

CdTe sensor configurations for robot assisted photon counting gamma camera

J. Fey, S. Procz, M.K. Schütz, Vincent Schoepff, Frederick Carrel, J.S. Useche,

A. Fauler, M. Fiederle

▶ To cite this version:

J. Fey, S. Procz, M.K. Schütz, Vincent Schoepff, Frederick Carrel, et al.. CdTe sensor configurations for robot assisted photon counting gamma camera. Journal of Instrumentation, 2021, 16 (07), pp.T07010. 10.1088/1748-0221/16/07/T07010. cea-03345795

HAL Id: cea-03345795 https://cea.hal.science/cea-03345795

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 Article

CdTe sensor configurations for Robot assisted photon counting gamma camera

Julian Fey¹, Simon Procz¹, Michael K. Schütz¹, Vincent Schoepff², Frédérick Carrel², Juan S. Useche¹, Alex Fauler¹ and Michael Fiederle¹

- Freiburg Materials Research Center, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany;
 julian.fey@fmf.uni-freiburg.de
- 8 ² CEA, List, F-91191 GIF-SUR-YVETTE Cedex, France; vincent.schoepff@cea.fr
- 9 * Correspondence: julian.fey@fmf.uni-freiburg.de
- 10 Received: date; Accepted: date; Published: date
- 11

12 Abstract: In this work, different Cadmium Telluride (CdTe) sensor configurations are assessed for 13 the usage in a robot assisted portable gamma camera. In the first part, four CdTe sensors, with 14 thickness of 0.45 mm, 1 mm, 2 mm and 3 mm and pixel sizes of 55 μ m and 110 μ m, are investigated 15 regarding their spectroscopic performance. The photon counting detector Timepix1 is hereby used. The 16 3 mm CdTe sensor shows increase in count rate up to a factor of 1.25 compared to a 2 mm CdTe sensor, 17 1.84 compared to a 1 mm CdTe sensor and up to 2.71 compared to a 0.45 mm CdTe sensor in the case of 18 ¹³⁷Cs. In the second part, the 3 mm CdTe sensor was implemented in a commercially available gamma 19 camera, the iPIX. The system was integrated in the bomb disposal robot and tested in different 20 scenarios. The integrated 3 mm CdTe detector measured 21.5 counts per second emitting from a ⁶⁰Co 21 source with an activity of 2.8 ± 0.07 Gbq in 20-meters distance in an open environment. The acquisition 22 time was 116 seconds. The angular resolution was sufficient for the user to localize the radioactive 23 isotope inside the test structure.

- 24 **Keywords:** CdTe; Photon counting; Timepix; Gamma camera; Spectroscopy.
- 25

26 1. Introduction

27 The threat to public safety posed by improvised explosive devices (IEDs) has increased 28 significantly in recent years [1]. In the context of IED, one of the most important aspects, both in terms 29 of real danger and media presence, is the threat of radiological dispersal devices (RDDs). The primary 30 goal of RDDs is neither the damaging of infrastructure nor the injuring of people by the explosive 31 effect, but rather, the contamination of the largest possible area by radioactive substances. The current 32 development state of semiconductor sensors for the detection of both, hard X-ray and gamma-radiation 33 allows to produce highly sensitive, compact gamma cameras. This work addresses the needs of the first 34 responder services to this threat by researching and improving contactless, robot assisted methods for 35 the investigation procedures. The aim is to provide end users with reliable, fast and safe means to 36 investigate IEDs and evaluate the imposed threat.

37 The material as well as the thickness of the sensor are deciding factors of the performance of a 38 gamma camera. High Z semiconductor materials, such as Cadmium Telluride (CdTe), Cadmium Zinc 39 Telluride (CdZnTe) and Thallium bromide (TIBr), offer fast analyzation of the investigated isotope due 40 to their high absorption efficiency. The absorption efficiency can be further improved by increasing the 41 thickness of the semiconductor sensor. However, the effect of charge sharing is increased accordingly 42 [2 - 4]. Charge sharing describes the spreading of information from charge carriers over multiple pixels. 43 The effect is heavily depended on the photon energy of the event and the thickness of the material due 44 to the drift of charge carriers through the sensor layer. The main driving forces are repulsion between 45 charge carriers and diffusion. Thicker sensors archive a higher attenuation efficiency which leads to 46 superior energy resolution to identify the isotope, especially in the high energy region. A smaller pixel

- size yields a better spatial resolution for localization of the isotope in the region of interest. A crucial
 aspect in the conception of a Gamma- or Compton camera lies in the dependence of absorption
 efficiency and the negative effect of the charge sharing on the spatial resolution.
- 50 In this work, four different ohmic sensor configurations were evaluated for the usage in a gamma 51 camera. The material was supplied by Acrorad (Japan) while the flip-chip bonding was performed by 52 the Freiburg Materials Research Centre (Germany). The 2 mm CdTe sensor was bonded to a Timepix1 53 readout chip with an increased pixel pitch of 110 µm. An increased pixel pitch (pp) counters the charge 54 sharing effect on a hardware level at the detector side. The 0.45 mm, 1 mm and 3 mm CdTe detectors
- 55 were connected to a Timepix1 readout with $55 \,\mu\text{m}$ pp. In this case, the 3 mm CdTe Timepix1 shows the
- 56 highest effect of charge sharing but also provides the highest attenuation efficiency in photon energies
- 57 above 100 keV (Fig. 1). Cluster analysis was performed for all detectors since all detector assemblies
- 58 exhibit charge sharing regardless of configuration.

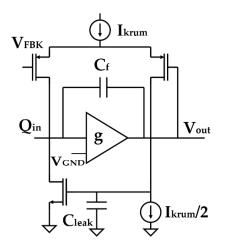
59 2. Materials and Methods

60 2.1. Cadmium Telluride

61 CdTe is an excellent semiconductor material for hard X-ray and gamma-ray detection. The high 62 atomic number ($Z_{CdTe} \approx 50$) and density ($\varrho = 5.854$ g/cm³ at RT) provide superior attenuation efficiency 63 above 30 keV compared to Si ($Z_{Si} = 14$) and GaAs ($Z_{GaAs} \approx 32$) and the wide bandgap energy ($E_{gap} = 1.44$ 64 eV) permits the usage of the detector at room temperature without active cooling. The absorption 65 efficiency can be enhanced furthermore by increasing the thickness of the material [5].

66 CdTe was considered and used as a semiconductor sensor for hybrid photon counting detectors 67 (HPD) of the Medipix chipset family since the beginning of the Medipix collaboration. Previous work 68 investigating the spectroscopic performance of a 1 mm CdTe sensor bump bonded to a Medipix2 69 chipset was presented by Maneuski et al. [6], Ruat and Ponchut [7] and Greiffenberg et al. [8]. 70 Measurements regarding the characterization and spectroscopic performance of a Timepix1 chipset in 71 combination with 2 mm CdTe [9, 10] and 3 mm CdTe [5] were shown recently. Cadmium Zinc 72 Telluride (CdZnTe) is another promising semiconductor material in addition to CdTe. Recent work 73 with CdZnTe sensors bump bonded to a Timepix1 chipset [11, 12] and performance investigations [13, 74 14] show encouraging results and are worth investigating in future work.

