
HAL Id: cea-03314573
https://cea.hal.science/cea-03314573

Submitted on 5 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A modified Hybrid Reciprocal Velocity Obstacles
approach for multi-robot motion planning without

communication
Maxime Sainte Catherine, Eric Lucet

To cite this version:
Maxime Sainte Catherine, Eric Lucet. A modified Hybrid Reciprocal Velocity Obstacles approach
for multi-robot motion planning without communication. IROS 2020, International Conference on
Intelligent Robots and Systems, Oct 2020, Las Vegas, United States. �cea-03314573�

https://cea.hal.science/cea-03314573
https://hal.archives-ouvertes.fr

A modified Hybrid Reciprocal Velocity Obstacles approach for
multi-robot motion planning without communication

Maxime Sainte Catherinea and Eric Luceta,∗

Abstract— Ensuring a safe online motion planning despite a
large number of moving agents is the problem addressed in this
paper. Collision avoidance is achieved without communication
between the agents and without global localization system. The
proposed solution is a modification of the Hybrid Reciprocal
Velocity Obstacles (HRVO) combined with a tracking error
estimation, in order to adapt the Velocity Obstacle paradigm
to agents with kinodynamic constraints and unreliable velocity
estimates. This solution, evaluated in simulation and in real
test scenario with three dynamic unicycle type robots, shows
an improvement over HRVO.

I. INTRODUCTION

Most of the autonomous guided vehicles (AGV) use guides
such as tapes or magnets but it is not the only method as
Amazon Robotics, Cimcorp and Seegrid introduced AGVs
that were not restrained by guides. Those solutions, adopted
by Amazon for example [1] aim at improving productivity by
integrating unmanned distribution activities in the warehouse
management system.

In order to allow these robots to navigate freely, a feasible
motion must be produced. Several constraints need to be
taken into account such as kinematics, dynamics and obsta-
cle avoidance. Moreover, in a shared workspace, the robot
motion planning must take into consideration other robots
which are active agents.

Motion planning approaches can be classified in two cat-
egories. Reactive approaches, such as the Dynamic Window
Approach (DWA) [2], consider the best motion that can
be chosen at a certain time instant. On the other hand,
trajectory planning method, such as Timed-Elastic-Bands
(TEB) [3], plan the motion over a certain horizon of time.
This category tends to produce smoother resulting trajec-
tory and give results closer to optimality. For multi-robot
motion planning, many trajectory generation approaches are
centralized and use optimization [4], [5], [6]. However, the
robustness relies on the central intelligence and on the
communication between this intelligence and the robots.
Furthermore, centralized approach suffer from scaling, as
increasing the number of robots increases the computational
load on the central computer.

Decentralized approaches such as the Receding Horizon
Planning [7] or the Decentralized Multi-Agent Rapidly-
exploring Random Tree (DMA-RRT) [8] allow to generate a
trajectory for multiple agents but rely on communication as
estimating the trajectory of another active agent is a complex
task.

aCEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette,
F-91191,France

∗corresponding author: eric.lucet@cea.fr

Reactive methods, while resulting in less smooth trajec-
tories, offer the advantage of only requiring the current
state of the other agents implying that they can be achieved
using only sensing and no communication. The Velocity
Obstacles (VO) approach [9] allows reactive local collision
avoidance. Knowing the relative positions and velocities of
moving obstacles, a set of forbidden velocities is created.
Choosing a velocity oustide of those forbidden velocities
leads to an avoidance of moving obstacles. This approach
has been expanded to take into account uncertainty in
the position and velocity of obstacles, Uncertainty-aware
Velocity Obstacles (UVO), and has been combined with
a global planner, Rapidly-exploring Random Belief Tree
(RRBT) [10]. However, active agents also participate in the
collision avoidance process. This aspect, overlooked by the
VO approach, results in oscillations. Those oscillations are
partly removed by Reciprocal Velocity Obstacles (RVO) [11]
and further reduced by Hybrid Reciprocal Velocity Obstacles
(HRVO) [12] that indroduce an implicit choice on which side
an agent should pass. RVO was turned into a probabilistic
approach [13] which is an effective means of dealing with
uncertainty in position, velocity and actuation compared to
bounding approaches [14].

