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ABSTRACT
Heterogeneous supercomputers are now considered the most valu-
able solution to reach the Exascale. Nowadays, we can frequently
observe that compute nodes are composed of more than one GPU
accelerator. Programming such architectures efficiently is challeng-
ing.

MPI is the defacto standard for distributed computing. CUDA-
aware libraries were introduced to ease GPU inter-nodes commu-
nications. However, they induce some overhead that can degrade
overall performances. MPI 4.0 Specification draft introduces the
MPI Sessions model which offers the ability to initialize specific
resources for a specific component of the application.

In this paper, we present a way to reduce the overhead induced
by CUDA-aware libraries with a solution inspired by MPI Sessions.
In this way, we minimize the overhead induced by GPUs in an MPI
context and allow to improve CPU + GPU programs efficiency. We
evaluate our approach on various micro-benchmarks and some
proxy applications like Lulesh, MiniFE, Quicksilver, and Cloverleaf.
We demonstrate how this approach can provide up to a 7x speedup
compared to the standard MPI model.
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1 INTRODUCTION
While the HPC community sets the objective to reach exascale com-
puting by 2020-2022, the performance rise of such systems is tightly
bound to their energy consumption. Furthermore, power require-
ments are very high, necessitating hundreds of megawatts [25].
Energy efficiency is one of the most challenging problems on the
road to exascale.

There were important efforts in optimizing energy efficiency by
using different leverages: optimize CPU energy by changing clock
frequency dynamically (Adagio [31], COUNTDOWN [5], Forest-
mn [13]); distribute job’s power budget across processors efficiently
(GEOPM [8], PShifter [12]); optimize other hardware components
(cooling system, hard drive, memory); etc.

The current solutions favor the usage of hybrid architectures
based on accelerators. Indeed, such architectures are not only able
to improve the computing power but also help to reduce the elec-
trical consumption of the nodes. Thus, a contemporary computing
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system relies typically on a combination of accelerators and general-
purpose CPUs.

The interest in using hybrid architectures increased significantly
during the past years. This trend is readily apparent in the TOP500
history: the number of heterogeneous supercomputers in TOP500
passed from 19 in 2011 to 140 in 2019 [3]. One of the most popular
accelerators are NVidia GPUs, used in a broad range of industries:
computational finance, weather, data science, machine learning,
medical imaging life science, energy physics [34] etc. By analyzing
the November 2020 TOP500 list we can discover that three super-
computers from the TOP5 are based on NVidia GPUs (Summit,
Sierra, Selene). We can also notice that the most energy-efficient
system on the Green500 is the new NVidia DGX SuperPOD.

With the increasingly larger problem sizes to solve, there is
an obvious need for scalable GPU computing. Oliver Fuhrer et
al. [10] leveraged 4888 GPUs to run a climate model on the full Piz
Daint supercomputer. Another example of using large-scale GPU
computing is distributed deep learning domain [19, 32]. Hiroaki
Mikami et al. [26] used 3456 Tesla V100 GPUs in order to train a
ResNet-50 model on the ImageNet dataset.

Distributed GPU programming assumes the use of communica-
tion libraries, which handle data transfers between compute nodes.
GPU accelerators have their own memory and all data transfers
must be managed differently from the CPU ones. Hence, CUDA-
Aware libraries were introduced to ease GPUs inter-node commu-
nication. These libraries are able to handle CPU and GPU buffers
simultaneously and offer different optimization in both cases. The
drawback of using CUDA-Aware features is that we have to check
the buffer locality each time we perform a data movement. This
test adds an overhead on the application’s critical path and could
have an important impact on performances. Results presented in
this paper show that the overhead can even achieve up to 700% for
some proxy applications.

The main targets of our work are hybrid MPI applications which
have a part of their kernels running on the GPUs and the other part
on the CPUs. Thus, the communication library must handle CPU
to CPU, CPU to GPU, and GPU to GPU memory transfers in the
same program. This applies to kernels that are not yet ported to
GPUs or that perform badly on these architectures. LLNL Monte
Carlo Transport codes [24] is a representative example of such an
application. These applications could achieve better performances
with a good CPU/GPU load balancing and thus are optimized with
an hybrid applications programming model. Another good exam-
ple is the IO part of scientific computing codes. IO often relies on
dedicated libraries like HDF5 [9], netCDF [18]. These libraries are
optimized for CPU. The current MPI design does not allow to dis-
sociate CPU and GPU components. Consequently, the need to test
the buffer locality adds a significant slowdown on the MPI critical
path. Taking into consideration this context, there is an obvious
need of removing this unneeded overhead.

