is proposed and integrated within
the model-based framework, as shown in Figure 4. This methodology aims to reduce
the development cost of I&C systems and automate and facilitate the consistency checks
at different levels of abstraction. The Papyrus-based system engineering approach will
replace a part of the existing process described in the last section, where optimization
in terms of resources has been identified. The first step of the approach consists of the
description of the system functional architecture and the refinement of its behavior as a
sequence of functions, their sub-functions and their interactions. The physical architecture
is described subsequently as hardware equipment blocks and the network architecture
is specified. After that, the system’s physical behavior and the allocation of its functions
on the hardware platform are detailed. Throughout different phases of this approach,
a database of I/O, including data at different levels, is updated.

Client requirements and specification

System Functional
behaviour description (FD)

Equipement
behaviour

Architecture
description (ED)

Document generation & Verification (I/O Network +
Data (Unit, Direction…))

Export to
design
tools

Functional Simulation

Physical Architecture
description

(Equipment mapping
+ Network)

refinement Update

System Functional
Architecture
description

I/O data all Levels

Figure 4. The ICML-based model-driven approach.

The developed models are exploited for functional simulation, document generation
and exports to other tools.

Figure 5 details different levels of abstraction of the proposed framework. The first
level of design covers the expected functions and their classification according to their safety
category. Then, the behavior of these functions is refined: each system is an arrangement
of functions, their sub-functions and their interactions with whatever their technological
implementation. Furthermore, the system I/O data are modeled, considering the naming
conventions, during this stage. For instance, in the example of Figure 5, we have three
systems: system 1, system 2 and system 3. System 3 is not represented at the functional
behavior description level for space reasons. The third level of abstraction defines the
allocation of system functions on the hardware platform. The latter is modeled as a set of
equipment. A system can be mapped on two different equipment: for example, System 2 is

Sensors 2021, 21, 5136 11 of 25

implemented on two equipment: the sub-systems system2.1 and system2.2 are mapped,
respectively, in Equipment1 and Equipment2.

Finally, the detailed specification and equipment behavior (ED) are modelled, taking
into account the technological implementation (failure processing, data definition for the
monitoring system). A system’s ED can describe the behavior of two different equipment.
In Figure 5, ED2.1 and ED2.2, respectively, represent the behavior of Equipment1 and
Equipment2, implementing System 2.

Client
requirements

and
specification:
operational
constraints,

safety

Task Categories and Functions view

System Functional behaviour description

Physical architecture and network description

Physical behaviour Description

Equipment 1 Equipment 2

System 1 System 2

Equipment 1 Equipment 2

ED1 ED2.2

System 1 System 2.1 System 2.2 System 3

ED2.1 ED3

Function

Inputs

Outputs

Figure 5. The different levels of abstraction of the proposed I&C framework.

3. ICML Language Description
3.1. Functional Level

At the functional level, the basic element of the functional architectural description
in the I&C development project is the safety function, such as the “Reactor Trip” or the
“Neutron Flux measurement”. It is characterized by a name, a safety category and possibly a
response time. A safety function can itself be divided into safety sub-functions. For instance,
the “Reactor Trip” function can be broken down into the “Power of PCP or voltage low”
sub function, “Pressure of primary circuit high,” etc. A safety function can be reused
identically in many projects. It is possible to include it in a library and instantiate it in a
particular system.

The second basic element at this level is the system performing one or more safety
functions. It is characterized by a name, a safety class and its functions. A system can
be reused identically from one project to another. For this reason, it will be encapsulated
within a library to instantiate it later in a particular project. Other elements of the func-
tional architectural description are the sets of sensors and actuators describing the system
means of access to the environment, i.e., to the system Inputs/Outputs. Each element is
characterized by its name, its safety class and the list of using systems.

Besides, Input/Output signals constitute a core component of the functional architec-
tural description. They are referred to as functional signals. Each signal is characterized
by a name, a type (binary or analog), a direction (input or output) and a list of associated
systems. Indeed, these signals are transmitted from one system to another via logical

Sensors 2021, 21, 5136 12 of 25

communication links. A logical communication link between two systems is characterized
by a name, a transmitter system, a receiver system and a list of associated functional signals.