Once the VOs, RVOs or HRVOs are built, a speed must
be chosen and applied to the agent. To this end, a solution
is Clearpath [15]. This algorithm finds an admissible speed
that is the closest to the preferred one for the agent. To
do so, it classifies the intersection points of the VOs as
inside or outside of the VOs and extracts the segments that
are outside of the VOs. It then returns the point from the
outside segments that is the closest to the preferred velocity.
Another solution to select an admissible speed is to sample
the velocity space [16] and score the samples.

Optimal Reciprocal Collision Avoidance (ORCA) is both a
VO formulation and a speed choice method. VOs are turned
into half planes reducing the problem of finding the velocity
the closest to the preferred one to a linear program.

The study performed by J. A. Douthwaite et al. [17] com-
pares the different VO formulations and concludes ORCA
performs the best in an ideal setting but is outperformed by
HRVO in the presence of sensor noise.

In the following, the required VO principles are first briefly
introduced. Based on them, the proposed method is then
developed and evaluated in simulation and real test scenarios.

(a) Workspace configuration (b) Collision cone (c) Velocity obstacle

Fig. 1: Velocity obstacle faced by agent A

II. BACKGROUND

A. Velocity Obstacles (VO)

The velocity obstacle approach [9] allows a local reactive
collision avoidance of moving obstacles.

Considering two moving agents in a two dimensional
space represented in Fig. 1(a), with Agent A defined by
its velocity −→vA and footprint A and B by −→vB and B, the
definition of a velocity obstacle is:

V OA|B =
{−→v |∃t > 0, t(−→v −−→vB) ∈ Bext

}
Where Bext is the mapping of B in the configuration space of
A: Bext = B⊕−A. The construction of the velocity obstacle
can be achieved by constructing the collision cone which
is the smallest cone with its apex at the origin containing
Bext as illustrated in Fig. 1(b). The collision cone is then
translated by −→vB to become the velocity obstacle for A
induced by B, V OA|B , as illustrated in Fig. 1(c).

In other words, the velocity obstacle is the set of velocities
that would lead to collisions if chosen for A assuming:
• A instantly applies the chosen velocity and keeps it over

an infinite time horizon
• B keeps a constant velocity over an infinite time horizon
On the contrary, if A chooses a velocity outside of V OA|B ,

collisions will be avoided under the same assumptions. Those
assumptions are strong and seldom fulfilled in practice.
Instead, the velocity obstacle algorithm is run at a high
frequency to overcome the assumption that both agents will
keep the same speed over an infinite time horizon.

B. Reciprocal Velocity Obstacles (RVO) and Hybrid Recip-
rocal Velocity Obstacles (HRVO)

The VO representation was designed for an agent avoiding
passive moving obstacles but can cause oscillations when an
agent is avoiding another active agent. This is due to the fact
that VO forces an agent to take care of the whole collision
avoidance.

To counter this behavior, RVO were designed [11]. An
agent is now allowed to choose the average between its
current velocity and the collision free velocity chosen out
of the VO leading to the following definition:

RV OA|B =
{−→v |2−→v −−→vA ∈ V OA|B}

Therefore, the cone of collision defined for velocity obstacles
is translated by

−→vA+−→vB
2 . This leads to each agent taking care

of half of the avoidance and removes some oscillations that
occurred when using the VO.

However, RVO can still cause oscillations that occurs
when both agents choose to pass on the same side. Those
oscillations called reciprocal dances can be observed with
humans too. The HRVO [12] solve this issue by introducing
an implicit agreement on the side on which the avoidance
will be performed. It is constructed by expanding the RVO
to a chosen boundary of the VO, forcing the crossing to be
on a certain side. The side on which to expand the RVO is
chosen as the opposite side of which −→vA lies compared to
the centerline of the RVO. For symmetry reasons, the other
agent also chooses the same side.

C. Static obstacles

Since it has no velocity, the VO corresponding to a static
obstacle has its apex at the origin, preventing all motion
towards this obstacle. As a consequence, it needs to be
truncated by a certain factor τ , the time horizon over which
collisions will be avoided with that obstacle.

V OA|B,τ =
{−→v |∃t > τ, t(−→v −−→vB) ∈ Bext

}
τ must be greater than the current deceleration time of the

robot to ensure that the robot is able to stop before colliding
with the obstacle.

III. PROPOSED METHOD

A. Modification of inter-robot collision avoidance

HRVOs allow the robots to implicitly agree on which side
to pass. However, the quality of the choice relies on an
accurate speed estimation of the agents. To eliminate this
restrictive dependence, the robots are given an incentive to
pass on the right side by modifying the HRVO.