75 2.2. *Timepix*


The Timepix1 is a hybrid pixel detector (HPD) developed by the Medipix2 collaboration CERN [15]. It is fabricated in a CMOS 250 nm process, consists of 256 x 256 square pixels with a pixel pitch of 55 μ m, resulting in a sensitive area of 1.98 cm². The detector provides three different counting modes [15]: single photon counting mode (Medipix Mode), Time-Of-Arrival Mode (ToA) and Time-over-Threshold Mode (ToT). For this work, all measurements were carried out using the Time-over-Threshold Mode (ToT).

82 The incoming signal is, individually for each of the 65536 pixels, amplified by a charge sensitive 83 preamplifier and compared to a 4-bit threshold in the discriminator circuit which is connected to a 84 synchronization logic. If the signal exceeds the threshold, a 14-bit counter is incrementing the number 85 of clock units as long as the signal is above the threshold and below 11810 counts in which case the 86 overflow logic stops. The number of incrementing clock pulse is proportional to the input charge and 87 therefore to the photon energy of the event due to a linear discharge of the preamplifier controlled by 88 the IKrum current. This contrasts with single photon counting pixel detectors which discharge using a 89 resistor resulting in exponential decrease of the signal hub [16]. The energy threshold enables 90 compensation of process variations.

91 Different semiconductor sensor materials like Si, CdTe, CdZnTe or GaAs can be connected to the 92 Timepix ASIC and handled by the Krummenacher preamplifier which can process positive and 93 negative charge inputs. The IKrum digital-to-analog-converter (DAC) (Figure 2) and has two 94 functionalities: the compensation of leakage current and the discharge of the preamplifier feedback 95 capacitor, which influences the duration of the return of the peak signal amplitude to the baseline. A 96 higher IKrum current leads to a faster discharge and thus shorter pulses which results in a reduction of

pulse pileup but also to a reduction of signal amplitude, decreasing the energy resolution. Thesimulated dependence of the preamplifier output signal and width on the IKrum DAC settings areshown in [17].

100

104

Figure 2. Schematic of the Krummenacher circuit. The IKrum current controls the leakage current compensation,in the case of electron collection IKrum/2, and the return of the signal to the baseline (adopted from [18, 17]).

105 The Timepix1 and its successor, the Timepix3, were initially aimed for particle detection. 106 However, in recent years these detectors are used in medical imaging [19], space radiation dosimetry as 107 well as in commercially available gamma cameras [20] and experimental Compton cameras [9, 21] with 108 1mm and 2mm CdTe sensor configurations.

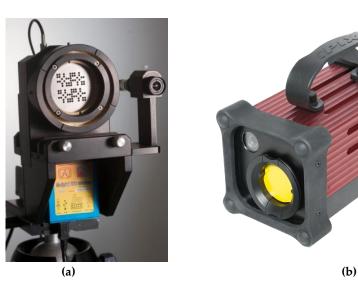
110 2.3. From GAMPIX prototype to iPIX gamma camera

In order to address the need of instrumentation allowing the detection and location of radioactive materials, CEA List has been developing gamma camera systems for over thirty years [22]. These systems allow remotely visualizing gamma rays originating from radioactive emitters by superimposing a gamma image onto a visible image of the scene. Since the late 2000's, CEA List has been working on a new generation of gamma camera, which resulting prototype is called GAMPIX [23]. This prototype relayed on the use of a Timepix1 detector equipped with a 1 mm thick CdTe sensor, coupled with a coded mask ensuring the spatial modulation of incoming gamma flux Figure 3 (a).

118 Coded aperture is a technique of great interest, which allows achieving a good angular resolution 119 for gamma source reconstruction, while maintaining a high sensitivity of the system. GAMPIX gamma 120 camera is based on MURA coded masks, consisting in a mathematical arrangement of holes, defining the 121 rank of the coded mask, into a denal collimator [24]. In the presence of radioactive sources, gamma-ray 122 will go through holes and be stopped into denal, resulting in the projection of the MURA pattern on the 123 gamma-sensitive sensor. The high pixelization of Timepix1-based detector allows accurately determining 124 the location of gamma rays into the semi-conductor sensor, which ensures angular resolution of the 125 overall imaging system. Indeed, the preferred pixel pitch of 55 µm ensures an achieved precision on 126 pattern projection estimated around 0.20°, compared to 0.40° for a pixel pitch of 110 µm. This projection 127 accuracy is a determining factor for the source location reconstruction. Moreover, the symmetry in the 128 MURA pattern allows, by a 90° rotation of the coded mask, suppressing background noise, without any 129 additional shielding. This feature, called anti-mask procedure, is of great interest in the case of 130 measurements in areas subject to high gamma background while preserving lightness of the camera.

131 The GAMPIX prototype was validated in laboratory [25] and deployed in various real environments 132 in the field of nuclear industry and Homeland Security applications [26]. Performance assessment of the 133 gamma camera prototype showed that the system was able to perform imaging measurements in a field 134 of view of 50° with an angular resolution ranging from 1.35° to 3.81° depending on the pattern of coded

mask used. As presented in Table 1, the sensitivity of the prototype makes it possible to visualize sources
in less than a minute over the whole range of energies encountered in the field of nuclear industry (i.e.
from ²⁴¹Am at 59.5 keV to ⁶⁰Co at 1.33 MeV) [26].


138Table 1. Sensitivity of GAMPIX gamma camera, according to the rank of the mask (R7 is for rank 7, R13139for rank 13, e2, e4, e8 indicates the corresponding thickness in mm) and to the nature of the radioactive140source. The dose rate was measured in the vicinity of the gamma camera.

Radionuclide	Dose rate (µSv.h ⁻¹)	R13 – e2	R7 – e4	R7 – e8
²⁴¹ Am	0.25	3 s	1 s	1 s
¹³⁷ Cs	2.50	300 s	60 s	20 s
⁶⁰ Co	3.84	Not detected	400 s	60 s

141

142From 2010, CEA List started the industrial transfer of GAMPIX prototype toward CANBERRA, now143MIRION Technologies. The resulting commercial system, called iPIX and pictured on Figure 3 (b), is144based on the same technology as GAMPIX [27]. This commercial version was completely redesigned for145compactness (L × 1 × P = 9 cm × 9 cm × 18.85 cm) and shielding was optimized for improving system146weight (2.5 kg). The anti-mask procedure was automated, and the connection simplified using147Power-over-Ethernet method for simultaneous communication and power supply purpose.