3.2. Physical Level

The physical architectural description of I&C systems incorporates standard imple-
mentation elements:

• Electronic computational and input/output boards: Each board is characterized by a
name and a type. A board can be reused identically from one project to another, and it
will be integrated in a library and instantiated in a particular rack.

• The racks: Each rack is characterized by a name, a usage and a list of owned boards.
A rack can be reused identically from one project to another, and it will be encapsulated
in a library and instantiated in a particular cabinet.

• The cabinets: Each cabinet is characterized by a name and a potential list of contained
racks. It will also be included in a specific library and instantiated in a particular
equipment.

• Equipment is a basic physical component of systems. This equipment may or may
not be made up of cabinets. Each equipment is characterized by a name, a list of
implemented functions, a safety class, a type of technology, a potential set of cabinets,
a set of implemented systems and a list of manipulated signals (entry signal, output
signal or exchange with other equipment).

• Physical signals are the signals exchanged between equipment. They are used to
refine functional I/O signals and ensure the physical implementation of the system.
A physical signal is characterized by many attributes, such as the type and direction (as
for functional signals), the customer code, the code related to implantation technology,
etc.

3.3. Meta-Models and UML Profiles
3.3.1. System Architecture Profile

The project is modeled as a stereotypical UML class named “System Architecture”.
As shown in Figure 6, it owns a structural diagram to visualize its systems, sensors
and actuators. Furthermore, this class has one or more structural diagrams to represent
inter-system data exchange using sensors and actuators. The proposed framework will
automatically update the list of systems and the list of logical inter-system communication
links needed to build the project.

Figure 6. System Architecture profile.

3.3.2. Safety Functions and Systems

The development methodology begins with the definition of safety functions “Func-
tionDefinition” and system “SystemDefinition”, as stereotypical UML classes, for which
the system engineer provides the list of functions “Functions” they realize, as shown
in Figure 7. Furthermore, the “SystemDefinition” has as attribute a stereotypical UML
“Function” class and is typed by its corresponding “FunctionDefinition”.

Sensors 2021, 21, 5136 13 of 25

Using the functional decomposition relationships, the tool calculates accordingly for
each “FunctionDefinition”, the list of its potential sub-functions “subFunctions” and the
system “SystemDefinition” that carries it out.

When the system engineer describes, via a structural diagram, the composition of their
“SystemDefinition” into functions placed in the racks (“Function”), the “safetyCategory”,
“responseTime” and “isRealizedBy” attributes of these functions are automatically updated.
Moreover, high capabilities of the proposed framework will allow saving time to different
stakeholders. Specifically, When the system engineer describes the composition of their
project into systems, the “safetyClass” attribute, the set of functions realizing the system and
the list of its equipment are automatically updated. The list of equipment that implements
it is updated when the system engineer sets the list of equipment “Functions”. The system
engineer is also required to specify the list of (I/O) signals of the system. Furthermore,
the logical communication links between systems are modeled as extended UML connector-
linking systems placed in racks. As depicted in Figure 8, each link is stereotyped as a
“LogicalCommunication” class characterized by the “sender” and “receiver” attributes and
the list of signals transiting from the transmitter to the receiver. An I/O signal is modeled
as a stereotypical UML signal with a type and direction at two levels of abstraction: the
physical and system levels. The System I/O signals are refined to physical I/O signals.
Both I/O signals are modeled using the same UML stereotype. As shown in Figure 9,
functional I/O signals are associated with a list of systems, as they can be transmitted
through logical communication links between systems. On the other hand, physical I/O
physical signals can be associated with an electronic I/O board.

Figure 7. Meta-model of functions and systems.

Sensors 2021, 21, 5136 14 of 25

Figure 8. Meta-model of logical and physical communications.

Figure 9. Meta-model of functional and physical signals.