The first modification is the choice on which side the leg
of the HRVO is extended. It is fixed so that the second leg of
the RVO in trigonometric order is changed and the first one
remains the same, as seen in Fig. 2(a). This modification,
called Left Hybrid Reciprocal Velocity Obstacles (LHRVO),
gives the incentive to pass on the right side most of the time.

(a) LHRVO (b) TLHRVO

Fig. 2: Velocity Obstacles constructions for inter-agent col-
lision avoidance

However, when two robots have opposite speeds in a head
to head encounter for example, or when the two robots are
stopped, the RVO and the VO are overlapped. Therefore, the
LHRVO is translated along the first leg as seen in Fig. 2(b).
This gives a further incentive to pass on the right in all
situations. This second construction is the Translated Left
Hybrid Reciprocal Velocity Obstacles (TLHRVO).

B. Static obstacle estimation

To collect information about the environment the robot
uses depth sensors such as Lidar or a RGB-D camera. The
data resulting from the depth sensor is then mapped onto
a two-dimensional occupancy grid representing the close
surrounding of the robot. Most local planners can use the
occupancy grid as is but it is not possible with velocity
obstacles which require a geometrical representation of the
obstacles footprints. To this end, obstacles are clustered using
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [18] and are extracted as polygons by taking
the convex-hull of a cluster with Graham’s algorithm [19].
Finding the convex hull is easier than finding the concave
polygon and does not impact the resulting VO.

C. Constraints and tracking error estimates of a unicycle
robot

The following unicycle dynamic model is considered:
ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
ω̇ = aω
v̇ = av

(1)

While the unicycle can perform forward motion due to the
fact that ẋ cos θ + ẏ sin θ = v, it cannot move laterally as:

ẋ sin θ − ẏ cos θ = 0 (2)

This second equation, that constrains the kinematics and
that cannot be integrated, is a nonholonomic constraint.

Moreover, the robot is assumed to have the following
constraints on accelerations:{

av min ≤ av ≤ av max
−aω max ≤ aω ≤ aω max

(3)

and the following speed limitations:{
0 ≤ v ≤ vmax

−ωmax ≤ ω ≤ ωmax
(4)

The VO approach was initially created for holonomic
agents with dynamic constraints [9]. As a consequence, the
VO paradigm cannot be used the way it was originally
thought as it would lead to a risk of collision. Indeed, in this
paradigm, the chosen velocity, which is out of the VOs, is
only ensured to be collision free if applied instantaneously to
the robot. However, the nonholonomic nature of the unicycle
model (2), the speed limit imposed (4) and the dynamic
constraint (3) imply that the chosen velocity cannot be
reachable instantly.

An approach is to consider that the nonholonomic robot
will attempt to follow the speed that was chosen in the
velocity obstacle paradigm but will have a tracking error
[20]. Instead of computing the tracking error after choosing
a speed, the allowed tracking error is bounded thus limiting
the admissible velocity space. Knowing that the error will
be inferior to this bound, all the Minkowski sums used
to build the VOs are expanded by this maximum tracking
error allowed by performing another Minkowski sum with a
disk of radius the maximum tracking error. This approach,
which was applied to ORCA [21], can also be applied to the
considered velocity obstacles formulation.

To store the information about the tracking error, a set of
maps is generated. The coordinates of a map are vx and vy ,
the coordinates that would be used as input for the controller.
The value of the cell given by a certain pair (vx, vy) is
tracking error(vx, vy, v0, w0). It is important to note that
the tracking error does not depend on the position and orien-
tation of the robot. As a consequence, the maps are invariant
by translation and rotation. However, the error depends on
the initial linear and angular velocities. This implies that a
map must be generated for each initial condition. In practice
the initial conditions are sampled uniformly. Fig. 3(a) shows
an example of a map for a robot with v0 = 0 and w0 = 0.

This tracking error is obtained by numerically solving the
differential equations using Runge-Kutta method allowing
the use of any controller. As the generation of the tracking
error maps is quite long, it is done offline. Online, knowing
the maximum tracking error allowed, a polygon of allowed
velocities is extracted from the map corresponding to the
current speed of the robot, its outline being displayed in blue
dotted lines in Fig. 3(b).

