N
N

N

HAL

open science

Benefits of MPI Sessions for GPU MPI applications

Maxim Moraru, Adrien Roussel, Marc Pérache, Hugo Taboada, Christophe
Jaillet, Michaél Krajecki

» To cite this version:

Maxim Moraru, Adrien Roussel, Marc Pérache, Hugo Taboada, Christophe Jaillet, et al.. Benefits of
MPI Sessions for GPU MPI applications. EuroMPI "21 - 28th European MPI Users’ Group Meeting,

Sep 2021, Leibniz, Germany. cea-03322976

HAL Id: cea-03322976
https://cea.hal.science/cea-03322976
Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cea.hal.science/cea-03322976
https://hal.archives-ouvertes.fr

Benefits of MPI Sessions for GPU MPI applications

Maxim MORARU
maxim.moraru@univ-reims.fr
Université de Reims Champagne
Ardennes, LICIIS
51097 Reims, France

Christophe JAILLET
christophe jaillet@univ-reims.fr
Université de Reims Champagne

Ardennes, LICIIS, LRC DIGIT
51097 Reims, France

Adrien ROUSSEL
adrien.roussel@cea.fr

CEA, DAM, DIF, LRC DIGIT

F-91297 Arpajon, France
Université Paris-Saclay, CEA,
Laboratoire en Informatique Haute
Performance pour le Calcul et la
simulation
Bruyeres le Chatel, France

Marc PERACHE
marc.perache@cea.fr

CEA, DAM, DIF, LRC DIGIT

F-91297 Arpajon, France
Université Paris-Saclay, CEA,
Laboratoire en Informatique Haute
Performance pour le Calcul et la
simulation
Bruyeéres le Chatel, France

Hugo TABOADA
hugo.taboada@cea.fr
CEA, DAM, DIF
F-91297 Arpajon, France
Université Paris-Saclay, CEA,
Laboratoire en Informatique Haute
Performance pour le Calcul et la
simulation
Bruyeéres le Chatel, France

Michael KRAJECKI
michael krajecki@univ-reims.fr
Université de Reims Champagne

Ardennes, LICIIS, LRC DIGIT
51097 Reims, France

ABSTRACT

Heterogeneous supercomputers are now considered the most valu-
able solution to reach the Exascale. Nowadays, we can frequently
observe that compute nodes are composed of more than one GPU
accelerator. Programming such architectures efficiently is challeng-
ing.

MPI is the defacto standard for distributed computing. CUDA-
aware libraries were introduced to ease GPU inter-nodes commu-
nications. However, they induce some overhead that can degrade
overall performances. MPI 4.0 Specification draft introduces the
MPI Sessions model which offers the ability to initialize specific
resources for a specific component of the application.

In this paper, we present a way to reduce the overhead induced
by CUDA-aware libraries with a solution inspired by MPI Sessions.
In this way, we minimize the overhead induced by GPUs in an MPI
context and allow to improve CPU + GPU programs efficiency. We
evaluate our approach on various micro-benchmarks and some
proxy applications like Lulesh, MiniFE, Quicksilver, and Cloverleaf.
We demonstrate how this approach can provide up to a 7x speedup
compared to the standard MPI model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroMPI 21, September 08—-10, 2021, Garching near Munich, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS

- Computer systems organization — Heterogeneous (hybrid)
systems; « Networks — Network performance analysis.

KEYWORDS

HPC, hybrid systems, multi-GPU computing, CUDA-Aware com-
munication libraries, MPI 4.0 Sessions

ACM Reference Format:

Maxim MORARU, Adrien ROUSSEL, Hugo TABOADA, Christophe JAILLET,
Marc PERACHE, and Michael KRAJECKI. 2021. Benefits of MPI Sessions
for GPU MPI applications. In EuroMPI °21: Proceedings of the 28th European
MPI Users’s Group Meeting, September 08—10, 2021, Garching near Munich,
Germany. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION

While the HPC community sets the objective to reach exascale com-
puting by 2020-2022, the performance rise of such systems is tightly
bound to their energy consumption. Furthermore, power require-
ments are very high, necessitating hundreds of megawatts [25].
Energy efficiency is one of the most challenging problems on the
road to exascale.

There were important efforts in optimizing energy efficiency by
using different leverages: optimize CPU energy by changing clock
frequency dynamically (Adagio [31], COUNTDOWN [5], Forest-
mn [13]); distribute job’s power budget across processors efficiently
(GEOPM [8], PShifter [12]); optimize other hardware components
(cooling system, hard drive, memory); etc.

The current solutions favor the usage of hybrid architectures
based on accelerators. Indeed, such architectures are not only able
to improve the computing power but also help to reduce the elec-
trical consumption of the nodes. Thus, a contemporary computing

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

system relies typically on a combination of accelerators and general-
purpose CPUs.

The interest in using hybrid architectures increased significantly
during the past years. This trend is readily apparent in the TOP500
history: the number of heterogeneous supercomputers in TOP500
passed from 19 in 2011 to 140 in 2019 [3]. One of the most popular
accelerators are NVidia GPUs, used in a broad range of industries:
computational finance, weather, data science, machine learning,
medical imaging life science, energy physics [34] etc. By analyzing
the November 2020 TOP500 list we can discover that three super-
computers from the TOP5 are based on NVidia GPUs (Summit,
Sierra, Selene). We can also notice that the most energy-efficient
system on the Green500 is the new NVidia DGX SuperPOD.

With the increasingly larger problem sizes to solve, there is
an obvious need for scalable GPU computing. Oliver Fuhrer et
al. [10] leveraged 4888 GPUs to run a climate model on the full Piz
Daint supercomputer. Another example of using large-scale GPU
computing is distributed deep learning domain [19, 32]. Hiroaki
Mikami et al. [26] used 3456 Tesla V100 GPUs in order to train a
ResNet-50 model on the ImageNet dataset.

Distributed GPU programming assumes the use of communica-
tion libraries, which handle data transfers between compute nodes.
GPU accelerators have their own memory and all data transfers
must be managed differently from the CPU ones. Hence, CUDA-
Aware libraries were introduced to ease GPUs inter-node commu-
nication. These libraries are able to handle CPU and GPU buffers
simultaneously and offer different optimization in both cases. The
drawback of using CUDA-Aware features is that we have to check
the buffer locality each time we perform a data movement. This
test adds an overhead on the application’s critical path and could
have an important impact on performances. Results presented in
this paper show that the overhead can even achieve up to 700% for
some proxy applications.