3.3.3. Physical Equipment

I&C equipment can be either a compact unit or a device composed of boards, racks,
or cabinets. In the latter case, we define the set of boards “BoardDefinition” on the racks,
the list of racks “UnitDefinition” on cabinets, and different cabinets “CabinetDefinition”
of the system. As shown in Figure 10, the “BoardDefinition” is a stereotypical UML class
defining the board and its type. The stereotyped class “UnitDefinition” (1) has different
“Board”s which are “BoardDefinition”-typed, (2) has a special use in a cabinet defined by the
attribute “usage” and (3) will be automatically updated if the user changes the properties
of its boards. The stereotyped class “CabinetDefinition”, in turn, includes various “Unit”s
having a “UnitDefinition” and will be also automatically updated in case the included
rack’s properties are changed.

Sensors 2021, 21, 5136 15 of 25

Figure 10. Meta-model of the physical equipment.

The stereotypical UML class “Equipment” is characterized by its associated functions,
systems and its technology kind. It includes potential “Cabinet”s. The Equipment’s
safety class, list of its potential cabinets and associated systems are updated automatically.
Figure 11 depicts the stereotyped package “Division” has a list of automatically updated
associated channels (“Channel”). A Channel is a stereotypical UML class with a list of
equipment associated with.

Sensors 2021, 21, 5136 16 of 25

Figure 11. Meta-model of divisions and Channels.

3.4. Views

As explained in Section 2.2, the ICML architectural framework provides three view-
points: Specification, Design and Implementation. These viewpoints allow the system
engineer to describe the functional behavior of the I&C system architecture and its physical
architecture as separate blocks: systems and equipment. During the physical description,
the system engineer will be assisted by client requirements, the hardware electrical and
software engineers. At the system functional level of the ICML framework, the following
concepts are considered:

• Safety function library package: it contains “FunctionDefinition”.
• System library package: it contains many systems, such as “SystemDefinition”. These

systems define various functions “FunctionDefintion” as a stereotypical property
“Function”.

• The System Architecture class: it includes the various sub-systems of the I&C system;
they are represented in a stereotypical property named “System”, which will include
different “SystemDefintion”s.

• The Signal library package: it contains many “Signal”s.

Consequently, to model the project class diagrams at this functional level, the proposed
tool will allow creating: a Package, a Function Definition, a function, a System Definition,
a system, and a signal. At the system physical description level, the following concepts
are considered:

• Division package: this contains Channels or Equipment.
• Board library package: this includes a set of “BoardDefinition”s.
• Unit library package: this contains many “UnitDefinition”s, with various “BoardDefi-

nition”s as stereotypical property “Board”.

Sensors 2021, 21, 5136 17 of 25

• Cabinet library package: this contains various “CabinetDefinition”s with “UnitDefini-
tion”s as stereotypical property “Unit”.

• Equipment class: this includes many “CabinetDefinition”s as a stereotypical property
“Cabinet”.

• Channel class: this includes “Equipment” modeled as classes.

Hence, at this physical level, the palette of the proposed tool will allow creating a
package, a division, a channel, equipment, a Cabinet Definition, a Cabinet, a Unit Definition,
a Unit, a Board Definition, a board, and a signal.

