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Online velocity fluctuation of off-road wheeled mobile robots:
A reinforcement learning approach

François Gauthier-Clerc1, Ashley Hill1, Jean Laneurit2, Roland Lenain2 and Éric Lucet1

Abstract— During the off-road path following of a wheeled
mobile robot in presence of poor grip conditions, the longi-
tudinal velocity should be limited in order to maintain safe
navigation with limited tracking errors, while at the same
time being high enough to minimize travel time. Thus, this
paper presents a new approach of online speed fluctuation,
capable of limiting the lateral error below a given threshold,
while maximizing the longitudinal velocity. This is accomplished
using a neural network trained with a reinforcement learning
method. This speed modulation is done side-by-side with an
existing model-based predictive steering control, using a state
estimator and dynamic observers. Simulated and experimental
results show a decrease in tracking error, while maintaining a
consistent travel time when compared to a classical constant
speed method and to a kinematic speed fluctuation method.

I. INTRODUCTION

Mobile robotics attracts more and more interest in many
applications such as agriculture [1]. In these applications,
autonomous systems need to be adaptive to the natural envi-
ronment with its unpredictable and heterogeneous properties.
Path following is necessary for a large number of agricultural
tasks such as seed planting, irrigation, or plant treatment [2],
[3]. In these applications, accurate tracking is essential to
avoid damage to vegetation. Travel time is also a criterion
for maximizing robot availability and minimizing the overall
cost of these solutions. Both of these requirements must
be met by these tracking algorithms to ensure a successful
application of robotics in agriculture.

A common approach for path tracking is to consider a
constant speed tuned experimentally that is as fast as possible
while ensuring a limit on the tracking error [4], [5]. This can
make the system easier to control, but it has a significant
impact on the optimality of the solution, both in terms of
tracking accuracy and travel time. And the highly variable
grip conditions in off-road context accentuates this issue,
as certain portions the trajectory may require a very low
speed. Therefore, in order to consider speed variations, the
dynamics of the system must be taken into account, in
particular for preventing wheel slip.

A planning approach can be used in order to implement
an a priory online speed variation. This involves defining
in advance either the trajectory and the speed for each
key-point, or simply the speed on an already known static
trajectory. This solution is often applied to robotic arms [6],
[7] and it can be extended to mobile robots.
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A travel time minimization approach applied to a simple
dynamic model of the vehicle [8] is also possible. This
technique can consider other constraints such as energy
consumption for an electric car [9]. It guarantees an optimal
travel time and a limited lateral error under the considered
model. However, this technique is limited in an agricultural
context as it does not take into account the evolution of the
dynamics at the wheel ground interface.

Another solution of second order approximation on the
acceleration constraints of a four-wheel model leads to
an online planning that is able to manage the speed to
guarantee a small tracking error [10]. Considering the speed
management as an upper limit definition makes the problem
easier to solve. Thus a simple model can be used, based on
curvature and speed limit [11], [12]. A model of the wheel
ground interaction can also be considered [13], [14], [15].
This estimate is based on the angular velocity which predicts
a situation of under-steering or over-steering. However, all
these methods are not sufficiently reactive to the online
variation of parameters, in particular grip conditions.

Overall, the previously described solutions are limited to
simple models that do not integrate the online evolution of
wheel ground grip conditions. However, the online estimation
of such slip parameters and cornering stiffnesses is essential
to guarantee the stability of the system operating in highly
variable environments.

Recent advances in machine learning and more specifically
in reinforcement learning (RL) provide an efficient approach
to derive a model from a set of input data and an appropriate
reward function [16]. These methods take advantage of
advances in deep learning that allow to use a neural network
as a universal function estimator [17]. Contributions have
applied such RL approach to a path following task [18], [19],
[20], these examples showing the relevance of a learning
process to solve mobile robotics problems.