148 149

150 151 152

Figure 3. (a) Picture of GAMPIX second-generation gamma camera developed by CEA List; (b) Picture of iPIX
 gamma camera, industrialized version of GAMPIX and commercialized by MIRION Technologies.

155 156

157 3. Results

158 A sufficient bias was applied to all investigated detector assemblies during the presented 159 measurements to ensure full charge collection efficiency. This was verified by measuring the count rate 160 of the detector versus increasing sensor bias voltage under identical X-ray tube settings. The maximum 161 charge collection efficiency is achieved when the count rate reaches saturation. The leakage current was 162 measured before the experiments with no radiation present (Table 2). The high leakage current of the 163 0.45 mm CdTe is due to the effect of the processing of the thin material. A new dicing process was 164 implemented which permits significant cleaner edges of the bonded sensor. The improved 165 performance of this process can be seen in the low leakage currents of the 1 mm and 3 mm thick 166 detector assemblies. In the case of the 2 mm sensor, the observed increase in leakage current is due to

167 an earlier bonding date of the detector assembly. There is no surface preservation on the as-diced chip

168 edge. Over time, degradation effects occur which lead to greater surface leakage currents.

Table 2. Detector settings and configurations used for the measurements of 3.1 and 3.2.

Sensor thickness	Bias (V)	Leakage current (µA)	Pixel pitch (µm)
3 mm CdTe	-1200	2.5 ± 0.2	55
2 mm CdTe	-600	8 ±1.2	110
1 mm CdTe	-450	2.1±0.2	55
0.45 mm CdTe	-230	43±4	55

170

171 The DAC for leakage current compensation (IKrum) and the clock frequency were set to the same 172 value for all assemblies to ensure comparable results regarding the spectroscopic performance (Table 173 2). All measurements were taken with a clock frequency of 9.6 MHz and IKrum 5 which corresponds to 174 an IKrum current of roughly ~7.5 nA [15]. At IKrum 5, the mean pulse duration of a 100 keV photon is 175 ~6 μ s [18]. All detectors passed stability measurements with radiation present and continues operation 176 in the range from 12 to 24 hours with the configurations shown in Table 2.

Even while performing cluster analysis, the charge sharing effect has a strong influence on the energy resolution of the sensor. This is caused by the limited rise time of the preamplifier in the pixel cell and the higher number of pixels marking the edge of the cluster, which have deposited energy of the event, but the threshold was not exceed. This, so called dead energy, has a greater impact on the energy resolution with increasing cluster size of the event since more surrounding pixels exhibit the dead energy effect.

183

184 3.1. Spectroscopic Performance

185 The common radioactive sources ¹³⁷Cesium (¹³⁷Cs), ¹⁵²Europium (¹⁵²Eu) and ⁶⁰Cobalt (⁶⁰Co) are 186 investigated by the different detector assemblies in a laboratory environment. All detectors were 187 calibrated by the noise edge method [28] in Pixelman 2.2.3 [29]. The acquisition time was determined 188 for each setup individually to minimize event pile up. Since the thickest sensor exhibits the highest 189 attenuation efficiency, a time was chosen with, on average, 5 events per frame for the 3 mm CdTe 190 detector. All measurements were performed in a fixed timeframe of 1000 s and a fixed distance from 191 source to detector of 60 mm. Cluster analysis was performed for each measurement which identifies 192 counting pixels exhibiting charge sharing as well as separated fluorescence photons and contributes 193 them to their original event. Gaussian fitting is used for the primary gamma ray line of each spectrum 194 and the sigma (σ) is calculated with σ = w/2. Fig. 4, Fig. 5 and Fig. 6 show the measured spectra for 195 ¹³⁷Cs, ¹⁵²Eu and ⁶⁰Co. The raw spectra were normed in ToT-value on the x-axis a distinguished feature in 196 the spectrum were adjusted to the correlated energy because the TOT values differ per detector. The 197 spectra are superimposed on each other to visualize the difference in performance. All spectra were 198 smoothed by moving average of 10 and the count rate was normalized.

The relative absorption efficiency of all sensors was evaluated in comparison to the 3 mm CdTe sensor which exhibits the greatest attenuation efficiency. Previous work investigated the relative absorption efficiency of 1 mm and 0.45 mm CdTe sensors [5]. The data was corrected for the different number of inactive pixels per sensor caused by crystal inhomogeneities and degenerating effects like corner peel. The measurement error was calculated by Gaussian error propagation law.

204

205 3.1.1. Cesium-137

¹³⁷Cs is an isotope used in the medical environment for radiation therapy. Therefore, in the context
 of the evaluation of the performance of a gamma camera. The acquisition time was set to 10 ms for all

208 detectors. The lab source has an activity of 3.58 ± 0.09 MBq at the time of the experiment. Figure 4 209 presents the measured spectra of ¹³⁷Cs with the different detector assemblies.

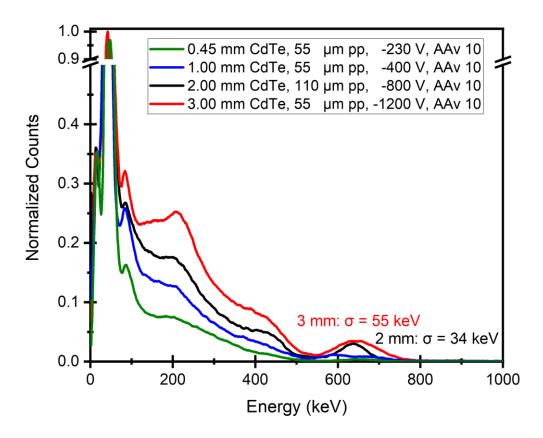
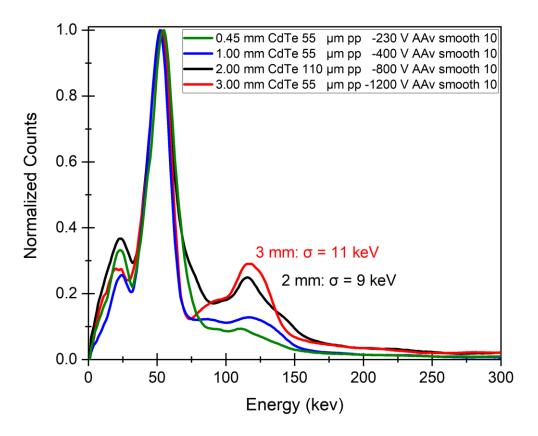


Figure 4. Spectra of ¹³⁷Cs investigated by four different detector configurations in this work. The sigma of the
 gamma ray line at 667 keV is shown.