The main targets of our work are hybrid MPI applications which
have a part of their kernels running on the GPUs and the other part
on the CPUs. Thus, the communication library must handle CPU
to CPU, CPU to GPU, and GPU to GPU memory transfers in the
same program. This applies to kernels that are not yet ported to
GPUs or that perform badly on these architectures. LLNL Monte
Carlo Transport codes [24] is a representative example of such an
application. These applications could achieve better performances
with a good CPU/GPU load balancing and thus are optimized with
an hybrid applications programming model. Another good exam-
ple is the IO part of scientific computing codes. IO often relies on
dedicated libraries like HDF5 [9], netCDF [18]. These libraries are
optimized for CPU. The current MPI design does not allow to dis-
sociate CPU and GPU components. Consequently, the need to test
the buffer locality adds a significant slowdown on the MPI critical
path. Taking into consideration this context, there is an obvious
need of removing this unneeded overhead.

This paper aims to solve this problem by making the following
contributions:

o Study the overhead’s behavior on some MPI micro-benchmarks
and proxy applications.

e Provide a portable solution based on the new MPI 4.0 Ses-
sions.

M. Moraru et al.

e Propose a method to integrate this solution into the MPI
standard.

The rest of this paper is organized as follows. The next section
gives an overview about related work and background. Sections 3
and 4 describe our approach and its integration in the MPI standard.
In section 5, we present our experimental protocol, evaluate the
benefits of using MPI Sessions and discuss about results. The last
section presents our conclusions and future work.

2 BACKGROUND AND RELATED WORK

In this section we briefly outline the basic concepts of the MPI
CUDA-Aware libraries and the new features introduced in the MPI
4.0 Release Candidate. We also discuss about some previous ap-
proaches that aimed at optimizing GPU communications.

2.1 MPI CUDA-Aware libraries

CUDA-Aware MP] libraries are a set of MPI implementations which
can directly handle GPU buffers: MPC [28], MVAPICH2 [27], Open-
MPI [11], etc. The user does not need to explicitly stage GPU buffers
through host memory, allowing the library to optimize GPU mem-
ory transfers. Depending on the buffer size and the hardware topol-
ogy it is possible to pipeline messages or to use GPUDirect technol-
ogy. All these optimizations are transparent for the user and ease
the development of Hybrid Application. As a balance, CUDA-Aware
MPI libraries add an overhead on the critical path as they must
handle buffers differently depending on whether they reside in host
or device memory.

2.2 Unified Virtual Addressing (UVA)

Unified Virtual Addressing (UVA) is a memory address management
system, introduced in CUDA 4.0. Figure 1 shows the way UVA is
working on a system with multiple GPUs. At runtime initialization,
the virtual address range of the application is partitioned into two
areas: the CUDA-managed VA range and the OS-managed VA range.
All the CUDA pointers are within a certain range which always falls
within the first 40 bits of the process VA space. Hence, the location
of a buffer can be determined based on the Most Significant Bits
(MSBs) of its address. Technically, this operation can be performed
by calling the CUDA Driver API function "cuPointerGetAttribute()".
There is no runtime equivalent as this call sequence would introduce
unneeded overhead.

No UVA: Multiple Memory Spaces UVA: Single Address Space

System GPUO GPU1 System GPU0 GPU1
Memory Memory Memory Memory Memory Memory

0x0000 010000 0x0000. 0x0000
OXFFFF. OXFFFF. OxFFFF add

| | | l |
I PCl-e l PCle

Figure 1: Unified Virtual Addressing (figure taken from [17])

Benefits of MPI Sessions for GPU MPI applications

2.3 MPI4.0

Recently, the MPI Forum has published a draft version of the MPI
4.0 Standard. This draft is the release candidate for the MPI 4.0
Specification and will be considered for ratification during Decem-
ber 2020 [2]. Among the most significant additions of this new
specification, we can find the MPI Sessions, Persistent Collectives,
Partitioned Communication and Topology Solutions. All these new
concepts have a big potential in optimizing hybrid MPI+GPU appli-
cations. In this paper, we focus on the benefits of MPI Sessions.

The Release Candidate introduced MPI Sessions extensions to
the MPI standard. This new paradigm is aimed at solving MPI World
limitations. Currently, MPI cannot be initialized more than once
and cannot be initialized from different application components
without a priori knowledge or coordination. The Sessions Model
offers an isolated environment that can be initialized and freed
multiple times during the same run. Furthermore, it is also possible
to allocate and free MPI resources for a specific component of the
application. These new functionalities have even bigger advantages
for MPI CUDA-Aware libraries, as it is possible to initialize MPI
GPU features only for specific libraries or portions of code and
consequently avoid the overhead of unnecessary verifications.

The purpose of this article is to bring a solution based on MPI
Sessions. Our goal is to minimize the overhead induced by GPUs
in an MPI context, and in conclusion to obtain efficient CPU+GPU
programs.

2.4 MPI Attribute-based Approach

Since the introduction of GPUs as general-purpose accelerators,
many papers have studied the ways to optimize the inter-node
GPU communication [14, 29, 33]. However, there are only few
articles that evaluate the overhead associated with CUDA-Aware
communication libraries.

Aji et al. presented an extensible framework for data movement
in accelerator-based systems. In [4] they present the consequence of
testing buffer locality before each MPI transfer but their work is lim-
ited to point-to-point intra-node communications and does not pro-
vide an exhaustive analysis of this overhead. Instead, they bring a
solution to this problem. They use MPI communicator and datatype
attributes to indicate buffer locality to the MPI library. Technically,
this operation consists in setting a specific attribute to a datatype
or communicator via the MPI_type_set_attr()/MPL_Comm_set_attr()
function. This attribute indicates the communication pattern and
is checked by the MPI library at runtime. Thus, cuPointerGetAt-
tribute() can be replaced by a simple call to MPI_type_get_attr() or
MPI_Comm_get_attr(). While this approach allows to considerably
improve performance, there is still a small overhead on the MPI crit-
ical path. Furthermore, the user has to manually instrument each
MPI datatype tag, which can be tedious. Aji et al. also present a lim-
itation of using communicator attributes. This approach does not
allow to move data from the GPU on one process to host memory
of another process.

Best to our knowledge, there is no previous work on a solution
build around MPI Sessions.

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

3 CONTRIBUTION

In this section, we present our contributions. Firstly, we clarify the
importance of removing cuPointerGetAttribute() from the MPI criti-
cal path by evaluating its overhead on several micro-benchmarks
and HPC applications. Secondly, we bring a lightweight solution
based on the new MPI Sessions concept. Our goal is to highlight
the benefits of MPI sessions on CUDA-Aware libraries and GPU
hybrid applications.

3.1 cuPointerGetAttribute overhead analysis

Even if there was a significant effort to improve the performance
of cuPointerGetAttribute(), this operation adds an overhead on the
MPI critical path and can have a significant impact on the overall
application performance. In order to evaluate this overhead, we in-
strumented the well-known Intel MPI Benchmarks [6]: before each
MPI routine we test if the buffer resides in CPU or GPU memory.
All these tests are unneeded as we always transfer host memory.
The purpose of this experimental protocol is to evaluate the over-
head of transferring CPU memory with a CUDA-Aware MPI library,
depending on the MPI routine, buffer size, and process number. We
also consolidate these results on more representative HPC applica-
tions thanks to four proxy applications. Performance evaluations
will be discussed in section 5.