This paper aims to solve this problem by making the following
contributions:

• Study the overhead’s behavior on someMPImicro-benchmarks
and proxy applications.

• Provide a portable solution based on the new MPI 4.0 Ses-
sions.

• Propose a method to integrate this solution into the MPI
standard.

The rest of this paper is organized as follows. The next section
gives an overview about related work and background. Sections 3
and 4 describe our approach and its integration in the MPI standard.
In section 5, we present our experimental protocol, evaluate the
benefits of using MPI Sessions and discuss about results. The last
section presents our conclusions and future work.

2 BACKGROUND AND RELATEDWORK
In this section we briefly outline the basic concepts of the MPI
CUDA-Aware libraries and the new features introduced in the MPI
4.0 Release Candidate. We also discuss about some previous ap-
proaches that aimed at optimizing GPU communications.

2.1 MPI CUDA-Aware libraries
CUDA-Aware MPI libraries are a set of MPI implementations which
can directly handle GPU buffers: MPC [28], MVAPICH2 [27], Open-
MPI [11], etc. The user does not need to explicitly stage GPU buffers
through host memory, allowing the library to optimize GPU mem-
ory transfers. Depending on the buffer size and the hardware topol-
ogy it is possible to pipeline messages or to use GPUDirect technol-
ogy. All these optimizations are transparent for the user and ease
the development of Hybrid Application. As a balance, CUDA-Aware
MPI libraries add an overhead on the critical path as they must
handle buffers differently depending on whether they reside in host
or device memory.

2.2 Unified Virtual Addressing (UVA)
Unified Virtual Addressing (UVA) is a memory address management
system, introduced in CUDA 4.0. Figure 1 shows the way UVA is
working on a system with multiple GPUs. At runtime initialization,
the virtual address range of the application is partitioned into two
areas: the CUDA-managed VA range and the OS-managed VA range.
All the CUDA pointers are within a certain range which always falls
within the first 40 bits of the process VA space. Hence, the location
of a buffer can be determined based on the Most Significant Bits
(MSBs) of its address. Technically, this operation can be performed
by calling the CUDA Driver API function "cuPointerGetAttribute()".
There is no runtime equivalent as this call sequencewould introduce
unneeded overhead.

Figure 1: Unified Virtual Addressing (figure taken from [17])
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2.3 MPI 4.0
Recently, the MPI Forum has published a draft version of the MPI
4.0 Standard. This draft is the release candidate for the MPI 4.0
Specification and will be considered for ratification during Decem-
ber 2020 [2]. Among the most significant additions of this new
specification, we can find the MPI Sessions, Persistent Collectives,
Partitioned Communication and Topology Solutions. All these new
concepts have a big potential in optimizing hybrid MPI+GPU appli-
cations. In this paper, we focus on the benefits of MPI Sessions.

The Release Candidate introduced MPI Sessions extensions to
theMPI standard. This new paradigm is aimed at solvingMPIWorld
limitations. Currently, MPI cannot be initialized more than once
and cannot be initialized from different application components
without a priori knowledge or coordination. The Sessions Model
offers an isolated environment that can be initialized and freed
multiple times during the same run. Furthermore, it is also possible
to allocate and free MPI resources for a specific component of the
application. These new functionalities have even bigger advantages
for MPI CUDA-Aware libraries, as it is possible to initialize MPI
GPU features only for specific libraries or portions of code and
consequently avoid the overhead of unnecessary verifications.

The purpose of this article is to bring a solution based on MPI
Sessions. Our goal is to minimize the overhead induced by GPUs
in an MPI context, and in conclusion to obtain efficient CPU+GPU
programs.

2.4 MPI Attribute–based Approach
Since the introduction of GPUs as general-purpose accelerators,
many papers have studied the ways to optimize the inter-node
GPU communication [14, 29, 33]. However, there are only few
articles that evaluate the overhead associated with CUDA-Aware
communication libraries.