4. Use Case: Reactor Protection System

The used case system is a Reactor Protection System (RPS) gathering various safety
and security sensor-based devices embedded in a civil nuclear power plant aiming to
safely shut down the civil nuclear reactor if radioactive materials leak. The (RPS) is
composed of various safety functions placed on different hardware devices. The use case
digital (RPS) is designed by experts from the Tsinghua University of China and described
thoroughly in [35]. It is based on electronic boards, sensors, actuators, computers and
software tools that are deployed within various sub-systems to ensure the safety and
security of a 10 MW high-temperature gas-cooled experimental reactor (HTR-10). Figure 12
depicts the architecture of this RPS, and it is composed of three parts. The first part consists
of redundant protection logic units in three channels (trains); the second part gathers the
surveillance stations and Post Accident Monitoring System located in the main control
room; the third part is the monitoring system located in the auxiliary shutdown point.
The system outputs are the protection signals resulting from a hard-wired 2/3 voting logic
operation of the triggering signals in three redundant channels. The design basis accidents
and corresponding protection variables used in the HTR-10 nuclear reactor are refined
in [35]. The RPS outputs a set of warnings and protection actions for each protection
variable. For better safety management, developers divided the protection variables into
two groups A and B. In each group, at least one protection variable is set up to protect
each initial event, and each group is independently implemented in different processors
to act as diversity within each channel. These protection actions are classified into four
classes: Protection A (PA) includes the generation of an emergency trip signal to drop the
control rods, trip the helium blower and isolate the secondary loop. The protection action
B (PB) is referred to the relief of the steam generator. The protection action C (PC) consists
of the isolation of the fuel loading/unloading system and the helium purification system
from the primary loop. Finally, the protection action D (PD) targets isolating the thermal
measurement system from the primary loop.

The system surveillance stations collect data from the channel station using ARCNET
communication protocol dedicated to local area networks. The auxiliary Control system
gathers information from channel stations through 2 hardwired cables ensuring an RS485
serialized communication. Each channel consists of four processor-based boards dedicated
to data display, testing and checking the safety. Considering the input variables, the A
Safety processor (AIPC) and the B Safety processor (BIPC) run different safety operations
related, respectively, to two groups of protection variables A and B and generates the
corresponding protection actions. The testing processor (TIPC) serves to monitor the
status and checks the outputs of AIPC and BIPC. Using a dual-port RAM, it will forward
data about itself, the (AIPC) and (BIPC) to the display processor (SIPC). In addition, it
communicates these data to both the system surveillance stations via the ARCNet network
and the monitoring systems in auxiliary shutdown point via RS485. Therefore, (SIPC) only
displays data about the channel status on screens upon the request of relevant stakeholders.

Sensors 2021, 21, 5136 18 of 25

CPU CPU

0

10

20

30

40
50
60

70

80

90

100

0

CPU

CPU

0

10

20

30

40
50
60

70

80

90

100

0

A Protection
Outputs

A
Inputs

B
Inputs

B Protection
Outputs

Train/
Channel

protection
outputs

CPU CPU

0

10

20

30

40
50
60

70

80

90

100

0

CPU

CPU

0

10

20

30

40
50
60

70

80

90

100

0

A Protection
Outputs

A
Inputs

B
Inputs

B Protection
Outputs

Train/
Channel

protection
outputs

CPU CPU

0

10

20

30

40
50
60

70

80

90

100

0

CPU

CPU

0

10

20

30

40
50
60

70

80

90

100

0

A Protection
Outputs

A
Inputs

B
Inputs

B Protection
Outputs

Train/
Channel

protection
outputs

CPU

CPU

CPU

CPU

Main Control Room Auxiliary Control Point

 Legend

Display
Processor

Testing
Processor

A Safety
Processor

B Safety
Processor

Dual Por t RAM
communication

CPU CPU CPU CPU

Remote ser verARCNet busRS485 Bus

Train A Train B Train C

Figure 12. An overview of the used case RPS.

4.1. Functional Level Modeling

A package called “SafetyFunctionLibrary” is modeled to define various safety func-
tions; the modeled library has three graphical representations: tree, tabular or class dia-
gram representations. Figure 13 shows the tabular representation of these safety functions.
A safety function can include many sub-functions.

After that, we define the set of systems following the proposed ICML language
development flow. For the RPS case, we define eight systems on racks within the same
“SystemLibrary” package, as depicted in Figure 14. Each system is placed on a rack and
runs one or more safety functions.

The system is characterized by two attributes. The first attribute is the system’s
safety class entered by the system engineer while its functions are automatically updated
according to system structural diagram. The second attribute consists of these functions’ set.

Sensors 2021, 21, 5136 19 of 25

Then, as depicted in Figure 15, the ICML framework generates a table showing different
systems placed on racks.

Figure 13. Tabular representation of the safety functions.

Figure 14. RPS systems.