The contribution proposed here is a neural network based
online velocity controller. It is associated to an existing
front steering Model-based Predictive Controller (MPC) for
path tracking, that was previously implemented with a con-
stant speed [14]. This task was previously addressed with
a traditional approach [14], [13] which demonstrated the
problem’s complexity and the limits of this approach. The
RL algorithms are used to solve this problem with more
flexibility, as they are based on a data derived from a fully
dynamic model with varying grip conditions.

The speed control solution is implemented in the follow-
ing, a mobile robot dynamics simulator being used to train
a neural network with reinforcement learning techniques



in order to generate a speed modulation algorithm from
available inputs. This is achieved by minimizing an objective
function of travel time and tracking errors.

This method is evaluated in simulated and real environ-
ments to assess its performance and limitations. For this, the
methodology and models are described in section II, followed
by the simulation and simulated results in section III, then
continued with the experimental setup and results in sec-
tion IV, and then finally concluding and discussing future
works in section V.

II. METHOD
In this section, after a brief reminder of the steering

control law, the problem of speed fluctuation during path
tracking is discussed. First, a deterministic kinematic solution
is proposed. Then, a new RL approach is investigated. To
this end, an objective function is defined and the problems
of actuator response time and neural network outputs are
addressed.

A. MPC steering controller
The path following strategy is from previous works on the

design of a front steering controller in agricultural context
[21]. This MPC is based on a bicycle kinematic model in
the horizontal plane, extended by taking into account the
tyre slip angle. The following variables are expressed in the
Frenet frame (see Fig. 1).

δF =

(
tan(βR) +

L

cos(βR)

(
c(s) cos(θ̃)

k
+
A cos3(θ̃)

k2

))
+βF

(1)

with


k = 1− c(s)y
θ̃2 = θ̃ + βR
A = −Kp y −Kd k tan(θ̃) + c(s) k tan2(θ̃)

The variables used are the following:
• s, c(s) the curvilinear abscissa of the robot projection

on the path and the associated curvature,
• y, θ̃ the lateral and angular deviations,
• βF , βR the front and rear slip angles,
• Kp, Kd the proportional and derivative gains,
• L the wheelbase.
Both slip angles βF,R and cornering stiffness coefficients

CF,R are estimated online during the path following using a
dynamic observer [22]. This observer formulation is based
on a linear approximation of a Pacejka model [23] for the
expression of lateral forces FF,R = CF,RβF,R. This way,
cornering stiffnesses reflect lateral grip properties of the
encountered terrain.

As a varying speed will be used, the steering controller’s
Kp and Kd gains must evolve accordingly in order to
maintain a constant reactivity of the controller, with respect
to the speed value. Thus, a linear interpolation is performed
in real-time between predefined expert gains for different
values of static speeds and cornering stiffnesses.

One observation is that the steering controller used does
not consider a pure dynamic model. This choice is moti-
vated by the fact that a dynamic model involves too many
parameters that are complex to estimate and very variable,
especially in the agricultural context [24].

Fig. 1. Kinematic bicycle model projected on the frenet frame

B. A deterministic kinematic speed constraint solution

A deterministic method for speed modulation with a
kinematic model is introduced, in order to compare to the
RL approach. This technique is derived from a limitation
on the steering rate δ̇F max (similar to [25] ). The following
assumptions are made: y and θ̃ are assumed to be zero, which
means that the robot is expected to follow its path correctly.
By deriving the angular error with respect to the curvilinear
abscissa, the following equations are successively deduced:

∂θ

∂s
=

tan(δF )

L
(2)

∂2θ

∂s2
=

1

Lv
(1 + tan2(δF ))

∂δF
∂t

(3)

And then, by replacing tan(δF ) with L.c(s) (as the lateral
and angular error as assumed to be zero):∣∣∣∣∂δF∂t

∣∣∣∣ < δ̇F max ⇒
∣∣∣∣∂2θ∂s2

∣∣∣∣ < ∣∣∣∣1 + L2c(s)2

Lv

∣∣∣∣ δ̇F max (4)

Considering that ∂2θ
∂s2 = ∂c(s)