Aji et al. presented an extensible framework for data movement
in accelerator-based systems. In [4] they present the consequence of
testing buffer locality before each MPI transfer but their work is lim-
ited to point-to-point intra-node communications and does not pro-
vide an exhaustive analysis of this overhead. Instead, they bring a
solution to this problem. They use MPI communicator and datatype
attributes to indicate buffer locality to the MPI library. Technically,
this operation consists in setting a specific attribute to a datatype
or communicator via the MPI_type_set_attr()/MPI_Comm_set_attr()
function. This attribute indicates the communication pattern and
is checked by the MPI library at runtime. Thus, cuPointerGetAt-
tribute() can be replaced by a simple call to MPI_type_get_attr() or
MPI_Comm_get_attr(). While this approach allows to considerably
improve performance, there is still a small overhead on the MPI crit-
ical path. Furthermore, the user has to manually instrument each
MPI datatype tag, which can be tedious. Aji et al. also present a lim-
itation of using communicator attributes. This approach does not
allow to move data from the GPU on one process to host memory
of another process.

Best to our knowledge, there is no previous work on a solution
build around MPI Sessions.

3 CONTRIBUTION
In this section, we present our contributions. Firstly, we clarify the
importance of removing cuPointerGetAttribute() from the MPI criti-
cal path by evaluating its overhead on several micro-benchmarks
and HPC applications. Secondly, we bring a lightweight solution
based on the new MPI Sessions concept. Our goal is to highlight
the benefits of MPI sessions on CUDA-Aware libraries and GPU
hybrid applications.

3.1 cuPointerGetAttribute overhead analysis
Even if there was a significant effort to improve the performance
of cuPointerGetAttribute(), this operation adds an overhead on the
MPI critical path and can have a significant impact on the overall
application performance. In order to evaluate this overhead, we in-
strumented the well-known Intel MPI Benchmarks [6]: before each
MPI routine we test if the buffer resides in CPU or GPU memory.
All these tests are unneeded as we always transfer host memory.
The purpose of this experimental protocol is to evaluate the over-
head of transferring CPU memory with a CUDA-Aware MPI library,
depending on the MPI routine, buffer size, and process number. We
also consolidate these results on more representative HPC applica-
tions thanks to four proxy applications. Performance evaluations
will be discussed in section 5.

All these experiments are aimed at evaluating the potential per-
formance improvement of using MPI Sessions.

3.2 Sessions based approach
As we could see from the previous sections, the CUDA-Aware com-
munication libraries are able to automatically detect the buffer
locality. This operation is done before each memory transfer and
thus slowdown the application. To avoid this overhead, we need
to provide the required information to the communication library.
Hence, the test will no longer be necessary.

This operation can be performed by associating to each MPI Ses-
sion a specific communication pattern: CPU to CPU, GPU to GPU,
CPU to GPU, or GPU to CPU. Therefore, inside a specific Session
data would always move to/from GPUs and to/from CPUs. The
sessions number depends on the desired communication pattern.
For example, it is possible to have a session for CPU - CPU mem-
ory transfers and a second session for GPU - GPU communication.
Though, by creating four sessions we can cover all communication
patterns presented above. This approach eliminates the cuPointer-
GetAttribute() from the critical path.

Our solution is similar to the Communicator-based approach
presented in [4]. The difference is that we apply this concept to the
MPI Sessions Model, which has some important advantages:

• the overhead can be fully removed,
• there are no limitations for data movement,
• there is no need to introduce new programming habits, as
this approach fits perfectly in the new MPI Sessions Model.

4 INTEGRATION INTO THE MPI STANDARD
In the new MPI Sessions Model, the MPI_Init() function is replaced
by MPI_Session_init(). The last one takes in parameters a MPI_Info
object which allows the user to designate the MPI resources to
be allocated. The MPI 4.0 Release Candidate describes how this
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1 static MPI_Session lib_shandle = MPI_SESSION_NULL;

3 const char comm_key[] = "mpi_communication_pattern";
const char comm_value[] = "MPI_CPU_TO_GPU";

5

7 MPI_Info sinfo = MPI_INFO_NULL;
MPI_Info_create(&sinfo);

9
MPI_Info_set(sinfo,comm_key,comm_value); /*setting the communication pattern*/

11
int rc = MPI_Session_init(sinfo,MPI_ERRORS_RETURN,&lib_shandle);� �

Figure 2: Example of CUDA-Aware MPI implementation ini-
tialization

model can be used to change the application’s thread support level.
Creating different MPI Session handles allows using different thread
support levels for different components of an application.