D. Speed choice in the velocity obstacle paradigm

Before making any speed choice in the velocity space,
the preferred velocity, −→v pref , must be determined. This
preferred velocity is computed using the global plan as an
indication. A point from the global plan is chosen using a
look ahead distance. The direction of this point in the robot’s
frame is kept for the chosen speed which will have a norm

0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

vy (m/s)

v x
(m
/s

)

2

4

6

8

10

(a) Tracking error map for v0 =
w0 = 0, saturated at 10cm.

(b) Admissible speeds in blue are
inside the tracking error polygon
and outside of the VOs

Fig. 3: Tracking error map and admissible velocities.

proportional to the distance to the look ahead point, saturated
in order not to exceed vmax.

Once the velocity space has been restricted due to static
obstacles, other robots and the kinematic and dynamic con-
straints of the robot, a speed must be extracted from the
admissible speeds. The Clearpath algorithm is not demanding
computationally. However, it tends to switch abruptly from
one intersection point to another as only the euclidean
distance to the preferred speed is considered when comparing
the different points.

To counter this behavior, a scoring function is applied and
takes into account the following elements:
• distance to the preferred speed
• angle to the preferred speed
• distance to the previous speed
• angle to the previous speed
• distance to the speed chosen by Clearpath without

considering dynamic and kinematic constraints
• angle to the speed chosen by Clearpath without consid-

ering dynamic and kinematic constraints

Algorithm 1 CTE
Input preferred velocity vpref , tracking error polygon Pte and

a list of VOs Lvo

Output velocity to apply vchosen
1: if admissible(vpref) then . admissible(vpref) return true if

vpref is inside Pte and outside of
all the VOs of Lvo

2: admissible velocities.append(vpref)
3: end if
4: for all velocity obstacle vo1 in Lvo do
5: for all velocity obstacle vo2 in Lvo deprived of vo1 do
6: potential velocities.append(intersections(vo1,vo2))
7: end for
8: potential velocities.append(intersections(vo1,Pte))
9: potential velocities.append(projectionss(vpref ,vo1))

10: end for . projections points(vpref ,vo1) returns the
velocities resulting from the projection of
vpref on the legs of vo1

11: potential velocities.append(points(Pte))
12: for all potential velocity vpot in potential velocities do
13: if admissible(vpot) then
14: admissible velocities.append(vpot)
15: end if
16: end for
17: if admissible velocities is empty then
18: vchosen ← (0, 0)
19: else
20: vchosen ←best score(admissible velocities)
21: end if . best score(admissible velocities)

returns the velocity with the highest score
of admissible velocities

22: return vchosen

The proposed algorithm to perform the speed choice, that
we called Clearpath with Tracking Error (CTE), builds a
list of potential velocities from the intersections of the VOs,
the projections of the preferred speed on the VOs’ legs, the
intersections of the VOs with the tracking error polygon and
the the points from the tracking error polygon. From the
list of potential velocities, all the ones that are within the
tracking error polygon and outside of the VOs are added to

the list of admissible velocities and are scored. The speed
with the best score is returned.

Once the speed has been chosen, it needs to be transformed
before being applied to the robot. A lower level proportional
controller is in charge of adapting the wheels velocities to
reach the wanted linear and angular velocities (v, w). To
determine (v, w), an approach similar to the one proposed
by J. Alonso-Mora et al. [20] is used.

v =

{
||vchosen||2, if | θHT | < ωmax

0, otherwise

w =

{
θH
T , if | θHT | < ωmax

sign(θH)ωmax, otherwise

θH is the angle between the heading of the robot and the
chosen speed. T is a parameter representing the duration to
reach the wanted orientation over which the robot rotates on
the spot.

The linear and angular accelerations that this command
would imply are then computed and (v, ω) are adapted so
that the acceleration fits in the saturation bounds defined by
Eq. (3).

IV. EXPERIMENTS

The solution is implemented in C++ in the ROS navigation
stack1. Each robot performs its own localization using the
Kullback–Leibler Divergence-sampling Monte Carlo Local-
ization from the ROS package amcl2. The package obsta-
cle detector3 is used by the robots to detect and track moving
obstacles using data from the depth sensors.

To evaluate the proposed solution, experiments were per-
formed in both simulation and in real world settings. For
each setting, two experiments were considered. The first one
only focuses on the avoidance of static obstacles while the
second one focuses on multi-robot collision avoidance with
three robots (see attached video).

A. Simulations

The Gazebo engine was used to perform the simulations.
The simulated robot is a Turtlebot 2. Its parameters are
summarized in Table I.