∂s and the previous equation
(4), it is possible to determine a positive maximum speed
depending on the desired maximum steering rate:

vmax =
1 + L2c(s)2

L
∣∣∣∂c(s)∂s

∣∣∣ δ̇F max (5)

As such, given a desired maximum steering rate δ̇F max
that limits the dynamic behavior in real world experiments, a
reasonable maximal speed vmax is obtained. However, since
the rate of change of vmax can be greater than the maximum
acceleration of the robot, a predictive speed modulation is
performed to ensure that the robot speed remains below the
defined vmax. This speed controller does not consider the
estimated cornering stiffness but it does provides a relevant
comparison, since the speed setpoints generated are optimal
in a kinematic context.

C. Description of the selected reinforcement learning ap-
proach

The TD3 [26] reinforcement learning method is consid-
ered, in order to train a suitable speed controller based on a
neural network (NN). It is an off-policy RL method that was
chosen based on empirical results compared to alternative
RL based methods (neural networks trained with PPO [27]
and TRPO [28] obtained lower performance than TD3).

A dynamics simulator of the robot along with a sufficient
diversity of trajectories, allows for off-line training of the
neural network using the TD3 method. Then the trained
neural network is used online, in order to generate speed
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Fig. 2. The new RL approach (red and orange parts) as part of the overall
path following control architecture.

setpoints and ensure a fast and accurate path following
performances (see the global control architecture Fig. 2).
During the online uses, there are no changes to the weights
and biases of the neural network.

This velocity fluctuation management is formulated as a
Markov Decision Process (MDP) with a discrete time sam-
pling. The following neural network inputs are considered:
• y, θ̃ the path tracking lateral and angular errors.
• v, θ̇ the measured speed and yaw rate.
• vmax the maximum allowed speed.
• δodom

F , δsetpoint
F the measured and setpoint steer angles.

• βF , βR the measured front and rear slip angles.
• CF , CR the front and rear estimated cornering stiff-

nesses.
• c(s) the path curvature.
The measured yaw rate is included in the input data as

it is an important indicator of vehicle stability [13]. The
curvature is also a crucial variable for speed modulation as it
defines the admissible yaw rate and speed (see deterministic
alternative section II-B). This curvature variable is extended
to a vector over a fixed time horizon, allowing for the
anticipation of future curvatures and estimation of its rate
of change. The estimated cornering stiffness is a direct
indicator of the slip dynamics at wheel ground interface. It
can therefore be used by the neural network to estimate the
ability of the vehicle to follow its trajectory at a given speed.
Whereas the estimation of slip angles alone does not allow
the method to anticipate the sliding behavior, but instead
allow for the correction in case of undesirable slips.

A path tracking episode starts with a stationary robot at the
beginning of a considered path. The episode ends either when
the robot reaches the end of the path (successful episode), or
when it reaches a state that does not respect a hard constraint
(failed episode). The lateral error in this approach is defined
as a hard constraint, where exceeding a maximal lateral error
causes the episode to end prematurely with a low reward.

1) The reward function: RL algorithms aim to maximize
a discounted cumulative reward along an episode [16]. Both
traveling time and lateral error limitation must be considered
in this reward function in order to correctly train the neural
network model.

The reward is defined in accordance with the speed that
has to be maximized, while avoiding hard constraints. The
reward for the whole trajectory is the sum of the rewards
at each step. In this case, a linear speed-dependent reward

should be avoided since the number of steps in an episode
depends directly on speed, and thus the sum of the rewards
reflects the length of the trajectory, which is a desired
optimization criterion. However, a square function can be
used to solve this issue (see equation (6)), and to improve the
convergence of the RL algorithm a constant negative reward
−Cte is added in order to encourage higher speeds.

Rt =

{
v2/v2max if |y|< ylim
−Cte else (6)

While this addition creates discontinuity, it reinforces the
behavior of the policy to avoid exceeding the lateral error
limit. Without this penalty, a sub-optimal policy that would
rather fail at a higher speed, rather than reach the end of the
path at a lower speed may emerge. The learning process on
a trajectory continues until the mean episodic reward is no
longer increasing.