The MPI 4.0 standard mentioned that MPI_Info object can be
used as well to specify the MPI implementation-specific resources.
Therefore, it is possible to use MPI_Info to indicate the communica-
tion pattern for a specific Session. Technically, this operation can be
performed by adding a new (key, value) pair to the info object. Our
approach can be integrated into the new MPI standard by simply
adding a new key called mpi_communication_pattern allowing us
to specify the communication pattern.

Figure 2 presents a simple example inspired from the MPI 4.0
Draft Specification [2], which shows how to use MPI Sessions to
optimize GPU communications. In this example, we initialize an
MPI Session and associate it to a specific communication pattern.
All the communicators derived from this session will perform only
CPU to GPU transfers. Thus, all send buffers will reside in host
memory and all receive buffers in device memory. Having this
information, cuPointerGetAttribute() can be completely removed
from the critical path.

5 APPLICATIONS/BENCHMARKS
In this section, we describe our experimental setup and discuss the
obtained results.We split our experimental protocol into two phases:
analyze the overhead on some micro-benchmarks and confirm the
observed tendency on real HPC applications.

5.1 Experimental setup
First of all, we chose to analyze the cuPointerGetAttribute() overhead
on some MPI micro-benchmarks. One of the most popular candi-
date for this purpose is the Intel MPI benchmarks suite (IMB) [6]
which provides an efficient way to measure the performance of
MPI routines. We decided to study some MPI1 functions from the
IMB-MPI1 component, as these routines are the most encountered
ones in real HPC applications. The main goal of these experiments
is to evaluate the impact of cuPointerGetAttribute() on the MPI1
routines, according to some important criteria: MPI function type,
process number and buffer size.

Secondly, we validate the obtained micro-benchmarking results
on representative HPC applications. Our goal is to highlight the
impact of using MPI Sessions in a real HPC context.

5.2 Experimental context
All the experiments were carried out on the ROMEO petaflop sys-
tem hosted at Université de Reims Champagne Ardennes, France.
ROMEO is a Sequana X1000 cluster with 115 nodes, all equipped
with Intel Skylake 6132 processors. Each node has two sockets, each
equipped with one processor having 14 cores. A part of the nodes
are also equipped with four NVidia P100 GPUs, interconnected via
NVlink.

The main characteristic of our cluster is the use of the Bull eX-
ascale Interconnect (BXI) developed by Atos, which is a 100Gb/s
proprietary interconnec systemt. The BXI network scales up to 64k
nodes and is composed of two separate ASIC components, a Net-
work Interface Controller (NIC) and a switch. The NIC implements
in hardware the Portals 4 communication primitives, and thus com-
pletely offload the communication from the host processor. [7]. The
BXI switch has 48 ports which allows building larger systems with
fewer elements. Additionally, fewer hops in the data path reduce
the communication latency and limit congestion points.

The versions of the libraries we used for our tests are as followed:
CUDA 11.2, OpenMPI 4.0, and BXI 1.7 with a BXI Host Channel
Adapter v1.2. As we have a proprietary interconnect, we also have a
specialized OpenMPI library that use the native Portals 4 interface.

5.3 Micro-Benchmarking Evaluation
We executed the Intel MPI micro-benchmarks with 2, 28, and 56
processes, and with buffer sizes going from 0 bytes to 4 megabytes.
Our study is limited to the most common MPI-1 Benchmarks (All-
toall, Allreduce, Allgather, Bcast, Gather, Reduce, Scatter, PingPing,
PingPong), which includes the most encountered MPI functions in
realistic HPC applications. We also take care to disable turbo boost
and bind MPI ranks to cores. In the following sections, we discuss
separately collective and peer-to-peer benchmarks results.

5.3.1 Micro-benchmarks variability. As described in [15] the MPI
micro-benchmarks have a big variability. Indeed, some run-times
have an error of approximately 10% and even bigger.

We are aware of this behavior, and we took care to specify the
min and the max for all our results. As well, we took it in account
while analyzing the obtained graphs.

5.3.2 MPI collectives. Figures 3,4 shows our results concerning the
MPI collectives. It presents the overhead and the mean logarith-
mic execution time with the associated bar error. The overhead
is described as the ratio between a CUDA-Aware execution and a
basic one. A ratio closed to 1 means that the cuPointerGetAttribute()
overhead is negligible. This appears when the execution time of a
benchmark is much more important than the time needed for a data
locality test. The time of an MPI function increases with the buffer
and world size, while the time of calling cuPointerGetAttribute()
is constant and does not depend on the transferred buffer size.
Therefore, the impact became insignificant from a certain point.