214 The characteristic gamma ray line of ¹³⁷Cs at 667 keV can be identified with all investigated 215 detector configurations with a significant correlation in amount of counts and attenuation efficiency of 216 the different sensors. A sigma of 55 keV is achieved for the gamma ray line in the case of the 3 mm 217 CdTe sensor which exhibits the strongest charge sharing of all configurations caused by the thickness 218 of the sensor layer and the 55 µm pixel pitch. In direct comparison, the 2 mm CdTe sensor shows, with 219 greater 110 µm pixel pitch, a decreased sigma of 34 keV resulting in a more defined peak of the gamma 220 ray line. The 0.45 mm CdTe sensor exhibits a comparable sigma to the 2 mm CdTe configuration. This 221 is achieved by the significant thinner sensor material which results in less charge sharing and a 222 comparable energy resolution even with a 55 µm pixel pitch. Besides the Ba L X-ray line of the source at 223 32 keV another peak is visible in all four spectra at 75 keV. This peak corresponds to the Pb k-edge 224 energy ($K_{\alpha 1}$ 75 keV) and is originating from the Pb enforced shielding in the measurement 225 environment.

A relative absorption efficiency of (0.370 ± 0.003) for 0.45 mm CdTe, (0.544 ± 0.002) for 1 mm CdTe and (0.801 ± 0.002) for 2 mm CdTe in comparison to the 3 mm CdTe was measured.

228 3.1.2. Europium-152


213

¹⁵²Eu is a gamma and beta emitter used in hard-gamma brachytherapy. At the time of the

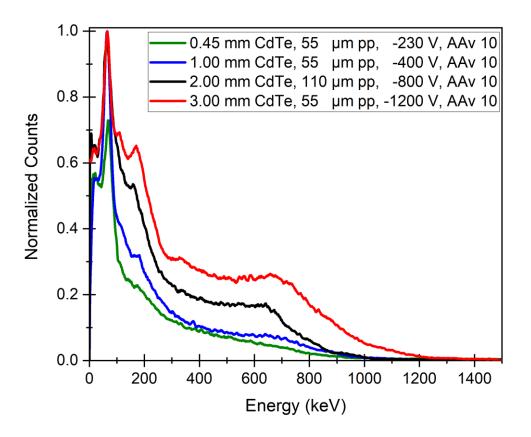
230 measurement, the lab source had an activity of 0.28 ± 0.01 MBq. The set acquisition time for all sensors

231 was 32 ms, which was chosen to minimalize event pile up. Figure 5 shows the ¹⁵²Eu spectra measured

232 by the four investigating detector configurations.

233 234

236


Figure 5. Spectra of ¹⁵²Eu investigated by four different detector configurations in this work. The sigma of the gamma ray line at 122 keV is shown.

The ¹⁵²Eu isotope exhibits a characteristic gamma ray line at 122 keV which is resolved with a sigma of 11 keV in the case of the 3 mm CdTe sensor configuration with 55 μm pixel pitch. As with the characteristic ¹³⁷Cs gamma ray line, the 2 mm CdTe sensor with 110 μm pixel pitch shows an improved sigma of 9 keV. The 1 mm and 0.45 mm sensors show a significantly less distinguishable peak at 122 keV caused by a reduced attenuation efficiency at the corresponding energy.

For ¹⁵²Eu, the difference in absorption efficiency between the investigated sensors is less evident than for ¹³⁷Cs and ⁶⁰Co. This is due to the Sm L-lines at 40 keV (Sm K_{a1}) and 39 keV (Sm K_{a2}), originating from the ¹⁵²Eu decay chain, which have an absorption efficiency above 99% for all investigated sensors. In addition, the emitted beta particles of ¹⁵²Eu are absorbed in the first few µm of the sensor layer regardless of the thickness. However, multiple gamma ray lines at energies >200 keV contribute to the observed ratio in relative absorption efficiency compared to the 3 mm sensor of (0.637 ± 0.003) for 0.45 mm CdTe, (0.777 ± 0.003) for 1 mm CdTe and (0.944 ± 0.003) for 2 mm CdTe.

- 249
- 250 3.1.3. Cobalt-60

⁶⁰Co is used in medical radiotherapy as a radiation source and therefore common in most hospitals and a potential isotope in an IED. In this investigation, it is used to evaluate the spectroscopic performance of the detectors for high energy photons since ⁶⁰Co exhibits two characteristic gamma ray lines at 1173 keV and 1333 keV. At the time of the experiment, the used lab source had an activity of 6.55 ± 0.16 Mbq. The acquisition time was set to 5 ms. Figure 6 presents the measured spectra of ⁶⁰Co investigated by the different detector assemblies in this work.

257 258

259

No photo peak of the gamma ray lines at 1173 keV and 1333 keV can be distinguished regardless of detector configuration. This is due to the presence of undetected escape photons originating from the predominant Compton scattering, the limited energy resolution of the Timepix1 detector and the low attenuation efficiency of ~ 8.8% in the case of the 3 mm CdTe sensor. An even thicker sensor would be desirable for ⁶⁰Co. A significant reduction in overall count rate can be overserved for the 1 mm and 0.45 mm sensors. As with the ¹³⁷Cs spectrum, the Pb (K_{g1}75 keV) is visible.

A significant reduction in overall count rate can be overserved for the 1 mm and 0.45 mm sensors with a relative absorption efficiency of with (0.238 ± 0.002) for 0.45 mm CdTe and (0.396 ± 0.004) for 1 mm CdTe compared to the 3 mm CdTe. The 2 mm CdTe sensor exhibits the same effect as the thinner sensors but to a lesser degree with a relative absorption efficiency compared to the 3 mm sensor of (0.641 ± 0.005).

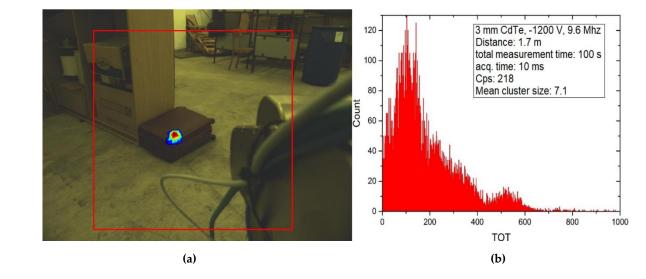
271 272

273 3.3. Implementation and field testing

274 After investigating the spectroscopic performance in chapter 3.1 and 3.2, a field test campaign was 275 initiated to evaluate the influence of a thicker sensor on the localization capabilities of the gamma 276 camera. The 3 mm CdTe sensor has the highest attenuation efficiency of the investigated sensors and 277 the 55 µm pixel pitch permits the necessary spatial and angular resolution for the localization of the 278 threat. Therefore, a 3 mm CdTe Timepix1 detector assembly with 55 µm pixel pitch was implemented 279 in the iPIX gamma camera. Figure 7 shows the camera mounted on the robot Telemaxx manufactured 280 and provided by Telerob GmbH (Germany). A specific mounting solution of the gamma camera was 281 provided by ZIPPERMAST GmbH (Germany) which mounts the iPIX on the robotic arm. Following

Figure 6. Spectra of ⁶⁰Co investigated by four different detector configurations in this work.