All these experiments are aimed at evaluating the potential per-
formance improvement of using MPI Sessions.

3.2 Sessions based approach

As we could see from the previous sections, the CUDA-Aware com-
munication libraries are able to automatically detect the buffer
locality. This operation is done before each memory transfer and
thus slowdown the application. To avoid this overhead, we need
to provide the required information to the communication library.
Hence, the test will no longer be necessary.

This operation can be performed by associating to each MPI Ses-
sion a specific communication pattern: CPU to CPU, GPU to GPU,
CPU to GPU, or GPU to CPU. Therefore, inside a specific Session
data would always move to/from GPUs and to/from CPUs. The
sessions number depends on the desired communication pattern.
For example, it is possible to have a session for CPU - CPU mem-
ory transfers and a second session for GPU - GPU communication.
Though, by creating four sessions we can cover all communication
patterns presented above. This approach eliminates the cuPointer-
GetAttribute() from the critical path.

Our solution is similar to the Communicator-based approach
presented in [4]. The difference is that we apply this concept to the
MPI Sessions Model, which has some important advantages:

o the overhead can be fully removed,

o there are no limitations for data movement,

e there is no need to introduce new programming habits, as
this approach fits perfectly in the new MPI Sessions Model.

4 INTEGRATION INTO THE MPI STANDARD
In the new MPI Sessions Model, the MPI_Init() function is replaced
by MPI_Session_init(). The last one takes in parameters a MPI_Info

object which allows the user to designate the MPI resources to
be allocated. The MPI 4.0 Release Candidate describes how this

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

static MPI_Session lib_shandle = MPI_SESSION_NULL;
const char comm_key[] = "mpi_communication_pattern";
const char comm_value[] = "MPI_CPU_TO_GPU";
MPI_Info sinfo = MPI_INFO_NULL;
MPI_Info_create(&sinfo);

MPI_Info_set(sinfo,comm_key,comm_value); /*setting the communication pattern*/

int rc = MPI_Session_init(sinfo,MPI_ERRORS_RETURN,&lib_shandle);

Figure 2: Example of CUDA-Aware MPI implementation ini-
tialization

model can be used to change the application’s thread support level.
Creating different MPI Session handles allows using different thread
support levels for different components of an application.

The MPI 4.0 standard mentioned that MPI Info object can be
used as well to specify the MPI implementation-specific resources.
Therefore, it is possible to use MPI_Info to indicate the communica-
tion pattern for a specific Session. Technically, this operation can be
performed by adding a new (key, value) pair to the info object. Our
approach can be integrated into the new MPI standard by simply
adding a new key called mpi_communication_pattern allowing us
to specify the communication pattern.

Figure 2 presents a simple example inspired from the MPI 4.0
Draft Specification [2], which shows how to use MPI Sessions to
optimize GPU communications. In this example, we initialize an
MPI Session and associate it to a specific communication pattern.
All the communicators derived from this session will perform only
CPU to GPU transfers. Thus, all send buffers will reside in host
memory and all receive buffers in device memory. Having this
information, cuPointerGetAttribute() can be completely removed
from the critical path.

5 APPLICATIONS/BENCHMARKS

In this section, we describe our experimental setup and discuss the
obtained results. We split our experimental protocol into two phases:
analyze the overhead on some micro-benchmarks and confirm the
observed tendency on real HPC applications.

5.1 Experimental setup

First of all, we chose to analyze the cuPointerGetAttribute() overhead
on some MPI micro-benchmarks. One of the most popular candi-
date for this purpose is the Intel MPI benchmarks suite (IMB) [6]
which provides an efficient way to measure the performance of
MPI routines. We decided to study some MPI1 functions from the
IMB-MPI1 component, as these routines are the most encountered
ones in real HPC applications. The main goal of these experiments
is to evaluate the impact of cuPointerGetAttribute() on the MPI1
routines, according to some important criteria: MPI function type,
process number and buffer size.

Secondly, we validate the obtained micro-benchmarking results
on representative HPC applications. Our goal is to highlight the
impact of using MPI Sessions in a real HPC context.

M. Moraru et al.

5.2 Experimental context

All the experiments were carried out on the ROMEO petaflop sys-
tem hosted at Université de Reims Champagne Ardennes, France.
ROMEO is a Sequana X1000 cluster with 115 nodes, all equipped
with Intel Skylake 6132 processors. Each node has two sockets, each
equipped with one processor having 14 cores. A part of the nodes
are also equipped with four NVidia P100 GPUs, interconnected via
NVlink.

The main characteristic of our cluster is the use of the Bull eX-
ascale Interconnect (BXI) developed by Atos, which is a 100Gb/s
proprietary interconnec systemt. The BXI network scales up to 64k
nodes and is composed of two separate ASIC components, a Net-
work Interface Controller (NIC) and a switch. The NIC implements
in hardware the Portals 4 communication primitives, and thus com-
pletely offload the communication from the host processor. [7]. The
BXI switch has 48 ports which allows building larger systems with
fewer elements. Additionally, fewer hops in the data path reduce
the communication latency and limit congestion points.

The versions of the libraries we used for our tests are as followed:
CUDA 11.2, OpenMPI 4.0, and BXI 1.7 with a BXI Host Channel
Adapter v1.2. As we have a proprietary interconnect, we also have a
specialized OpenMPI library that use the native Portals 4 interface.

5.3 Micro-Benchmarking Evaluation

We executed the Intel MPI micro-benchmarks with 2, 28, and 56
processes, and with buffer sizes going from 0 bytes to 4 megabytes.
Our study is limited to the most common MPI-1 Benchmarks (All-
toall, Allreduce, Allgather, Bcast, Gather, Reduce, Scatter, PingPing,
PingPong), which includes the most encountered MPI functions in
realistic HPC applications. We also take care to disable turbo boost
and bind MPI ranks to cores. In the following sections, we discuss
separately collective and peer-to-peer benchmarks results.

5.3.1 Micro-benchmarks variability. As described in [15] the MPI
micro-benchmarks have a big variability. Indeed, some run-times
have an error of approximately 10% and even bigger.

We are aware of this behavior, and we took care to specify the
min and the max for all our results. As well, we took it in account
while analyzing the obtained graphs.