By analyzing Figures 3,4 we can notice that the overhead can be
observed only for two MPI ranks executions with relatively small
buffers. Moreover, it becomes insignificant for the MPI collectives
with 28 and 56 ranks. The big overhead at the beginning of each
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Figure 3: Overhead induced by the data locality test before each MPI routine. 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑟𝑎𝑡𝑖𝑜 =
𝑡_𝑐𝑢𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝐺𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑡_𝑏𝑎𝑠𝑖𝑐 , where
t_cuPointerGetAttribute is the mean time of one execution with runtime checks (cuPointerGetAttribute) and t_basic is the
mean time of a basic run (Allgather, Allreduce, Alltoall, Bcast)
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Figure 4: Overhead induced by the data locality test before each MPI routine. 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑟𝑎𝑡𝑖𝑜 =
𝑡_𝑐𝑢𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝐺𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑡_𝑏𝑎𝑠𝑖𝑐 , where
t_cuPointerGetAttribute is the mean time of one execution with runtime checks (cuPointerGetAttribute) and t_basic is the
mean time of a basic run (Gather, Reduce, Scatter)

collective is due to the specific MPI behavior: a collective return
immediately if the count parameter is equal to zero.

The collectives with 2 processes were instrumented to better
understand the behavior of cuPointerGetAttribute(). We consider
these results non-relevant for a real HPC context as we target large-
scale applications. We can notice an important overhead for Scatter,
Gather, Bcast, Reduce even with 28 and 56 ranks. However, we
can not consider these results because of their important standard
deviation. Thus, we can conclude that in most of the cases cuPoint-
erGetAttribute() will not have a significant impact on the collective
performance.

5.3.3 MPI P2P. Figure 5 shows our point-to-point results. We can
notice that the overhead is more important for this communication
pattern. However, it becomes negligible for larger buffers, which is
the same behavior we observed for collective communications.

Since point-to-point communications are largely used in many
HPC applications, this overhead can lead to significant performance
degradation.

5.4 Applications
The obtained results with MPI micro benchmarks are not sufficient
to conclude on the MPI Session Model benefits. In order to verify
these performance improvements, we need to study its behavior
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Figure 5: Overhead induced by the data locality test for P2P MPI routines. 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑟𝑎𝑡𝑖𝑜 =
𝑡_𝑐𝑢𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝐺𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑡_𝑏𝑎𝑠𝑖𝑐 , where
t_cuPointerGetAttribute is the mean time of one execution with runtime checks (cuPointerGetAttribute) and t_basic is the
mean time of a basic run

into real MPI applications. We chose four mini-applications for
this purpose: LULESH [1], MiniFE [23], Quicksilver [30], Clover-
Leaf [21]. Mini-apps provide a smaller full featured program which
allows to explore performance tuning techniques in less time. There-
fore, all the observations are also applicable on full applications.
We consider these applications to be the best candidates to high-
light the importance of CUDA-Aware overhead. In the previous
sections, we saw that the Session advantages are more accentuated
for peer-to-peer communications, and the four applications rely on
a such communications pattern.

Table 1 presents a brief description of the four applications. We
list in this table all the MPI routines used in each application, in
order to better understand their communications pattern.

In order to evaluate the Sessions’s benefits we developed a
LD_PRELOADMPI library which performs a cuPointerGetAttribute()
test before each MPI routine and for each buffer. We also took care
to initialize the CUDA context with MPI_init(). We then executed
several times each application with and without this library. Thus,
it was possible to evaluate the overhead associated exclusively to
buffer checks. In fact, MPI CUDA-Aware libraries can also present
an overhead associated to the registry cache and other implementa-
tion specific resources. At the end we compare the total execution
time of the two runs, which we present as the ratio between a run
with LD_PELOAD and a basic one: 𝑟𝑎𝑡𝑖𝑜 =

𝑡_𝑐𝑢𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝐺𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒
𝑡_𝑏𝑎𝑠𝑖𝑐 .

All tests was done on CPU versions of these applications.
As for the micro-benchmarks we disabled the turbo boost and

bound MPI ranks to cores. The standard deviation for all applica-
tions is between 1% and 2%, meaning that our results are fairly
reliable.