- 282 this approach, it was possible to remain the manipulation capabilities of the robot on investigating
- 283 objects while having a 360° radius for the FOV of the gamma camera.
- 284


285

286 Figure 7. Telemaxx by Telerob with the iPIX mounted on the arm. The mounting method does not negatively 287 influence the manipulation ability of the robot while permitting at the same time a 360° radius for the position of 288 the gamma camera.

289

290 3.3.1. NBC testing side

291 During the project, it was possible to carry out a field test of the modified iPIX at the NBC testing 292 side of the Austrian army at the DABSCH Kaserne (Austria). A room was prepared for investigation 293 with a simili, containing a radioactive source, placed inside. The complete system could be tested 294 under realistic conditions outside the lab environment [30]. Figure 8 (a) shows the superimposed image 295 of the gamma camera with localized radiation source in a suitcase. ¹³⁷Cs is the investigated isotope with 296 an activity of 36 ± 0.9 Gbq. The distance from source to detector was 1.7 meters with 218 recorded 297 counts per second (Cps). Figure 8 (b) presents the spectrum which was simultaneously recorded in 100 298 seconds.

301Figure 8. (a) Investigation of a prepared smili at the NBC testing side. A 137 Cs source with an activity of 36 ± 0.9 302Gbq is placed inside and localized by the 3 mm CdTe sensor with 218 Cps. (b) The spectrum which was recorded at303the same position in 100s. The mask R7 – e4 (Table 1) was used for the measurement.

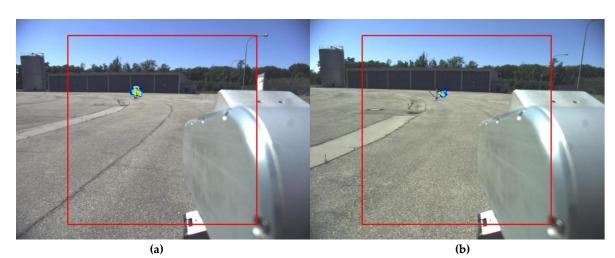
In comparison to the normalized ¹³⁷Cs spectrum measured in the lab, shown in Figure 4, the raw ToT-values are presented on the x-axis in Figure 8 (b). A total measurement time of 100s was chosen since it represents a realistic time frame to investigate a suspicious object in case of an emergency situation regarding the potential isotope present. The overall spectrum is noisier which is a result of the lower event count. However, the gamma ray line at 662 keV can be distinguished.

309 3.1.2. Nuclear Powerplant test facility

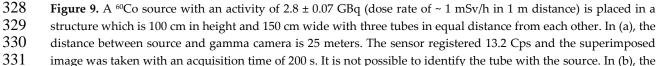
310 A second field test was performed with the iPIX configuration described in section 3.3 at a nuclear 311 power plant test site. A 60Co source was placed inside a test structure which is 150 cm wide and 100 cm 312 in height. Three tubes are in equal distance and the isotope is placed randomly in one arm. The source 313 has an activity of 2.8 ± 0.07 Gbg which corresponds to a dose rate of ~1 mSv/h in 1 m distance. Table 3 314 shows the results of the measurements. Figure 9 presents the distance 25 meters (a) and 20 meters (b). 315 Figure 10 shows the distance 15 meters (a) and 12 meters (b) respectively. The attenuation efficiency of 316 the 3 mm CdTe sensor in the energy region of ⁶⁰Co enables a timely localization of the test object with a 317 maximum of 200 s in the case of 25 meters distance. It was possible to visually localize the isotope in the 318 right arm of the structure at 20 meters.

319

320 321

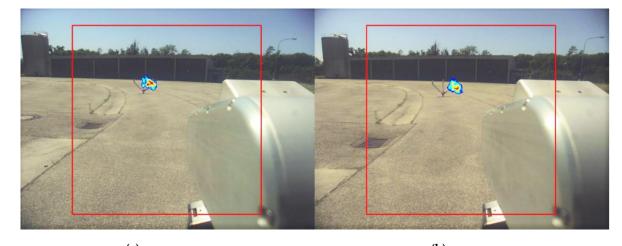

322

323


Table 3. Distance measurement at the nuclear power plant test facility. The isotope 60 Co with an activityof 2.8 ± 0.07 Gbq is investigated. The visible localization is the ability of the user to identify theradioactive source placed inside the right arm of the test structure on the superimposed image of the

	1P1X.							
Distance (m)	Cps	Acquisition time (s)	Visible localization					
25	13.2	200	No					
20	21.5	116	Yes					
15	37.1	91	Yes					
12	43.8	72	Yes					

324 325


326 327

distance between source and camera was reduced to 20 meters resulting in 21.5 Cps. It is possible to identify the

right tube as the source of radiation with 116 s acquisition time.

334

335

(a) (b)
Figure 10. The distance of detector and source is reduced to 15 meters in (a) and 12 meters in (b). In both cases, it can be determined visually that the source is placed in the right arm of the structure. For the 15 meters distance, 37.1 cps with an acquisition time of 91 s were evaluated. The right image with 12 meters distance yield 43.8 cps with an acquisition time of 72 s.

A spectrum was recorded at 15 meters distance between the ⁶⁰Co source and detector shown in Figure 11. The total measurement time was 50 s due to on-site time restrictions. The spectrum is noisier than the spectrum in the lab environment. This is expected due to the distance of 15 meters to the source resulting in a low count rate. The information would not be feasible to identify the investigated isotope, however, the presence of high energy photons can be determined since the cluster analysis detects and sufficiently excludes alphas and muons from the evaluation [5].

348

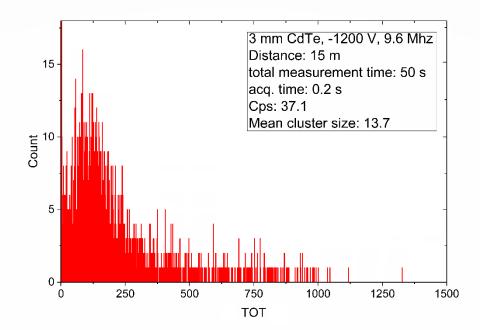


Figure 11. ⁶⁰Co spectrum recorded during the measurement series at the nuclear power plant test facility. The
 distance between source and detector is 15 meters with a total measurement time of 50 s. The mask R7 – e4 (Table
 1) was used for the measurement.

353

A test parkour was prepared inside the power plant which is designed to evaluate the maneuverability and manipulation capabilities of the robot as well as localization of hidden radioactive sources. Video 1 shows a short clip of the iPIX mounted on the Telemaxx at the parkour during ENRICH 2019 (Austria).