5.3.2 MPI collectives. Figures 3,4 shows our results concerning the
MPI collectives. It presents the overhead and the mean logarith-
mic execution time with the associated bar error. The overhead
is described as the ratio between a CUDA-Aware execution and a
basic one. A ratio closed to 1 means that the cuPointerGetAttribute()
overhead is negligible. This appears when the execution time of a
benchmark is much more important than the time needed for a data
locality test. The time of an MPI function increases with the buffer
and world size, while the time of calling cuPointerGetAttribute()
is constant and does not depend on the transferred buffer size.
Therefore, the impact became insignificant from a certain point.
By analyzing Figures 3,4 we can notice that the overhead can be
observed only for two MPI ranks executions with relatively small
buffers. Moreover, it becomes insignificant for the MPI collectives
with 28 and 56 ranks. The big overhead at the beginning of each

sn (awiy daxa ueaw)bo| sn (awy Jaxa ueaw)bo| sn (dwy d2axa ueaw)bo| sn (awiy daxa ueaw)bo|
—w =4 ®© ©v &+ «~N o ! © © < o~ =) | ~ = n o n o ~ - © © < ~ o |
— — ~ n o~ o |

Cuda Aware MPI overhead - Bcast - 56 ranks

Cuda Aware MPI overhead - Alltoall - 56 ranks

Cuda Aware MPI overhead - Allgather - 56 ranks

Cuda Aware MPI overhead - Allreduce - 56 ranks

T @) Py

£ £ £ o
= = = £

8 8 8 o

x x x ww.

¢ %e ¢ 9 3

o o o | v

g5 g5 s e

o ¢ o0 o O & S

Es Es Es £ -
= < = .

> 2 > 2 % £ =
25 85 g5 5 £
k=)

| PowsL i |

o © ©o < o~ o o © ©o < o~ o m © © < o~ o © T o P >
= — ~ —

onjel peaylano onels peaylano oljel peaylano oljel peaylano
sn (awy daxa ueaw)bo| sn (dwy Jaxa ueaw)bo| sn (dwy Jaxa ueaw)bo| sn (awy daxa ueaw)bo|

o ~ ~ o ~ ~
— © © < o~ = | 0 © < o~ = | — © © < o~ o | 0 © < o~ o |

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

Cuda Aware MPI overhead - Allgather - 28 ranks

Cuda Aware MPI overhead - Bcast - 28 ranks

Cuda Aware MPI overhead - Alltoall - 28 ranks

Cuda Aware MPI overhead - Allreduce - 28 ranks

Cuda Aware MPI overhead - Allgather - 2 ranks

Benefits of MPI Sessions for GPU MPI applications

. - . 0
[[) E
£ £ £ =
) el bt 9
o e o g
7] Q Q >
x x x i o
e 9 9 S 2
c 2 s 2 c 2 3 e
o £ o g o0 E x
€ o £« £ v = 2
o 2 o 2 o 2 K=}
29 L0 L0)
| . i . i . i 00'€
i 8T'S | 8T'S i LY
S . & m o nm S 1 9
~ © ! < ®m ~ o o ~ © 1nm <« ®m «~ o o © n § m o & & &4 &4 o o
oljel peaylano onels peaylano oljel peaylano oljel peaylano
sn (awy daxa ueaw)bo| sn (dwy Jaxa ueaw)bo| sn (dwy Jaxa ueaw)bo| sn (sawy daxa ueaw)bo|
o~ < o~ < o~ < o~
© < o~ =] | | © < ~ o | |] < N =] ! | © < o~ =] |
101 2 L
. w .
. © [= x|
10T = I [h
20’1 ~ = e
SO0'T ' N ~
90T e - .
. 1% =
Tt =3 © k]
- w
€T ° S ©
€T'T = E S
€T'T = <
vIT < . :
N ! kel o
SI'T o © ©
— 7t © ~ U ~ Q
) B ol U E={l) £ ~
2 vZ'1 e =] S
= 87’1 g Yll= ¢ E
=, g o 5 > 5 > £
g \ NQ..H > 9 o 9 o =
x . EST ol % ol x T &
%y LSt z| %g s %y = 3.
S < i 09'T = 5 ¢ ol § € ol o
© H . © © c
o C | 6S'T ol @ & Sl o0 e S
Es osT 5 € 5 S| E . c ¢
= o ! 3 o =5 2 =0 3| E o
o= 1 6S'1T 2 9t I 2 E I 5 o
o5 DG S5 S5 o £
- P 9S'T < = o ~ © g
” --851 8 3| E
[oss 3 Le8 o| | Es O | el
o~ o <] ©o < o~ o o~ o © ©o < o~ o o © ©o < o~ o
— = - = - X~ © 1 o« ™ 9~ oA =)
oljel peayIano onels peaylano oljel peaylano oljel peaylano

, where
ic is the

t_basi

t_basic
terGetAttribute) and

t_cuPointerGetAttribute

1n

head_ratio

1me. over

ith runtime checks (cuPo

Overhead induced by the data locality test before each MPI rout

t_cuPointerGetAttribute is the mean time of one execution w

ime of a basic run (Allgather, Allreduce, Alltoall, Bcast)

mean t

Figure 3

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

Cuda Aware MPI overhead - Gather - 2 ranks

Cuda Aware MPI overhead - Gather - 28 ranks

M. Moraru et al.

Cuda Aware MPI overhead - Gather - 56 ranks

log(mean_exec_time) 2 N R
error range

(mean_exec_time) us

overhead ratio
overhead ratio

log

oooOOOOO0N00000
OHNTDONTDONY XX
AMONN NS

D

8 KB
16 KB
32 KB
64 KB

Cuda Aware MPI overhead - Reduce - 2 ranks

log(mean_exec_time)
error range

DOOONOOONOONODDQ
MM

OHNTOONTOON
HMONN AN
— N0

Cuda Aware MPI overhead - Reduce - 28 ranks

8 KB
16 KB
32 KB
64 KB

fffff log(mean_exec_time) p
8 10 error range 8
<
El S E}
= © 6 =
[8 ()
E 2 £
=R =
o= 4 o
[o 6 [
X © 4
(vl .QCJ (vl
§ g 2 g
V2 4| W e o
g © 4 i £
=3 / 0 o
S H S
2 INANANNAA—ANNOOOINS LTS —AAMANO O
-2

DOOOOOOOONO00 0D
MM

ooom

OHNT®PONT®OON MMM NN
AMONINH NS DONT

& Mo

Cuda Aware MPI overhead - Reduce - 56 ranks

7
»»»»» log(mean_exec_time) ----- log(mean_exec_time) 8 ----- log(mean_exec_time) 8
10 error range 6 6 error range 10 error range
4 4 3 68
- - 8] = -
o 2 o 2 o 2
2 E g E g -
e (I (I |
k-] 9 © $ o 6 3
® % B % B %
3 3 9 3 0 b
£ £ £ 2 9
5 5 © 5 © 5
3 g 3 g 34 g
5 5 05
S S S
2
-2
Cuda Aware MPI overhead - Scatter - 2 ranks 5 Cuda Aware MPI overhead - Scatter - 28 ranks 10 Cuda Aware MPI overhead - Scatter - 56 ranks
fffff log(mean_exec_time) 6 ----- log(mean_exec_time) g ----- log(mean_exec_time) 10
error range 6 error range 8 10 error range
10 / 8
5 4 3 4 3 g
o 4 = 51 < 6 = gl = =
o8 £ o g 3 g 6 g
2 = %4 5 B =,
° 2 § © - 4 9 v 6 4 3
3 5 % & B % & L 2
(7 Q 3 a8 Q o [
£ < £3 < £ c!
s - 0§ 3 - 25 £, = 2§
4 E N £ { £
= H = i =
2 58885555588888588288588 [0 © b o000 oo =
5 -2 2 Ar5555850883583383858833
e o o oo o o i i i S B
0 -4 0
. t_cuPointerGetAttribute
Figure 4: Overhead induced by the data locality test before each MPI routine. overhead_ratio = = T Dasic , where

t_cuPointerGetAttribute is the mean time of one execution with runtime checks (cuPointerGetAttribute) and t_basic is the

mean time of a basic run (Gather, Reduce, Scatter)

collective is due to the specific MPI behavior: a collective return
immediately if the count parameter is equal to zero.