Figure 15. Safety class and associated safety features of systems on the racks.

At a higher level of abstraction, the RPS project is modeled as a class with a structural
diagram describing its different systems, sensors and actuators, as shown in Figure 16.

Sensors 2021, 21, 5136 20 of 25

Figure 16. RPS sub-systems, sensors and actuators.

The input/outputs of all systems are represented as stereotypical “Sensor” or “Actua-
tor” classes. Their assignment to systems can be edited using an attribute. Communications
between systems are represented by links specifying the nature of communication, as de-
picted by Figure 17. Furthermore, each functional signal is characterized by a set of
attributes to specify its type, binary or analog, whether it is an input or output, its I/O
board, etc.

Figure 17. Communications between the RPS’ sub-systems.

4.2. Physical Level

At the physical level, the ICML framework allows the definition of a package gather-
ing five kinds of electronic boards placed on racks, as showed in Figure 18. Each board
has a particular type, specified by the attribute “type”, characterizing its hardware archi-
tecture. Furthermore, another package is modeled to define the four types of used racks,
as depicted in Figure 19. Each Rack/Unit has a particular type and a specific configuration
of electronic boards.

Sensors 2021, 21, 5136 21 of 25

Figure 18. Electronic boards on the rack.

Figure 19. Units on the rack.

Furthermore, we define the set of cabinets used for this system. The modeled package
for this purpose defines four types of cabinets gathering various units and racks required
to model the system, as depicted in Figure 20. Each cabinet has a particular type and
composition; for instance, the Train cabinet gathers the units required to carry out safety,
testing and display functions.

Figure 20. RPS cabinets.

Furthermore, the equipment of (RPS) system are defined in a package gathering the set
of divisions and channels, as shown in Figure 21. The use case system has three divisions,
“Train A”, “Train A” and “Train C”, with one channel each as explained above in the
description of the RPS system.

Sensors 2021, 21, 5136 22 of 25

Figure 21. Divisions and channels.

Moreover, communications between the equipment realizing the same functions or
different functions are modeled at this stage. Figure 22 highlights the communication
links between the equipment implementing different functions, which are the cores of the
APIC and a temperature adapter device, through oriented communication links holding
physical signals.

Figure 22. Communication links between the equipment implementing different functions.

Physical signals are modeled using the ICML framework within the equipment hold-
ing them. Thus, for example, as shown in Figure 23, “Temp_adapt” is a signal characterized
by various attributes, such as its holding board, channel, holding system, direction, etc.

4.3. User-Perspective Optimizations

The MDE solution is interdisciplinary and collaborative and allows an iterative design
so that various system parts (functions, equipment, inputs/outputs, etc.) can be enriched,
modified or updated throughout the design process. Moreover, the framework is synchro-
nized in a way that different views are linked together; every change in a view causes an
update in the other one accordingly.

The framework reduces the design time as it maximizes the tasks’ automation, im-
proves communication between different stakeholders during the specification, design
and development of the system, increases system reliability through automatic checks
and facilitates corrections and changes being designed. To support this, The tool removes
various manual tasks such as refilling EDs with redundant data already modeled in FDs. It
checks the consistency of I/Os at each phase, according to naming rules.

Sensors 2021, 21, 5136 23 of 25

Figure 23. “Temp_adapt” physical signal attributes.

4.4. Comparison with Other Approaches

In [25], the Multilevel Flow Modeling (MFM) has its own graphical model and symbols
and does not address how to visualize information. However, every part of the Papyrus-
based framework may be customized: the UML profile, the model explorer, the diagram
notation and style, the properties views, the palette and creation menus. Consequently,
in our approach, each functional or equipment component (operations, links, etc.) graphical
representation has been fully customized and is visualized and meets specific graphical
requirements. Furthermore, MFM does explicitly represent the knowledge of principles that
govern the operation of a dynamic system. However, our functional and equipment models
have a dynamic representation so that the user can update the kind of each component and
the graphical interface and the behavior of this component change dynamically. On the
other hand, the Abstraction Hierarchy (AH) concerns the domain: it models the system with
no consideration of specific application tasks, activities, processes or events. The authors
showed that AH does not fulfill a complete design or specification of tasks or events the user
needs to do, whereas, in our proposed approach, we focus on the extended UML profiles
to model the complete functional, architectural and equipment components required in the
specification and refines its properties and characteristics.