TABLE I: Settings used for the simulated Turtlebot 2

Setting Value

vmax 0.5 m/s
ωmax 1.25 rad/s
av min -1 m·s−2

av max 1 m·s−2

aω max 4 rad·s−2

local planner frequency 10Hz
global planner frequency 1Hz

1Eitan Marder-Eppstein. 2D navigation stack ROS.
http://wiki.ros.org/navigation. Accessed: 2019-12-04.

2Brian P. Gerkey. amcl ROS. http://wiki.ros.org/amcl.
Accessed: 2019-12-05.

3Mateusz Przybyla. obstacle detector.
https://github.com/tysik/obstacle detector. Accessed: 2020-01-07.

http://wiki.ros.org/navigation
http://wiki.ros.org/amcl
https://github.com/tysik/obstacle_detector

1) Static obstacles avoidance: Although the primary fo-
cus of VO is not the avoidance of static obstacles, it is a
prerequisite for which it is relevant to assess performance of
the proposed solution against the state of the art. Thus, the
first experiment was performed with two static unmapped
obstacles that are the two blue cylinders. The proposed
solution is compared to the TEB approach from the pack-
age teb local planner4, which was configured to follow the
constraints from Table I.

A trajectory generation approach cannot perform multi-
robot collision avoidance without communication since it
needs the planned trajectory of other robots. On the other
hand, a reactive approach only requires the current state
of the world. The goal of this experiment is to evaluate
the loss of performance of the proposed reactive approach
compared to a trajectory generation approach in regards to
static obstacle avoidance.

TABLE II: Performance with static obstacles over ten suc-
cessive simulation runs. al and aa are respectively the average
absolute linear and angular accelerations.

VO, τ = 1s TEB

mean std mean std

al (m · s−2) 0.08 0.04 0.11 0.09
aa (rad · s−2) 0.41 0.13 0.90 0.36
travel time (s) 36.9 0.46 35.4 2.4

The results, gathered in Table II, show that the TEB
approach is around 4% faster, which remains quite similar. It
also leads to a smoother resulting trajectory. This is explained
by the fact that the VO approach is reactive and only finds
the optimal command until the next iteration. Taking into
account the distance and angle to the previous chosen speed
in the scoring of the admissible speeds allows the VO
approach to have lower accelerations. On the other hand,
the TEB package is set up to optimize travel time and we
can assume it could use much less acceleration by changing
the objective function used in the optimization.

2) Multi-robot collision avoidance: The second experi-
ment was performed with three robots navigating in open
space so that they can detect and track each other. The robots
were given navigation goals so that they would all meet
approximately at the same time with conflicting paths, as
displayed in Fig. 4.

The moving obstacle detection faces some issue with
the ego motion of the robot leading to false positives or
inaccurate speed estimates. Table III gathers the results
from fifty successive runs for each VO formulation. Fixing
the choice on which side to pass using either LHRVO or
TLHRVO greatly reduces the amount of collisions in the case
of unreliable speed estimates. This is due to the fact that the
HRVO formulation performs a choice on which side to pass
based on the speed estimates and on the RVO centerline.
TLHRVO causes less collisions than LHRVO because it is

4Christoph Rösmann. teb local planner
http://wiki.ros.org/teb local planner. Accessed: 2019-12-04.

Fig. 4: Resulting rajectories example for a simulation with
three robots (using LHRVO)

more conservative since the velocity space is reduced and as
it makes the incentive to pass on the right side stronger.

TABLE III: Performance with three Turtlebots 2 in simula-
tion over 50 successive run. All values but the collisions are
averaged over the three robots. al and aa are respectively the
average absolute linear and angular accelerations.

HRVO LHRVO TLHRVO

mean std mean std mean std

al (m · s−2) 0.11 0.06 0.10 0.05 0.11 0.06
aa (rad · s−2) 0.54 0.29 0.50 0.22 0.53 0.31
travel time (s) 23.1 3.91 21.0 1.55 21.2 1.29

collisions 14 6 3

B. Real world experiments

Similar experiments were performed on Turtlebots 3 waffle
pi [22]. All the computations were done on the Raspberry pi
3 B+. The parameters used for the robots are summarized in
Table IV.