5.4.1 LULESH. LULESH was initially designed as one of five chal-
lenge problems for the DARPA UHPC program. It has since evolved
and become a representative mini-app of a simplified 3D Lagrangian
hydrodynamics on a unstructured mesh.

Our evaluation was performed on the version 2 of LULESH [16]
which adds multiple regions and variable cost functions.We decided
to test our approach with 27 ranks, with no load balancing and for
the flowing problem size: 10, 20, 30, 40, 50.

Figure 6 presents our results. The number above each pair of
bars represent the overhead ratio. We can observe an important
overhead for the two smallest problem sizes, 10 and 20. This is due
to a short execution time compared to the number of MPI routine
calls. For the larger problem sizes the overhead is totally hidden.

In order to understand this behavior we profiled LULESH. We
computed the number of times an MPI routine is called in a period
of time. Thus we can compute the number of buffer checks (calls to
cuPointerGetAttribute). We consider this metric more relevant than
the total number of MPI calls as it can be applied on both proxy and
real HPC applications. In fact, the overhead can be insignificant for
applications with a big number of MPI calls but longer execution
time.

Figure 7 describes the LULESH MPI call intensity, which corre-
sponds to the checks number per second. We can notify a correla-
tion between the MPI call intensity and the associated slowdown.
Therefore, the overhead is weakly observable when the intensity
decrease.

The MPI calls intensity must be taken as a rough metric. We saw
in the previous sections that the CUDA-Aware overhead depends on
several factors: process number, buffer size, communication pattern.
Thus, we can consider this metric only in a particular context: same
communications pattern, buffer and process number.

5.4.2 MiniFE. MiniFE is a proxy applications for unstructured im-
plicit finite element codes, which comes from the Mantevo project
of Sandia National Laboratories. MiniFE executes the whole finite
elements phases: generation, assembly and analysis. The physi-
cal domain is a 3-D box and it is possible to define each (x,y,z)
dimension size.

We decided to fix the z dimension to 10 for all the runs. We also
set the x dimension equals to the y one, which took the following
values: 1000, 2000, 3000, 4000, 5000. This pattern was inspired from
the MniFE github [23].

Figure 8 shows MiniFE results. We can notice a significant over-
head even for longer runs. By analyzing Figure 9 it is possible to
discover the same correlation with MPI calls intensity, as in the case
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Proxy Application Description Collectives P2P

LULESH2.0 hydrodynamics on an unstructured mesh Allreduce, Reduce Isend, Irecv
MiniFE unstructured implicit finite element Allreduce, Allgather, Bcast, Reduce Send, Irecv

Quicksilver simplified dynamic monte carlo particle transport problem Allreduce, Bcast, Gather, Reduce Isend, Irecv
CloverLeaf cartesian grid method for the compressible euler equations Allreduce, Reduce Isend, Irecv

Table 1: Brief characterization of proxy applications

Figure 6: Lulesh overhead analysis Figure 7: LULESH - the number of times an MPI Routine is
called during a period of time

Figure 8: MiniFE overhead analysis Figure 9: MiniFE - the number of times an MPI Routine is
called during a period of time

of LULESH. However, comparing to MiniFE the LULESH’s MPI in-
tensity is much more important for less overhead. This is because of
a different communication pattern, as we mentioned in section 5.4.1.
Estimated the overhead based on the MPI communications is quite
tedious and can be subject of an entire article.

5.4.3 Quicksilver. Quicksilver is a proxy application that solves
a simplified dynamic Monte Carlo particle transport problem. It
is used as a prototype to test potential programming models and
design options for Mercury [20].

Quicksilver can be instrumented by command line options and
an input file. The Quicksilver git [23] provides several examples
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Figure 10: Quicksilver overhead analysis Figure 11: Quicksilver - the number of times an MPI Routine
is called during a period of time

of input files. Thus, we choose to evaluate our approach on these
input files. The full list used for our experimental protocol is the
following:

• homogeneousProblem.inp (hP)
• homogeneousProblem_v3.inp (hP_v3)
• homogeneousProblem_v3_wq.inp (hP_v3_wq)
• homogeneousProblem_v4_tm.inp (hP_v4_tm)
• homogeneousProblem_v4_ts.inp (hP_v4_ts)
• homogeneousProblem_v5_ts.inp (hP_v5_ts)
• no.collisions.inp (nocollisons)
• quicksilver_aprun_trinity_01.sh (trinity_01)
• quicksilver_aprun_trinity_02.sh (trinity_02)
• quicksilver_aprun_trinity_04.sh (trinity_04)
• quicksilver_slurm_rzalast_01.sh (rzalast_01)
• quicksilver_slurm_rzgenie_01.sh (rzgenie_01)
• scatteringOnly.inp (scatteringOnly)

Figure 10 shows Quicksilver results. There is a significant over-
head for all test cases that we instrumented. These results demon-
strate the real need of using MPI Sessions.