According to [26], the display of the various EID levels of information on the same
front can make the operator distracted by the information that does not contribute to
solving problems at hand. Furthermore, EID framework information may be overlapped so
that different levels of information are displayed without concerning their syntactical issues.
Furthermore, there is generally a lack of consideration of time constraints. The proposed
Function Behavior State (FBS) framework is only focusing on modeling particular aspects
such as the user’s role, values and needs, as well as producing an explicit representation of
failures and redundant functions. The hardware architecture is not considered in this work.

5. Conclusions and Perspectives

In this paper, we proposed a new interdisciplinary collaborative methodology to
model at different levels of abstraction different I&C components and communication
between them. These models are used for I&C system design, performance evaluation,
verification and validation. The proposed ICML architectural framework defines various
concepts, allowing system implementations and includes different development phases
and system concerns. In addition, we defined a new I&C modeling Language (ICML),
including different modeling rules needed to build different architectural framework
views. Future works will focus on the enhancement of the synchronization between
components at different levels of abstraction, the integration of simulation within the

Sensors 2021, 21, 5136 24 of 25

proposed framework to execute UML models, provide control, observation and animation
facilities over these executions.

Author Contributions: B.O. and S.D. were responsible for the Model-Driven methodology; Article
gathering and sorting were done by B.O., C.A. and C.M.; Manuscript writing and original drafting
and formal analysis were carried out by B.O.; Writing of reviews and editing was done by B.O.;
C.M. led the overall research activity. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Bpifrance institution under the project ORION.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carroll, E.R.; Malins, R.J. Systematic Literature Review: How Is Model-Based Systems Engineering Justified? SANDIA Report 2016–2607;

Sandia National Laboratories: Albuquerque, NM, USA, 2016. [CrossRef]
2. Adedjouma, M.; Thomas, T.; Mraidha, C.; Gerard, S.; Zeller, G. From Document-Based to Model-Based System and Software

Engineering. In Proceedings of the OSS4MDE 2016—Open Source Software for Model-Driven Engineering, Saint Malo, France,
2–7 October 2016; pp. 27–36.

3. Object Management Gruop. OMG Unified Modeling Language TM (OMG UML). In Technical Report; Object Management Gruop:
Needham, MA, USA, 2015.

4. Fowler, M. Domain-Specific Languages; Pearson Education: London, UK, 2010.
5. Reyes C.R.P.; Vaca, H.P.; Calderón, M.P.; Montoya, L.; Aguilar, W.G. MilNova: An approach to the IoT solution based on

model-driven engineering for the military health monitoring. In Proceedings of the 2017 CHILEAN Conference on Electrical,
Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, Chile, 18–20 October 2017; pp. 1–5.
[CrossRef]

6. Prasinos, M.; Spanoudakis, G.; Koutsouris, D. Towards a model-driven platform for evidence based public health policy making.
In Proceedings of the SEKE 2017—29th International Conference on Software Engineering & Knowledge Engineering, Pittsburgh,
PA, USA, 5–7 July 2017; KSI Research Inc. and Knowledge Systems Institute: Pittsburgh, PA, USA, 2017; pp. 566–571.

7. van Lingen, F.; Yannuzzi, M.; Jain, A.; Irons-Mclean, R.; Lluch, O.; Carrera, D.; Perez, J.L.; Gutierrez, A.; Montero, D.; Marti, J.;
et al. The Unavoidable Convergence of NFV, 5G, and Fog: A Model-Driven Approach to Bridge Cloud and Edge. IEEE Commun.
Mag. 2017, 55, 28–35. [CrossRef]

8. Tran, A.B.; Lu, Q.; Weber, I. Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based Business Process Execution and
Asset Management. In BPM (Dissertation/Demos/Industr); Springer: Sydney, Australia, 2018; pp. 56–60.

9. Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D. Methodology for the model-driven development of service oriented IoT
applications. J. Syst. Archit. 2018, 90, 15–22. [CrossRef]

10. Ciccozzi, F.; Spalazzese, R. MDE4IoT: Supporting the Internet of Things with Model-Driven Engineering. In International
Symposium on Intelligent and Distributed Computing; Badica, C., El Fallah Seghrouchni, A., Beynier, A., Camacho, D., Herpson, C.,
Hindriks, K., Novais, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–76.

11. Brugali, D. Model-driven software engineering in robotics: Models are designed to use the relevant things, thereby reducing the
complexity and cost in the field of robotics. IEEE Robot. Autom. Mag. 2015, 22, 155–166. [CrossRef]

12. Erraissi, A.; Belangour, A. An Approach Based On Model Driven Engineering For Big Data Visualization In Different Visual
Modes. Int. J. Sci. Technol. Res. 2020, 9, 198–206

13. Guerriero, M.; Tajfar, S.; Tamburri, D.A.; Di Nitto, E. Towards a model-driven design tool for big data architectures. In Proceedings
of the 2nd International Workshop on BIG Data Software Engineering, Austin, Texas, USA, 14–22 May 2016 ; pp. 37–43.

14. Ouni, B.; Gaufillet, P.; Jenn, E.; Hugues, J. Model Driven Engineering with Capella and AADL. In Proceedings of the ERTSS
Conference, Toulouse, France, 31 January–2 February 2016.

15. Roudier, Y.; Apvrille, L. SysML-Sec: A model driven approach for designing safe and secure systems. In Proceedings of the 2015
3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), Angers, Loire Valley,
France, 9–11 February 2015; pp. 655–664.

16. Pinkevich, V.; Platunov, A. Model-driven functional testing of cyber-physical systems using deterministic replay techniques.
In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS), Saint Petersburg, Russia, 15–18 May 2018; pp. 141–146.
[CrossRef]

17. Okewu, E. Model-driven engineering and creative arts approach to designing climate change response system for rural Africa:
A case study of Adum-Aiona community in Nigeria. Probl. Ekorozwoju Sustain. Dev. 2017, 12, 101–116.

http://doi.org/10.2172/1561164
http://dx.doi.org/10.1109/CHILECON.2017.8229585
http://dx.doi.org/10.1109/MCOM.2017.1600907
http://dx.doi.org/10.1016/j.sysarc.2018.08.008
http://dx.doi.org/10.1109/MRA.2015.2452201
http://dx.doi.org/10.1109/ICPHYS.2018.8387650

Sensors 2021, 21, 5136 25 of 25

18. Barve, Y.; Shekhar, S.; Khare, S.; Bhattacharjee, A.; Gokhale, A. Upsara: A model-driven approach for performance analysis of
cloud-hosted applications. In Proceedings of the 2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC), Zurich, Switzerland, 17–20 December 2018; pp. 1–10.

19. Mashkoor, A.; Egyed, A.; Wille, R. Model-driven Engineering of Safety and Security Systems: A Systematic Mapping Study.
arXiv 2020, arXiv:2004.08471.

20. Sannier, N.; Baudry, B.; Nguyen, T. Formalizing standards and regulations variability in longlife projects. A challenge for
Model-driven engineering. In Proceedings of the 2011 Model-Driven Requirements Engineering Workshop, MoDRE 2011, Trento,
Italy, 29 August 2011; pp. 64–73. [CrossRef]

21. Céret, E.; Calvary, G.; Dupuy-Chessa, S. Flexibility in MDE for scaling up from simple applications to real case studies: Illustration
on a Nuclear Power Plant. In Proceedings of the 25ème Conférence Francophone sur l’Interaction Homme-Machine, IHM’13,
Bordeaux, France, 13–15 November 2013. [CrossRef]

22. Linnosmaa, J.; Pakonen, A.; Papakonstantinou, N.; Karpati, P. Applicability of AADL in modelling the overall I&C architecture of
a nuclear power plant. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society,
Singapore, 18–21 October 2020; pp. 4337–4344. [CrossRef]

23. Sannier, N.; Baudry, B. INCREMENT: A Mixed MDE-IR Approach for Regulatory Requirements Modeling and Analysis.
In Requirements Engineering: Foundation for Software Quality; Salinesi, C., van de Weerd, I., Eds.; Springer International Publishing:
Cham, Swizterland, 2014; pp. 135–151.