TABLE IV: Settings used for the Turtlebot 3

Setting Value

vmax 0.26 m/s
ωmax 1.82 rad/s
av min -2.5 m·s−2

av max 2.5 m·s−2

aω max 3.2 rad·s−2

local planner frequency 10Hz
global planner frequency 1Hz

1) Static obstacles avoidance: An experiment was per-
formed with only one Turtlebot 3 and static obstacles con-
flicting with its path. The results from this experiment are
summarized in Table V. Both methods were highly perturbed
by sensor noise leading to the robot stopping. This behavior
was particularly frequent for the VO approach. However, the
TEB approach suffered from it as well as, during one run,
the robot remained stuck until the it entered in a recovery
behavior. This run was not taken into account for Table V. In

http://wiki.ros.org/teb_local_planner

Fig. 5: Experiment with three Turtlebots 3. From left to right,
top to bottom.

real world setting, the TEB approach is approximately 10%
faster.

TABLE V: Performance with one Turtlebot 3 and static
obstacles over ten successive runs. al and aa are respectively
the average absolute linear and angular accelerations.

VO, τ = 1s TEB

mean std mean std

al (m · s−2) 0.26 0.23 0.13 0.12
aa (rad · s−2) 0.86 0.81 0.92 0.52
travel time (s) 20.2 3.46 18.0 1.55

2) Multi-robot collision avoidance: An experiment was
performed with the three Turtlebots positioned on the corners
of a square. They were given the opposite corner as a
navigation goal ten times for each VO formulation, see
Fig. 5. The results are gathered in Table VI. Acceleration,
both linear and angular, is much higher than in simulation
due to sensor noise and more frequent false positives in
moving obstacles detection.

TABLE VI: Performance with three Turtlebots 3 over ten
successive simulation runs. All values but the collisions are
averaged over the three robots. al and aa are respectively the
average absolute linear and angular accelerations.

HRVO LHRVO TLHRVO

mean std mean std mean std

al (m · s−2) 0.26 0.22 0.23 0.20 0.25 0.20
aa (rad · s−2) 0.64 0.44 0.84 0.35 0.80 0.42
travel time (s) 27.4 1.7 27.5 2.2 29.4 3.0

collisions 2 0 0

HRVO leads to collisions due to the fact that the choice
on which side to pass is not reliable with the detection and
tracking of moving obstacles used. The two modifications,
LHRVO and TLHRVO, make this choice safe thus resulting
in no collisions. TLHRVO yields slower travel times since
it is more conservative in regards to restricting the velocity
space.

V. CONCLUSIONS

A modified online motion planning solution based on VO
was presented for a multi-robot system. A static obstacle

estimation was presented to convert the data from a depth
sensor to a polygonal form usable by the VO approach.
The consideration of the tracking error allows this method
to rigorously take into account the kinematic and dynamic
constraints of the nonholonomic robot and to keep the
collision free nature of the VO paradigm. Furthermore, the
polygon representing the velocities that are admissible in
regards to the maximum allowed tracking error is used for
a fast sampling of velocity space. Lastly, the adaptation of
HRVO to give the incentive to pass on a certain side allows
a much more reliable collision avoidance in a setting where
the velocity estimates of the other agent are unreliable. While
this proposed algorithm sees a slight decrease in performance
when faced against a trajectory generation method in a set-
ting with just static obstacles, this complete approach allows
decentralized real-time dynamic collision avoidance without
inter-agent communication. Furthermore, the computations
are light enough to run on a single board computer at a
frequency sufficiently high to avoid dynamic obstacles.

Related works show that the VO approach is prone to
deadlocks when the number of agents increases [16] or when
the environment becomes too cluttered. To solve this specific
problem not addressed in this paper, a higher level decision
unit could be set up for conflict resolution.

Finally, the integration of this algorithm in parallel with a
trajectory generation and tracking method would give it its
full meaning. Indeed, most of the time the multi-agent aspect
is not problematic since only some portions of the robots’
trajectories end up being conflicting. Using a trajectory
generation method to perform navigation and handing over
to the VO approach when the intended velocities are no
longer safe would allow to benefit from the advantages
of the trajectory planning while maintaining the safety the
proposed solution approach provides in a setting without
communication and multiple agents.

REFERENCES

[1] Bruce Rolfsen. Amazon’s growing robot army keeps warehouses
humming. https://news.bloombergenvironment.com/safety/amazons-
growing-robot-army-keeps-warehouses-humming. Accessed: 2019-11-
04.

[2] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics Automation Magazine, 4(1):23–33,
March 1997.