The collectives with 2 processes were instrumented to better
understand the behavior of cuPointerGetAttribute(). We consider
these results non-relevant for a real HPC context as we target large-
scale applications. We can notice an important overhead for Scatter,
Gather, Bcast, Reduce even with 28 and 56 ranks. However, we
can not consider these results because of their important standard
deviation. Thus, we can conclude that in most of the cases cuPoint-
erGetAttribute() will not have a significant impact on the collective
performance.

5.3.3 MPI P2P. Figure 5 shows our point-to-point results. We can
notice that the overhead is more important for this communication
pattern. However, it becomes negligible for larger buffers, which is
the same behavior we observed for collective communications.

Since point-to-point communications are largely used in many
HPC applications, this overhead can lead to significant performance
degradation.

5.4 Applications

The obtained results with MPI micro benchmarks are not sufficient
to conclude on the MPI Session Model benefits. In order to verify
these performance improvements, we need to study its behavior

Benefits of MPI Sessions for GPU MPI applications

Cuda Aware MPI overhead - PingPong

————— log(mean_exec_time) / 6
1.75 error range /

(mean_exec_time) us

overhead ratio

log

OrNTOONTOON
HMON A AN
AN

Figure 5: Overhead induced by the data locality test for P2P MPI routines. overhead_ratio =

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

Cuda Aware MPI overhead - PingPing

————— log(mean_exec_time) / 6
error range /
2.0
0
=3
o g
215 =1
= g
3 %
‘J) GJ
§10 g
g 5
£
©
2
0.5
0.0

OHNSOONTOON
HMNONLW AN
N0

t_cuPointerGetAttribute
t_basic

, where

t_cuPointerGetAttribute is the mean time of one execution with runtime checks (cuPointerGetAttribute) and ¢_basic is the

mean time of a basic run

into real MPI applications. We chose four mini-applications for
this purpose: LULESH [1], MiniFE [23], Quicksilver [30], Clover-
Leaf [21]. Mini-apps provide a smaller full featured program which
allows to explore performance tuning techniques in less time. There-
fore, all the observations are also applicable on full applications.
We consider these applications to be the best candidates to high-
light the importance of CUDA-Aware overhead. In the previous
sections, we saw that the Session advantages are more accentuated
for peer-to-peer communications, and the four applications rely on
a such communications pattern.

Table 1 presents a brief description of the four applications. We
list in this table all the MPI routines used in each application, in
order to better understand their communications pattern.

In order to evaluate the Sessions’s benefits we developed a
LD_PRELOAD MPI library which performs a cuPointerGetAttribute()
test before each MPI routine and for each buffer. We also took care
to initialize the CUDA context with MPI_init(). We then executed
several times each application with and without this library. Thus,
it was possible to evaluate the overhead associated exclusively to
buffer checks. In fact, MPI CUDA-Aware libraries can also present
an overhead associated to the registry cache and other implementa-
tion specific resources. At the end we compare the total execution
time of the two runs, which we present as the ratio between a run
with LD_PELOAD and a basic one: ratio = tfcupomtte;g:itf”ribute,
All tests was done on CPU versions of these applications.

As for the micro-benchmarks we disabled the turbo boost and
bound MPI ranks to cores. The standard deviation for all applica-
tions is between 1% and 2%, meaning that our results are fairly
reliable.

5.4.1 LULESH. LULESH was initially designed as one of five chal-
lenge problems for the DARPA UHPC program. It has since evolved
and become a representative mini-app of a simplified 3D Lagrangian
hydrodynamics on a unstructured mesh.

Our evaluation was performed on the version 2 of LULESH [16]
which adds multiple regions and variable cost functions. We decided
to test our approach with 27 ranks, with no load balancing and for
the flowing problem size: 10, 20, 30, 40, 50.

Figure 6 presents our results. The number above each pair of
bars represent the overhead ratio. We can observe an important
overhead for the two smallest problem sizes, 10 and 20. This is due
to a short execution time compared to the number of MPI routine
calls. For the larger problem sizes the overhead is totally hidden.

In order to understand this behavior we profiled LULESH. We
computed the number of times an MPI routine is called in a period
of time. Thus we can compute the number of buffer checks (calls to
cuPointerGetAttribute). We consider this metric more relevant than
the total number of MPI calls as it can be applied on both proxy and
real HPC applications. In fact, the overhead can be insignificant for
applications with a big number of MPI calls but longer execution
time.

Figure 7 describes the LULESH MPI call intensity, which corre-
sponds to the checks number per second. We can notify a correla-
tion between the MPI call intensity and the associated slowdown.
Therefore, the overhead is weakly observable when the intensity
decrease.

The MPI calls intensity must be taken as a rough metric. We saw
in the previous sections that the CUDA-Aware overhead depends on
several factors: process number, buffer size, communication pattern.
Thus, we can consider this metric only in a particular context: same
communications pattern, buffer and process number.

5.4.2 MiniFE. MiniFE is a proxy applications for unstructured im-
plicit finite element codes, which comes from the Mantevo project
of Sandia National Laboratories. MiniFE executes the whole finite
elements phases: generation, assembly and analysis. The physi-
cal domain is a 3-D box and it is possible to define each (x,,z)
dimension size.

We decided to fix the z dimension to 10 for all the runs. We also
set the x dimension equals to the y one, which took the following
values: 1000, 2000, 3000, 4000, 5000. This pattern was inspired from
the MniFE github [23].