24. Poirier, C.; Kriaa, S.; Pebay-peyroula, F.; Zille, V. A tool for I & C system architecture design: The French Connexion cluster.
In Proceedings of the ISOFIC/ISSNP 2014: International Symposium on Future I and C for Nuclear Power Plants/International
Symposium on Symbiotic Nuclear Power Systems, Seoul, Korea, 24–28 August 2014; pp. 1–8.

25. Cai, M.; Lin, Y.; Gao, Z.; Yuan, C.; Zhang, W. Comparison of AH and MFM for work domain analysis in light of interface design.
In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017;
pp. 1–6. [CrossRef]

26. Lin, Y.; Zhang, W.; Watson, L. On Proposal of Function-Behavior-State Framework as Refinement of EID Framework of Human-
Machine Interface Design. In Human Friendly Mechatronics; Elsevier: Amsterdam, The Netherlands, 2001; pp. 61–66. [CrossRef]

27. Eclipse Papyrus ™ Modeling Environment. Available online: https://www.eclipse.org/papyrus/ (accessed on 28 July 2021).
28. ISO/IEC/IEEE systems and software engineering—Architecture description. In ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC

42010:2007 and IEEE Std 1471-2000); IEEE: Piscataway, NJ, USA, 2011; pp. 1–46. [CrossRef]
29. Bi, Z.; Lin, Y.; Zhang, W. The general architecture of adaptive robotic systems for manufacturing applications. Robot. Comput.

Integr. Manuf. 2010, 26, 461–470. [CrossRef]
30. ISO. ISO/IEC JTC 1/SC 7/WG42—Software and Systems Engineering; ISO: Geneva, Switzerland, 2021.
31. Frank, U. Domain-specific modeling languages: Requirements analysis and design guidelines. In Domain Engineering; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 133–157.
32. American National Standard. ANSI/ISA-5.1-2009 Instrumentation Symbols and Identification; American National Standard: Wash-

ington, DC, USA, 2009.
33. Object Management Group. Object Constraint Language; Technical Report; Object Management Group: Milford, CT, USA, 2014.
34. Eclipse Environment. Available online: https://www.eclipse.org/ (accessed on 28 July 2021).
35. Li, F.; Yang, Z.; An, Z.; Zhang, L. The first digital reactor protection system in China. Nucl. Eng. Des. 2002, 218, 215–225.

[CrossRef]

http://dx.doi.org/10.1109/MoDRE.2011.6045368
http://dx.doi.org/10.1145/2534903.2534909
http://dx.doi.org/10.1109/IECON43393.2020.9254226
http://dx.doi.org/10.1109/SysEng.2017.8088250
http://dx.doi.org/10.1016/B978-044450649-8/50012-7
https://www.eclipse.org/papyrus/
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1016/j.rcim.2010.03.002
https://www.eclipse.org/
http://dx.doi.org/10.1016/S0029-5493(02)00193-0

	Introduction
	Model-Driven Methodology for I&C Systems
	Architecture Framework for I&C Systems
	I&C Modeling Language
	Architectural-Based Methodology Formalism
	Proposed Approach

	ICML Language Description
	Functional Level
	Physical Level
	Meta-Models and UML Profiles
	System Architecture Profile
	Safety Functions and Systems
	Physical Equipment

	Views

	Use Case: Reactor Protection System
	Functional Level Modeling
	Physical Level
	User-Perspective Optimizations
	Comparison with Other Approaches

	Conclusions and Perspectives
	References