358

359 Supplementary Material Video

360 Video 1. This video shows the Telemaxx bomb disposal robot with the iPIX mounted on the side arm
361 during ENRICH 2019 (Austria). The iPIX used the 3 mm CdTe detector configuration. The parkour is
362 designed to test the maneuverability and manipulation possibilities of the robot. In addition,
363 radioactive sources must be localized.

364 3.4. Comparison to related work in the field

365 The presented approach uses the small pixel pitch of the Timepix ASIC and cluster analysis to 366 guarantee a high angular resolution of the gamma camera by means of the MURA coded aperture as 367 well as to provide spectroscopic information. A comparable gamma camera design approach is the 368 Caliste-HD [31], which uses a CdTe hybrid detector with a 16 x 16 pixel matrix with 580 µm pixel pitch 369 and MURA coded mask for the localization capabilities. The pixel size used in Caliste-HD is much 370 higher than in the IPix to reduce charge sharing effects without performing a cluster analysis. The 371 relation of sensor thickness to pixel pitch enables the evaluation of single pixel events only for 372 spectroscopic investigation. This results in a superior energy resolution. The gamma ray line of ¹⁵²Eu at 373 121 keV is resolved with a sigma of 0.9 keV in comparisons to the sigma of 11 keV of the 3 mm CdTe 374 Timepix used in this work. However, as both coded-aperture imaging systems use a MURA mask, the 375 highly pixelated Timepix has an angular resolution ranging from 1.3° to 3.8°, depending on the isotope, 376 while the Caliste-HD system is reporting an angular resolution of only 7° in the case of ¹⁵²Eu [31].

377 Scintillator based gamma cameras show a 6.0° angular resolution at 356 keV with a LaCl₃(Ce) 378 scintillator consisting of 22 x 22 voxels using URA coded aperture [32] and 5.6° angular resolution with 379 a CsI (Na) detector module consisting of 20 x 20 voxels using a MURA coded aperture [34].

380 The CsI (Na) compact hybrid gamma camera was used to investigate the position of UO₂ pellets with 381 4.1 % enriched 235 U and an activity of 1.14 μ Ci [34]. The results were used to predict the minimum 382 required detection time and count rate for monitoring different amounts of UO₂ pellets at 10-meters 383 distance between source and detector. A localization time of 199.4 s and a count rate of 30.9 cps was 384 found feasible to use the CsI (Na) compact hybrid gamma camera in the proposed scenario. In this 385 work, it was possible to localize a ⁶⁰Co source in 20-meters distance in 116 s with a significant lower 386 count rate per second of 21.5 Cps. The estimated required time of localization in a time crucial situation 387 agrees with the localization times stated in this work.

A single layer Compton camera is another camera concept which uses Compton scattering for isotope localization by reconstructing the scattering angle [35]. The advantage to renounce the coded-aperture system enables the construction of smaller and lighter camera systems. However, since the localization principle relies on Compton scattering, the detection efficiency of the camera is declining with decreasing energy of the investigated isotope. Furthermore, the distance between source and camera has to be known for position identification.

394 Recently, a hybrid Compton camera was proposed, combing a classical Compton camera and a pinhole

395 camera in a single detector system. This hybrid camera achieves a sigma of 3.5 keV at the gamma ray

396 line of ¹³⁷Cs at 662 keV, in comparison to sigma 55 keV of the 3 mm Cdte Timepix, and an angular

397 resolution of 10° [36].

398 . Discussion and Conclusions

Four different CdTe sensor configurations were bonded on Timepix1 readout ASIC to evaluate the
 spectroscopic performance for the integration in a gamma camera used on a robotic platform for
 counter measurements for radioactive threats.

402 Energy resolution is systematically better with greater pixel size and thinner sensors due to less 403 charge sharing present. The 2 mm CdTe 110 µm pp detector exhibits a sigma 34 keV for the ¹³⁷Cs 404 gamma ray line at 662 keV compared to sigma 55 keV for the 3 mm CdTe 55 µm pp detector. A 405 negative influencing factor on the energy resolution is the deposition of not registered energy around a 406 cluster due to the threshold of the individual pixel cell. This effect increases with overall cluster size 407 due to a greater number of surrounding pixels. However, the attenuation efficiency of a sensor is an 408 important aspect for a gamma camera since it allows efficient charge collection for a fast localization of 409 the radioactive source especially for high energy gamma rays which pose an extensive threat to public 410 safety. For the common isotope ¹³⁷Cs, the 3 mm CdTe sensor shows increase in count rate up to a factor 411 of 1.25 compared to a 2 mm CdTe sensor, 1.84 compared to a 1 mm CdTe sensor and up to 2.71 412 compared to a 0.45 mm CdTe sensor (Fig. 4, ¹³⁷Cs).

In a scenario in which the possible source of radiation is unknown to the user, the extension of the field of view (FOV) of the camera by means of the possible distance between source and detector enables the first assessment of the situation in a timely matter. This depends on the attenuation efficiency and angular resolution of the detector. The integrated 3 mm CdTe detector measured 21.5 counts per second emitting from a ⁶⁰Co source with an activity of 2.8 ± 0.07 Gbq in 20-meters distance in an open environment. The acquisition time with visual identification by the user was 116 seconds.

419 The relative absorption efficiency measured in section 3.2 allows the calculation of the estimate 420 acquisition time of a 1 mm CdTe sensor in the same scenario. In 20-meters distance from the source, the 421 1 mm CdTe sensor would have a predicted 8.5 cps resulting in 293 s acquisition time. For the intended 422 use of the gamma camera to assisted in situations where the public safety is concerned, the time 423 difference in localization of the source is significant for immediate decisions on appropriate 424 countermeasures. The angular resolution was sufficient for the user to localize the radioactive isotope 425 inside the test structure without knowing the placement for this measurement. At a 25-meters distance 426 between detector and source, it was not possible for the user to distinguish the placement of the source 427 inside the test structure.

428 A teleoperated robot platform with manipulation capabilities in combination with a gamma 429 camera can assist police, fire workers and personal from nuclear powerplants in hazard and security 430 operations. It poses the prospect to position the user and personal in a safe distance from a radioactive 431 threat while, at the same time, remain the possibilities of interaction with the investigated object. 432 Furthermore, in the frequent case of non-attacks, in which suspicious objects turn out to be harmless, 433 the 3 mm CdTe sensor improves investigation speed significantly compared to the 1 mm CdTe sensor. 434 For future work, it is worth investigating even thicker CdTe sensors in combination with highly 435 pixelated ASICs such as the Timepix1 as well as other high Z sensor materials such as CdZnTe and TiBr 436 which have similar or superior attenuation efficiency as CdTe while are available in greater sensor 437 thickness.