Figure 8 shows MiniFE results. We can notice a significant over-
head even for longer runs. By analyzing Figure 9 it is possible to
discover the same correlation with MPI calls intensity, as in the case

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

M. Moraru et al.

” Proxy Application Description Collectives P2P ”
LULESH2.0 hydrodynamics on an unstructured mesh Allreduce, Reduce Isend, Irecv
MiniFE unstructured implicit finite element Allreduce, Allgather, Bcast, Reduce | Send, Irecv
Quicksilver simplified dynamic monte carlo particle transport problem | Allreduce, Bcast, Gather, Reduce | Isend, Irecv
CloverLeaf cartesian grid method for the compressible euler equations Allreduce, Reduce Isend, Irecv

Table 1: Brief characterization of proxy applications

Lulesh - Cuda aware overhead - 27 ranks

700 { B No Cuda
B Cuda Aware

600

400 1

sec

300

200

100 1

s_40
s_50

Figure 6: Lulesh overhead analysis

MiniFE - Cuda aware overhead - 56 ranks

B No Cuda

200 B Cuda Aware

o o o o o
o o o o o
o o o o o
— o~ mMm < n

Figure 8: MiniFE overhead analysis

of LULESH. However, comparing to MiniFE the LULESH’s MPI in-
tensity is much more important for less overhead. This is because of
a different communication pattern, as we mentioned in section 5.4.1.
Estimated the overhead based on the MPI communications is quite
tedious and can be subject of an entire article.

Lulesh - MPI Call Intensity

=N ALLREDUCE
300000 == REDUCE
m RECV
250000 A B ISEND
» 200000 1
[
2
w
= 150000 1
O
100000 A
50000 l
0- - — —
o o o o o
— o~ m < n
ml ml lhl V\I m'

Figure 7: LULESH - the number of times an MPI Routine is

called during a period of time

MiniFE - MPI Call Intensity

25000 A

B ALLREDUCE
mm ALLGATHER
= SEND
20000 1 = REDUCE
I I == BCAST
= RECV
$ 15000
wn
©
© 10000 1 I I
5000 A i1
ol = I.,_I | I | nm |

Figure 9: MiniFE - the number of times an MPI Routine is
called during a period of time

5.4.3 Quicksilver. Quicksilver is a proxy application that solves
a simplified dynamic Monte Carlo particle transport problem. It
is used as a prototype to test potential programming models and
design options for Mercury [20].

Quicksilver can be instrumented by command line options and
an input file. The Quicksilver git [23] provides several examples

Benefits of MPI Sessions for GPU MPI applications

Quicksilver - Cuda aware overhead - 56 ranks

1.17 B No Cuda
60 1 B Cuda Aware
50 1
o 407 1.29
) [|

301

1.681.73

-
~
w
=
~
N

201

o
o
|| |

_l8.48s. 5.‘ ‘ 1 6.565.935.945.905.87 5.

| 7
|
>

5

104

I ANl I AEREER]

N —

o
hP 7L----I H
o
o

hP_v3
01 0

q

hP_v7_ts

hP_v3_w
hP_v4_tm
hP_v4_ts
hP_v5_ts
nocollisions
trinity_01
trinity_0
trinity_0O
rzalast_0
rzgenie
scatteringOnly

Figure 10: Quicksilver overhead analysis

of input files. Thus, we choose to evaluate our approach on these
input files. The full list used for our experimental protocol is the
following:

e homogeneousProblem.inp (hP)

e homogeneousProblem_v3.inp (hP_v3)

e homogeneousProblem_v3_wq.inp (hP_v3_wq)
e homogeneousProblem_v4_tm.inp (hP_v4_tm)
e homogeneousProblem_v4_ts.inp (hP_v4_ts)
e homogeneousProblem_v5_ts.inp (hP_v5_ts)
o no.collisions.inp (nocollisons)

e quicksilver_aprun_trinity_01.sh (trinity_01)
e quicksilver_aprun_trinity_02.sh (trinity_02)
e quicksilver_aprun_trinity_04.sh (trinity_04)
e quicksilver_slurm_rzalast_01.sh (rzalast_01)
e quicksilver_slurm_rzgenie_01.sh (rzgenie_01)
o scatteringOnly.inp (scatteringOnly)

Figure 10 shows Quicksilver results. There is a significant over-
head for all test cases that we instrumented. These results demon-
strate the real need of using MPI Sessions.

Figure 11 shows the MPI calls intensity depending on different
routines. We can highlight the same trend as in previous cases.
However, the Quicksilver’s communications pattern is strongly
dependent on the input file. Therefore this metric can not be appro-
priate for these test cases (see "nocollisons" for a counter example).

5.4.4 CloverLeaf. CloverLeaf is a mini-application that solves the
compressible Euler equations of compressible fluid dynamics in two
spatial dimension. As the previous proxy applications, CloverLeaf
is often used as a representative benchmark for a real HPC context.

This application can be instrumented via an input file. We evalu-
ate the CUDA-Aware overhead on four input files which are rec-
ommended on the CloverLeaf’s github [22].

Figure 12 depict CloverLeaf results. As for LULESH we have a
pronounced overhead for smaller runs.

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

Quicksilver - MPI Call Intensity

mm ALLREDUCE
60000 mmm GATHER
B REDUCE
50000 wmm BCAST
Y == RECV R T N
9 40000 1
2 = ISEND I I I I I
2 |
= 30000
° | HERR
| HEER
10000 l
SRR ANnnnne
a m o 1] w wn w — o~ < - - >
< 23 §| :' ;' :' § © © < 9 ° ¢
T oy 5% 522228 ¢ %
S a2 3 EE E 2 G E
g << <8555 ¢8 ¢35
< ©
19
%]

Figure 11: Quicksilver - the number of times an MPI Routine

is called during a period of time

By analyzing Figure 13 we observe an incompatibility between
the MPI intensity and the associated overhead. This is can be ob-
served by comparing bm with bm_short In this particular case,
this disproportion is because of the buffer sizes. Indeed, bm_short
performs memory transfers with smaller buffers.

6 CONCLUSIONS AND FUTURE WORK

In this paper we addressed performance issues in hybrid CPU/GPU
applications in the MPI context. We diagnose that the detection of
buffer locality can induce a large overhead in the MPI critical path.
This overhead (up to 700%) is visible on micro-benchmarks and
representative HPC applications. In order to remove this overhead,
we introduce a new methodology based on the upcoming MPI
4.0 Sessions to distinguish the part of code or the libraries that
require CUDA-aware MPI from the part of code or the libraries that
are using CPU-only buffers. This method also allows dealing with
hybrid messages (CPU to GPU or GPU to CPU).

We have implemented a library prototype to evaluate the gain
we can expect on micro-benchmarks and representative applica-
tions thanks to our methodology. It allows to gain up to 88% on
representative applications and on micro-benchmarks. Thanks to
our evaluations on micro-benchmarks we were able to characterize
the configuration of MPI function (type of communication, com-
municator size and buffer size) that are the most impacted by the
CUDA-aware support and thus require to be optimized. We extend
our evaluation with representative application thanks to proto-
applications. We analyzed four types of applications and illustrate
the benefit of our methodology on each of them.