[3] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram.
Trajectory modification considering dynamic constraints of au-
tonomous robots. In ROBOTIK 2012; 7th German Conference on
Robotics, pages 1–6, May 2012.

[4] M. R. Panda, P. K. Das, S. K. Pradhan, and H. S. Behera. An improved
gravitational search algorithm and its performance analysis for multi-
robot path planning. In 2015 International Conference on Man and
Machine Interfacing (MAMI), pages 1–8, December 2015.

[5] F. Augugliaro, A. P. Schoellig, and R. D’Andrea. Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1917–1922, October 2012.

[6] D. Mellinger, A. Kushleyev, and V. Kumar. Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams. In
2012 IEEE International Conference on Robotics and Automation,
pages 477–483, May 2012.

[7] J. M. Filho and E. Lucet. Multi-robot motion planning: A modified
receding horizon approach for reaching goal states. In Acta Polytech-
nica, volume 56, September 2015.

https://news.bloombergenvironment.com/safety/amazons-growing-robot-army-keeps-warehouses-humming
https://news.bloombergenvironment.com/safety/amazons-growing-robot-army-keeps-warehouses-humming

[8] V. R. Desaraju and J. P. How. Decentralized path planning for
multi-agent teams in complex environments using rapidly-exploring
random trees. In 2011 IEEE International Conference on Robotics
and Automation, pages 4956–4961, May 2011.

[9] P. Fiorini and Z. Shiller. Motion planning in dynamic environments
using velocity obstacles. In The International Journal of Robotics
Research, volume 17, pages 760–772, July 1998.

[10] H. Yang, J. Lim, and S. Yoon. Anytime rrbt for handling uncertainty
and dynamic objects. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4786–4793, October
2016.

[11] J. van den Berg, M. C. Lin, and D. Manocha. Reciprocal velocity
obstacles for real-time multi-agent navigation. In 2008 IEEE Inter-
national Conference on Robotics and Automation, pages 1928–1935,
May 2008.

[12] J. Snape, J. van den Berg, S. Guy, and D. Manocha. The hybrid
reciprocal velocity obstacle. In IEEE Transactions on Robotics,
volume 27, pages 696–706, August 2011.

[13] B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and
D. Manocha. Prvo: Probabilistic reciprocal velocity obstacle for
multi robot navigation under uncertainty. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1089–
1096, September 2017.

[14] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen. Collision avoidance
under bounded localization uncertainty. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1192–1198,
October 2012.

[15] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha,
and P. Dubey. Clearpath: highly parallel collision avoidance for multi-
agent simulation. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA), pages 177–187, August 2009.

[16] D. Claes and K. Tuyls. Multi robot collision avoidance in a shared
workspace. In Autonomous Robots, volume 42, pages 1749–1770,
December 2018.

[17] J. A. Douthwaite, S. Zhao, and L. S. Mihaylova. A comparative
study of velocity obstacle approaches for multi-agent systems. In
2018 UKACC 12th International Conference on Control (CONTROL),
pages 289–294, September 2018.

[18] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters a density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data
Mining, KDD’96, pages 226–231. AAAI Press, 1996.

[19] R.L. Graham. An efficient algorith for determining the convex hull of
a finite planar set. In Information Processing Letters, volume 1, pages
132–133, 1972.

[20] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart. Optimal reciprocal collision avoidance for multiple non-
holonomic robots. In Distributed Autonomous Robotic Systems: The
10th International Symposium, volume 83, pages 203–216, January
2013.

[21] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart.
Reciprocal collision avoidance for multiple car-like robots. In 2012
IEEE International Conference on Robotics and Automation, pages
360–366, May 2012.

[22] Turtlebot 3. http://emanual.robotis.com/docs/en/platform/turtlebot3/spe-
cifications/#specifications. Accessed: 2020-02-24.

http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications
http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications

	INTRODUCTION
	Background
	Velocity Obstacles (VO)
	Reciprocal Velocity Obstacles (RVO) and Hybrid Reciprocal Velocity Obstacles (HRVO)
	Static obstacles

	Proposed method
	Modification of inter-robot collision avoidance
	Static obstacle estimation
	Constraints and tracking error estimates of a unicycle robot
	Speed choice in the velocity obstacle paradigm

	Experiments
	Simulations
	Static obstacles avoidance
	Multi-robot collision avoidance

	Real world experiments
	Static obstacles avoidance
	Multi-robot collision avoidance

	Conclusions
	References