438

Author Contributions: Conceptualization, J.F. and S.P.; methodology, J.F. and S.P.; software, J.F. and S.P.;
validation, M.K.S., J.S.U. and J.F.; formal analysis, J.F.; investigation, J.F. and M.K.S.; resources, M.F., F.C., A.F. and
V.S.; data curation, , M.K.S., J.S.U. and J.F.; writing—original draft preparation, J.F., S.P. and V.S.; writing—review
and editing, J.F.; visualization, J.F.; supervision, S.P. and M.F.; project administration, S.P. and M.F.; funding
acquisition, M.F.. All authors have read and agreed to the published version of the manuscript.

444 Funding: This research was funded by the German Federal Ministry of Education and Research (BMBF), grant445 number 13N14328.

446 Acknowledgments: The authors would like to express their thanks to all collaborations partners of project 447 "DURCHBLICK" (BMBF, grant no. 13N14328) in particular Andreas Ciossek of Telerob GmbH (Germany) for 448 providing the robot and Frank Woodcock of ZIPPERMAST GmbH (Germany) for manufacturing the mounting 449 solution of the iPIX. We would like to thank the Fraunhofer FKIE (Germany), the Bundesheer (Austria) and the 450 organizers of the ENRICH for the opportunity of on-site testing of the system.

- 451 **Conflicts of Interest:** The authors declare no conflict of interest.
- 452

453 References

- 4541.van Ballegooij, W; Bakowski, P. The fight against terrorism. Study by European Parliamentary Research455Service, PE621.817 May2018. Availableonline:456https://www.statewatch.org/media/documents/news/2018/may/ep-study-terrorism-cost-of-non-europe-5-18.9df (accessed on 23.09.2020)
- 458 2. Mathieson, K.; Passmore, M.S.; Seller, P.; Prydderch, M.L.; O'Shea, V.; Bates, R.L.; Smith, K.M.; Rahman, M.
 459 Charge sharing in silicon pixel detectors, *Nucl. Instrum. Methods Phys. Res. A* 2002, 487, pp. 113-122.
- 460 3. Korn, A.; Firsching, M.; Anton, G.; Hoheisel, M.; Michel, T. Investigation of charge carrier transport and
 461 charge sharing in X-ray semiconductor pixel detectors such as Medipix2, *Nucl. Instrum. Methods Phys. Res. A*462 2007, 576, pp. 239–242, doi: 10.1016/j.nima.2007.01.159.
- 463 4. Veale, M.C.; Bell, S.J.; Duarte, D.D.; Schneider, A.; Seller, P.; Wilson, M.D.; Iniewski, K. Measurements of
 464 charge sharing in small pixel CdTe detectors, *Nucl. Instrum. Methods Phys. Res. A* 2014, 767, pp. 218–226.
- Fey, J.; Procz, S.; Schütz, M. K.; Fiederle, M. Investigations on performance and spectroscopic capabilities of a
 a mm CdTe Timepix detector. *Nucl. Instrum. Methods Phys. Res. A* 2020, 977, p. 164308, doi:
 10.1016/j.nima.2020.164308.
- 468 6. Maneuski, D.; Astromskas, V.; Frojdh, E.; Frojdh, D.; Gimenez, E.N.; Marchal, J.; O'Shea, V.; Stewart, G.;
 469 Tartoni, N.; Wilhelm, H.; Wraight, K.; Zaina, R.M. Imaging and spectroscopic performance studies of
 470 pixellated CdTe Timepix detector, *J. Instrum.* 2012, 7 (C01038), p. C01038, doi: 10.1088/1748-0221/7/01/C01038.
- 471 7. Ruat, M.; Ponchut, C. Characterization of a Pixelated CdTe X-Ray Detector Using the Timepix
 472 Photon-Counting Readout Chip, *IEEE Trans. Nucl. Sci.* 2012, 59, pp. 2392–2401, doi:
 473 10.1109/TNS.2012.2210909.
- 474 8. Greiffenberg, D.; Fauler, A.; Zwerger, A.; Fiederle, M. Energy resolution and transport properties of
 475 CdTe-Timepix-Assemblies, *J. Instrum.* 2011, 6 (C01046), p. C01046, doi: 10.1088/1748-0221/8/05/C05003.
- 476 9. Turecek, D.; Jakubek, J.; Trojanova, E.; Sefc, L.; Kolarova, V. Application of Timepix3 based CdTe spectral sensitive photon counting detector for PET imaging, *Nucl. Instrum. Methods Phys. Res. A* 2018, 895, pp. 84-89, doi: 10.1016/j.nima.2018.04.007.
- 479 10. Bergmann, B.; Burian, P.; Manek, P.; Pospisil, S. 3D reconstruction of particle tracks in a 2 mm thick CdTe
 480 hybrid pixel detector, *Eur. Phys. J. C* 2019, pp. 79 165, doi: 10.1140/epjc/s10052-019-6673-z.
- 481 11. Tsigaridas, S.; Ponchut, C. X-ray imaging with high-Z sensors for the ESRF-EBS Upgrade, *J. Instrum.* 2019, 14
 482 (*C04009*), p. C04009, doi: 10.1088/1748-0221/14/04/C04009.
- Tsigaridas, S.; Ponchut, C.; Zanettini, S.; Zappettini, A. Characterization of pixelated CdZnTe sensors using
 MAXIPIX, J. Instrum. 2019, 14 (C12009), p. C12009, doi: 10.1088/1748-0221/14/12/C12009.
- Veale, M.C.; Booker, P.; Cross, S.; Hart, M.D.; Jowitt, L.; Lipp, J.; Schneider, A.; Seller, P.; Wheater, R.M.;
 Wilson, M.D.; Hansson, C.C.T.; Iniewski, K.; Marthandam, P.; Prekas, G. Characterization of the Uniformity
 of High-Flux CdZnTe Material. *Sensors* 2020, 20, p. 2747, doi: 10.3390/s20102747.
- 488 14. Thomas, B.; Veale, M.C.; Wilson, M.D.; Seller, P.; Schneider A.; Iniewski, K. Characterisation of Redlen
 489 high-flux CdZnTe, *J. Instrum.* 2017, 12 (C12045), p. C12045, doi: 10.1088/1748-0221/12/12/C12045.
- 490 15. Cudié, X.L. Design and characterization of 64K pixels chips working in single photon processing mode, Ph.D.
 491 thesis, Sundsvall Mittuniversitetet, 2007.
- 492 16. Johnson, I.; Bergamaschi, A.; Billich, H.; Cartier, S.; Dinapoli, R; Greiffenberg, D.; Guizar-Sicairos, M.;
 493 Henrich, B.; Jungmann, J.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.; Tinti, G. Eiger: a single-photon
 494 counting x-ray detector. J. Instrum. 2014, 9 (C05032), p. C05032, doi: 10.1088/1748-0221/9/05/C05032.
- Hamann, E.; Koenig, T.; Zuber, M.; Cecilia, A.; Tyazhev, A; Tolbanov, O.; Procz, S.; Fauler, A.; Fiederle, M.;
 Baumbach, T. Investigation of GaAs:Cr Timepix assemblies under high flux irradiation. J. Instrum. 2015, 10
 (C01047), p. C01047, doi: 10.1088/1748-0221/10/01/C01047.
- 498 18. Llopart, X.; TimePix manual v1.0, CERN 2006.
- Procz, S.; Avila, C.; Fey, J.; Roque, G.; Schuetz, M.; Hamann, E. X-ray and gamma imaging with Medipix and
 Timepix detectors in medical research. Radiat. Meas. 2019, 127, p. 106104, doi: 10.1016/j.radmeas.2019.04.007.
- S01 20. Amgarou, K.; Paradiso, V.; Patoz, A.; Bonnet, F.; Handley, J.; Couturier, P.; Becker, F.; Menaa, N. A
 S02 comprehensive experimental characterization of the iPIX gamma imager, J. Instrum. 2016, 11 (P08012), p.
 S03 P08012. doi: 10.1088/1748-0221/11/08/P08012.
- S04 21. Amoyal, G. Development of a hybrid gamma imager for nuclear industry applications, PhD Thesis, CEA List,
 S05 2019.