Our approach is fully portable and does not depend on the net-
work technology. In fact, it allows transferring useful information to
the communication library, which can be used to improve hardware
specific MPI libraries. As long as the NIC and the GPU are connected
through a PCI Express, the communication library need to ensure
that the GPU’s memory is visible on the PCIe BARs before each GPU

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

Cloverleaf - Cuda aware overhead - 56 ranks

1.01 B No Cuda
500 B Cuda Aware
400 1
3 300 1
w
200 1
100 1
1.25 1.59 6.78
0 — ;
© £ £
5 7 2 s
=) 2
© €
- o
g

Figure 12: CloverLeaf overhead analysis

transfer. Our model showed an important performance improve-
ments for NVidia GPUs, but it can be also used for optimizing AMD
and the new Intel GPUs. Indeed, AMD’s Heterogeneous-compute
Interface for Portability (HIP) has the same Unified Virtual Address-
ing environment as CUDA. Furthermore, the new Intel GPUs are
also based on the PCle technology, meaning that the communica-
tion library has to differentiate CPU from GPU buffers.

Even if we did not implement the methodology presented in
real MPI implementations, it can be easily done as it is similar to
the support of thread-multiple in MPI implementation thanks to
Sessions.

In order to improve the performances of hybrid applications, this
work should be extended to analyze other MPI 4.0 new functionali-
ties such as persistent collectives or partitioned communications. In
the context of persistent collectives, as the communication buffers
are kept between MPI calls, we can optimize the MPI implementa-
tion to avoid useless cuPointerGetAttribute function calls. Regarding
partitioned communications, we expect to have similar behavior
to regular MPI function calls. Eventually, an extensive analysis of
data locality of MPI_GUIDED features has to be done to use this new
feature to add GPU support in the communicator decomposition
and consider GPU as a real independent compute resource; just like
a CPU is.

ACKNOWLEDGMENTS

Present results have been obtained within the frame of DIGIT,
Contractual Research Laboratory between CEA, CEA/DAM-Ile de
France center and the URCA.

We would like to thank Romeo HPC Center for supplying all
necessary hardware and software resources for our experiments.
We must also thank Julien JAEGER for helping us to identify the
most important MPI 4.0 features for optimizing GPU applications.
We would also like to extend our gratitude to the ATOS BXI team
who provided us with important support in developing a CUDA-
MPI library on BXI interconnect.

M. Moraru et al.

Cloverleaf - MPI Call Intensity

100000 A p— B ALLREDUCE
s REDUCE
= RECV

800001 I = SEND

o
@ 60000 .
u
=
© 40000 I I
20000 A
O_JJ u | Il
£ =
£
Qo

bm_short

bm16_short

Figure 13: Cloverleaf - the number of times an MPI Routine is
called during a period o time

REFERENCES

[1] [n.d.]. Hydrodynamics Challenge Problem, Lawrence Livermore National Labora-
tory. Technical Report LLNL-TR-490254. 1-17 pages.

[2] [n.d.]. mpiForumSite. https://www.mpi-forum.org/. Accessed: 2021.

[3] 2020. An Analysis of System Balance and Architectural Trends Based on Top500
Supercomputers. (8 2020). https://doi.org/10.2172/1649132

[4] Ashwin M. Aji, Pavan Balaji, James Dinan, Wu-chun Feng, and Rajeev Thakur.
2013. Synchronization and Ordering Semantics in Hybrid MPI+GPU Program-
ming. In 2013 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum. 1020-1029. https://doi.org/10.1109/IPDPSW.2013.256

[5] Daniele Cesarini, Andrea Bartolini, Piero Bonfa, Carlo Cavazzoni, and Luca
Benini. 2018. COUNTDOWN: A Run-Time Library for Application-Agnostic
Energy Saving in MPI Communication Primitives (ANDARE °18). Association for
Computing Machinery, New York, NY, USA, Article 2, 6 pages. https://doi.org/
10.1145/3295816.3295818

[6] Intel Corporation. [n.d.]. Intel MPI Benchmarks. https://software.intel.com/
content/www/us/en/develop/documentation/imb-user-guide/top.html. ~ Ac-
cessed: 2021.

[7] S. Derradji, T. Palfer-Sollier, J. Panziera, A. Poudes, and F. W. Atos. 2015. The
BXI Interconnect Architecture. In 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects. 18-25. https://doi.org/10.1109/HOTI.2015.15

[8] Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Brad Geltz, Federico

Ardanaz, Asma Al-Rawi, Kelly Livingston, Fuat Keceli, Matthias Maiterth, and

Siddhartha Jana. 2017. Global Extensible Open Power Manager: A Vehicle for

HPC Community Collaboration on Co-Designed Energy Management Solutions.

In High Performance Computing, Julian M. Kunkel, Rio Yokota, Pavan Balaji, and

David Keyes (Eds.). Springer International Publishing, Cham, 394-412.

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.

An Overview of the HDF5 Technology Suite and Its Applications. In Proceedings

of the EDBT/ICDT 2011 Workshop on Array Databases (Uppsala, Sweden) (AD

’11). Association for Computing Machinery, New York, NY, USA, 36-47. https:

//doi.org/10.1145/1966895.1966900

[10] O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X. Lapillonne, D. Leutwyler,

D. Liithi, C. Osuna, C. Schir, T. C. Schulthess, and H. Vogt. 2018. Near-global

climate simulation at 1km resolution: establishing a performance baseline on

4888 GPUs with COSMO 5.0. Geoscientific Model Development 11, 4 (2018), 1665

1681. https://doi.org/10.5194/gmd-11-1665-2018

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,

Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.

Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting.

Budapest, Hungary, 97-104.

Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe. 2018.

PShifter: Feedback-Based Dynamic Power Shifting within HPC Jobs for Perfor-

mance. In Proceedings of the 27th International Symposium on High-Performance

Parallel and Distributed Computing (Tempe, Arizona) (HPDC ’18). Association for

Computing Machinery, New York, NY, USA, 106-117. https://doi.org/10.1145/

=

(11

[12

https://www.mpi-forum.org/
https://doi.org/10.2172/1649132
https://doi.org/10.1109/IPDPSW.2013.256
https://doi.org/10.1145/3295816.3295818
https://doi.org/10.1145/3295816.3295818
https://software.intel.com/content/www/us/en/develop/documentation/imb-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/imb-user-guide/top.html
https://doi.org/10.1109/HOTI.2015.15
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.5194/gmd-11-1665-2018
https://doi.org/10.1145/3208040.3208047
https://doi.org/10.1145/3208040.3208047

Benefits of MPI Sessions for GPU MPI applications

[13]

[14]

[15]

[16]

[17

[18]

[19

[20]

[21

[22]

[23

[24]

[25]

3208040.3208047

J. Halimi, B. Pradelle, A. Guermouche, and W. Jalby. 2014. FOREST-mn: Runtime
DVEFS beyond communication slack. In International Green Computing Conference.
1-6. https://doi.org/10.1109/IGCC.2014.7039158

K. Hamidouche, A. Venkatesh, A. A. Awan, H. Subramoni, C. Chu, and D. K.
Panda. 2015. Exploiting GPUDirect RDMA in Designing High Performance
OpenSHMEM for NVIDIA GPU Clusters. In 2015 IEEE International Conference
on Cluster Computing. 78-87. https://doi.org/10.1109/CLUSTER.2015.21

Sascha Hunold and Alexandra Carpen-Amarie. 2015. MPI Benchmarking Re-
visited: Experimental Design and Reproducibility. CoRR abs/1505.07734 (2015).
arXiv:1505.07734 http://arxiv.org/abs/1505.07734

ITan Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. 1-9 pages.