Figure 11 shows the MPI calls intensity depending on different
routines. We can highlight the same trend as in previous cases.
However, the Quicksilver’s communications pattern is strongly
dependent on the input file. Therefore this metric can not be appro-
priate for these test cases (see "nocollisons" for a counter example).

5.4.4 CloverLeaf. CloverLeaf is a mini-application that solves the
compressible Euler equations of compressible fluid dynamics in two
spatial dimension. As the previous proxy applications, CloverLeaf
is often used as a representative benchmark for a real HPC context.

This application can be instrumented via an input file. We evalu-
ate the CUDA-Aware overhead on four input files which are rec-
ommended on the CloverLeaf’s github [22].

Figure 12 depict CloverLeaf results. As for LULESH we have a
pronounced overhead for smaller runs.

By analyzing Figure 13 we observe an incompatibility between
the MPI intensity and the associated overhead. This is can be ob-
served by comparing bm with bm_short In this particular case,
this disproportion is because of the buffer sizes. Indeed, bm_short
performs memory transfers with smaller buffers.

6 CONCLUSIONS AND FUTUREWORK
In this paper we addressed performance issues in hybrid CPU/GPU
applications in the MPI context. We diagnose that the detection of
buffer locality can induce a large overhead in the MPI critical path.
This overhead (up to 700%) is visible on micro-benchmarks and
representative HPC applications. In order to remove this overhead,
we introduce a new methodology based on the upcoming MPI
4.0 Sessions to distinguish the part of code or the libraries that
require CUDA-aware MPI from the part of code or the libraries that
are using CPU-only buffers. This method also allows dealing with
hybrid messages (CPU to GPU or GPU to CPU).

We have implemented a library prototype to evaluate the gain
we can expect on micro-benchmarks and representative applica-
tions thanks to our methodology. It allows to gain up to 88% on
representative applications and on micro-benchmarks. Thanks to
our evaluations on micro-benchmarks we were able to characterize
the configuration of MPI function (type of communication, com-
municator size and buffer size) that are the most impacted by the
CUDA-aware support and thus require to be optimized. We extend
our evaluation with representative application thanks to proto-
applications. We analyzed four types of applications and illustrate
the benefit of our methodology on each of them.

Our approach is fully portable and does not depend on the net-
work technology. In fact, it allows transferring useful information to
the communication library, which can be used to improve hardware
specificMPI libraries. As long as the NIC and the GPU are connected
through a PCI Express, the communication library need to ensure
that the GPU’s memory is visible on the PCIe BARs before each GPU
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Figure 12: CloverLeaf overhead analysis Figure 13: Cloverleaf - the number of times an MPI Routine is
called during a period o time

transfer. Our model showed an important performance improve-
ments for NVidia GPUs, but it can be also used for optimizing AMD
and the new Intel GPUs. Indeed, AMD’s Heterogeneous-compute
Interface for Portability (HIP) has the same Unified Virtual Address-
ing environment as CUDA. Furthermore, the new Intel GPUs are
also based on the PCIe technology, meaning that the communica-
tion library has to differentiate CPU from GPU buffers.

Even if we did not implement the methodology presented in
real MPI implementations, it can be easily done as it is similar to
the support of thread-multiple in MPI implementation thanks to
Sessions.

In order to improve the performances of hybrid applications, this
work should be extended to analyze other MPI 4.0 new functionali-
ties such as persistent collectives or partitioned communications. In
the context of persistent collectives, as the communication buffers
are kept between MPI calls, we can optimize the MPI implementa-
tion to avoid useless cuPointerGetAttribute function calls. Regarding
partitioned communications, we expect to have similar behavior
to regular MPI function calls. Eventually, an extensive analysis of
data locality of MPI_GUIDED features has to be done to use this new
feature to add GPU support in the communicator decomposition
and consider GPU as a real independent compute resource; just like
a CPU is.
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