- 506 22. Gal, O.; Izac, C.; Jean, F.; Laine, F.; Leveque, C.; Nguyen, A. CARTOGAM a portable gamma camera for remote localization of radioactive sources in nuclear facilities. Nucl. Instrum. Methods Phys. Res. A 2001, 460, pp. 138-145, doi: 10.1016/S0168-9002(00)01108-6.
- 509 23. Gmar, M.; Agelou, M.; Carrel F.; Schoepff, V. GAMPIX: a new generation of gamma camera. Nucl. Instrum.
 510 Methods Phys. Res. A 2011, 652, pp. 638-640, doi: 10.1016/j.nima.2010.09.003
- 511 24. Gottesman, S.R.; Fenimore, E.E. New family of Binary Arrays for Coded Aperture Imaging. Appl. Opt. 1989,
 512 28, N° 20, pp. 4344- 4352.
- 513 25. Amoyal, G.; Schoepff, V.; Carrel, F.; Lourenco, V.; Lacour, D.; Branger, T. Metrological characterization of the
 514 GAMPIX gamma camera. Nucl. Instrum. Methods Phys. Res. A 2019, 944. p. 162568, doi:
 515 10.1016/j.nima.2019.162568.
- 516 26. Carrel, F. et al. GAMPIX: A new gamma imaging system for radiological safety and Homeland Security
 517 Purposes. In Proceedings of 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference
 518 (NSS/MIC), Spain, 23 October 29 October, pp. 4739-4744, doi: 10.1109/NSSMIC.2011.6154706.
- Amgarou, K.; Timi, T.; De Lanaute, N.B.; Carrel, F.; Schoepff, V.; Lemaire, H.; Gmar, M.; Abou Khalil, R.;
 Dogny, S.; Varet, T.; Patoz, A.; Talent, P.; Menaa, N. Evaluation of the next generation gamma imager.
 Conference record of 3rd International Conference on Advancements in Nuclear Instrumentation,
 Measurement Methods and Their Applications (ANIMMA) 2013, France, 23 June -27 June, pp. 1-6, doi:
 10.1109/ANIMMA.2013.6728051.
- 524 28. Procz, S.; Lubke, J.; Zwerger, A.; Mix, M.; Fiederle, M. Optimization of Medipix-2 Threshold Masks for
 525 Spectroscopic X-Ray Imaging. IEEE Trans. Nucl. Sci. 2009, 56, pp. 1795-1799, doi: 10.1109/TNS.2012.2210909.
- 526 29. Turecek, D.; Holy, T.; Jakubek, J.; Pospisil, S.; Vykydal, Z. Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix and Medipix3 detectors. J. Instrum. 2011, 6 (C01046), p. C01046, doi: 10.1088/1748-0221/6/01/C01046
- Sczetina, A.; Hofstätter, M.; Schraml, S.; Hubner, M.; Sulzer, P.; Rothbacher, D.; Wurglitsch, R.; Riedl, E.;
 Sonntag, M.; Moser, S.; Fey, J. Robot assisted analysis of suspicious objects in public spaces using CBRN sensors in combination with high-resolution LIDAR*. In Proceedings of the 2019 IEEE International
 Symposium on Safety, Security, and Rescue Robotics (SSRR), Germany, 2 September 4 September; pp. 256-262, doi: 10.1109/SSRR.2019.8848950.
- Maier, D.; Blondel, C.; Delisle, C.; Limousin, O.; Martignac, J.; Meuris, A.; Visticot, F.; Daniel, G.; Bausson, P.;
 Gevin, O.; Amoyal, G.; Carrel, F.; Schoepff, V.; Mahe, C.; Soufflet, F.; Vassal, M. Second generation of
 portable gamma camera based on Caliste CdTe hybrid technology. Nucl. Instrum. Methods Phys. Res. A
 2018, 912. pp. 338-342, doi: 10.1016/j.nima.2017.12.027.
- 538 32. Lee, W.; Wehe, D.K.; Jeong, M.; Barton, P.; Berry, J. A Dual Modality Gamma Camera Using LaCl3(Ce)
 539 Scintillator. IEEE Trans. Nucl. Sci. 2009, 56, pp. 308-315, doi: 10.1109/TNS.2008.2011051.
- 540 33. Lee, T.; Lee, W. Compact hybrid gamma camera with a coded aperturefor investigation of nuclear materials.
 541 Nucl. Instrum. Methods Phys. Res. A 2014, 767. pp. 5-13, doi: 10.1016/j.nima.2014.07.031.
- 542 34. Lee, T.; Kwak, S.; Lee, W. Investigation of nuclear material using a compact modified uniformly redundant
 543 array gamma camera. Nucl. Eng. Tech. 2018, 50, pp. 923-928, doi: 10.1016/j.net.2018.04.006
- 544 35. Turecek, D.; Jakubek, J.; Trojanova, E.; Sefc, L. Single layer Compton camera based on Timepix3 technology,
 545 J. Instrum. 2020, 15 (C01014), p. C01014.
- 546 36. Omata, A.; Kataoka, J.; Fujieda, K.; Sato, S.; Kuriyama, E.; Kato, H.; Toyoshima, A.; Teramoto, T.; Ooe, K.;
 547 Liu, Y.; Matsunaga, K.; Kamiya, T.; Watabe, T.; Shimosegawa, E.; Hatazawa, J. Performance demonstration
 548 of a hybrid Compton camera with an active pinhole for wide-band X-ray and gamma-ray imaging. Sci. Rep.
- 549 2020, 10, p. 14064, doi: /10.1038/s41598-020-71019-5.