Jiri Kraus. [n.d.]. Nvidia Developer Blog. https://developer.nvidia.com/blog/
introduction-cuda-aware-mpi. Accessed: 2021.

Jianwei Li, Wei keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R.
Latham, A. Siegel, B. Gallagher, and M. Zingale. 2003. Parallel netCDF: A High-
Performance Scientific I/O Interface. In SC "03: Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing. 39-39. https://doi.org/10.1109/SC.2003.10053
Shijian Li, Robert J. Walls, and Tian Guo. 2020. Characterizing and Modeling Dis-
tributed Training with Transient Cloud GPU Servers. arXiv:2004.03072 [cs.DC]
LLNL. [n.d.]. Mercury web site. https://wci.llnl.gov/simulation/computer-codes/
mercury. Accessed: 2021.

Andy Mallinson, David Beckingsale, Wayne Gaudin, Andy Herdman, John
Levesque, and Stephen Jarvis. 2013. CloverLeaf: Preparing Hydrodynamics
Codes for Exascale.

Mantevo. [n.d.]. CloverLeaf github. https://github.com/UK-MAC/CloverLeaf.
Accessed: 2021.

Mantevo. [n.d.]. miniFE Finite Element Mini-Application. https://github.com/
Mantevo/miniFE. Accessed: 2021.

M S McKinley, R Bliele, P S Brantley, S Dawson, M O’Brien, M Pozulp, and D
Richards. 2019. Status of LLNL Monte Carlo Transport Codes on Sierra GPUs. (4
2019). https://www.osti.gov/biblio/1559415

P. Messina. 2017. The Exascale Computing Project. Computing in Science Engi-
neering 19, 3 (2017), 63-67. https://doi.org/10.1109/MCSE.2017.57

[26

[27]

[28

[30

(31]

[32

[33

(34]

EuroMPI °21, September 08-10, 2021, Garching near Munich, Germany

Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U.-Chupala, Yoshiki Tanaka,
and Yuichi Kageyama. 2018. ImageNet/ResNet-50 Training in 224 Seconds. CoRR
abs/1811.05233 (2018). arXiv:1811.05233 http://arxiv.org/abs/1811.05233

D. Panda, K. Tomko, K. Schulz, and A. Majumdar. 2013. The MVAPICH Project:
Evolution and Sustainability of an Open Source Production Quality MPI Library
for HPC.

Marc Pérache, Hervé Jourdren, and Raymond Namyst. 2008. MPC: A Unified
Parallel Runtime for Clusters of NUMA Machines. In the 14th International Euro-
Par Conference (LNCS, Vol. 5168), Springer (Ed.). Las Palmas de Gran Canaria,
Spain, 78-88. https://doi.org/10.1007/978-3-540-85451-7_9

S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda. 2013.
Efficient Inter-node MPI Communication Using GPUDirect RDMA for InfiniBand
Clusters with NVIDIA GPUs. In 2013 42nd International Conference on Parallel
Processing. 80-89. https://doi.org/10.1109/ICPP.2013.17

D. F. Richards, R. C. Bleile, P. S. Brantley, S. A. Dawson, M. S. McKinley, and M. J.
O’Brien. 2017. Quicksilver: A Proxy App for the Monte Carlo Transport Code
Mercury. In 2017 IEEE International Conference on Cluster Computing (CLUSTER).
866-873. https://doi.org/10.1109/CLUSTER.2017.121

Barry Rountree, David K. Lowenthal, Bronis R. de Supinski, Martin Schulz, Vin-
cent W. Freeh, and Tyler Bletsch. 2009. Adagio: Making DVS Practical for Complex
HPC Applications (ICS ’09). Association for Computing Machinery, New York,
NY, USA, 460-469. https://doi.org/10.1145/1542275.1542340

Siddharth Samsi, Andrew Prout, Michael Jones, Andrew Kirby, Bill Arcand, Bill
Bergeron, David Bestor, Chansup Byun, Vijay Gadepally, Michael Houle, Matthew
Hubbell, Anna Klein, Peter Michaleas, Lauren Milechin, Julie Mullen, Antonio
Rosa, Charles Yee, Albert Reuther, and Jeremy Kepner. 2020. Benchmarking
network fabrics for data distributed training of deep neural networks. (08 2020).
Rong Shi, Xiaoyi Lu, Sreeram Potluri, Khaled Hamidouche, Jie Zhang, and
Dhabaleswar K. Panda. 2014. HAND: A Hybrid Approach to Accelerate Non-
contiguous Data Movement Using MPI Datatypes on GPU Clusters. In 2014 43rd
International Conference on Parallel Processing. 221-230. https://doi.org/10.1109/
ICPP.2014.31

D. vom Bruch. 2020. Real-time data processing with GPUs in high energy physics.
Journal of Instrumentation 15, 06 (jun 2020), C06010-C06010. https://doi.org/10.
1088/1748-0221/15/06/c06010

https://doi.org/10.1145/3208040.3208047
https://doi.org/10.1109/IGCC.2014.7039158
https://doi.org/10.1109/CLUSTER.2015.21
https://arxiv.org/abs/1505.07734
http://arxiv.org/abs/1505.07734
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
https://doi.org/10.1109/SC.2003.10053
https://arxiv.org/abs/2004.03072
https://wci.llnl.gov/simulation/computer-codes/mercury
https://wci.llnl.gov/simulation/computer-codes/mercury
https://github.com/UK-MAC/CloverLeaf
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
https://www.osti.gov/biblio/1559415
https://doi.org/10.1109/MCSE.2017.57
https://arxiv.org/abs/1811.05233
http://arxiv.org/abs/1811.05233
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1109/ICPP.2013.17
https://doi.org/10.1109/CLUSTER.2017.121
https://doi.org/10.1145/1542275.1542340
https://doi.org/10.1109/ICPP.2014.31
https://doi.org/10.1109/ICPP.2014.31
https://doi.org/10.1088/1748-0221/15/06/c06010
https://doi.org/10.1088/1748-0221/15/06/c06010

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 MPI CUDA-Aware libraries
	2.2 Unified Virtual Addressing (UVA)
	2.3 MPI 4.0
	2.4 MPI Attribute–based Approach

	3 Contribution
	3.1 cuPointerGetAttribute overhead analysis
	3.2 Sessions based approach

	4 Integration into the MPI standard
	5 Applications/Benchmarks
	5.1 Experimental setup
	5.2 Experimental context
	5.3 Micro-Benchmarking Evaluation
	5.4 Applications

	6 CONCLUSIONS AND FUTURE WORK
	Acknowledgments
	References