2) Restoring the Markov hypothesis and observability of
the system.: A progressive variation of the speed (limited
acceleration) and the frequency of the target controller de-
feat the convergence of RL algorithms. Indeed, the small
discretized time interval (10Hz) leads to the cancellation of
the traditional RL exploration using Gaussian noise and the
actuator response time affects the Markov property (causal
link) [29], [30].

An action skipping is often used to address both issues and
significantly improve the learning process (as it was done in
previous contributions [31]) by artificially increasing the time
scale during the exploration and learning process. Rather
than sampling the policy at each step, the neural network
evaluation is performed every k steps and kept the same
action between each evaluation. This allows the exploration
to maintain a consistent control setpoint (convergence of the
speed towards its desired value) and to reduce the actuation
delay.

In addition, the neural network can output an oscillating
speed setpoint, with a potentially infinite variation. For
this reason, the neural network output is interpreted as an
acceleration setpoint instead of a speed setpoint. This reduces
the output noise and makes it possible to add a constraint
on the acceleration. Then, an integration is performed to
retrieve the value of the speed setpoint. And, to preserve
the observability of the system, this speed setpoint is added
to the list of the following inputs.

Action skipping and acceleration output integration can
both be applied in the same process by maintaining acceler-
ation setpoint between each step instead of speed setpoint. In
this way, the action skipping has no impact on the final shape
of the exploration process, which is very close to an optimal
policy. Fig. 3 illustrates the difference in shape between a
direct speed control at 10Hz, an applied action skipping
(k = 10), and an acceleration output consideration with the
same action skipping.

III. SIMULATION

In this section, the training process using a dynamic sim-
ulator is described. Then, the constant speed, the kinematic



Fig. 3. A comparison of the three exploration techniques

and the NN-based methods are compared to each other, using
each case the same MPC steering controller.

A. Training setup

The simulator used to calculate the TD3 algorithm is
parameterized in accordance with properties of the testing
robot presented in section IV. This robotic platform is a
car-like robot called Robufast (presented in [5]). It is an
electrically powered 4-wheel drive robot capable of reaching
a speed of 8 m/s in off-road conditions. It can perform a
maximum acceleration/deceleration of 1.5m s−2 with a max-
imum steering angle of 20◦. Three maximum speed values
are considered for training (4, 6, 8m s−1). A deceleration
phase is added on the top of the speed modulation to ensure
a safe stop when the path end is almost reached.

The dynamic simulator integrates a linear approximation
of Pacejka model with cornering stiffnesses of 7000 to
25000N rad−1. A second-order model of actuator delay is
also implemented in order to model the steering behavior.

The training path set is defined in order to represent a
large set of possible paths with similar lengths, to avoid sub
optimal policy, and to conform to the given specifications. In
particular, the range of curvatures (0-0.3m−1) and maximum
turn number (3) are fixed. Path shape and grip conditions are
re-sampled using a uniform law at each episode beginning
to ensure changing conditions during training, allowing for
the generalization of the neural network for the task.

The training is performed under a Python application
linked by a C++ hook to the simulator implemented in C++
for performance and practicality. Stable baseline [32] is used
as a RL library in order to get a reliable TD3 implementation.
The actor and the critic neural networks both get the same
architecture, which is composed of 2 hidden layers of 64
units, an output layer of 1 units and a state dimension of
32 units. tanh is the activation function used for the whole
networks. The TD3 hyperparameters used are :
• number of steps: 2.5M
• gamma: 0.7
• action skipping: 8
• train frequency: 500
• batch size: 512

• learning rate: 4e−5
• buffer size: 15k
• number of unique paths

in training set: 12

B. Comparative analysis

For the speed output computation with the kinematic speed
modulation method, the δ̇F max value is defined empirically in
order to obtain a travel time equivalent to that of the neural
network based method. This tuning is done for each path.

To compare the performance of each of the methods,
three metrics are introduced. The error peak represents the

maximum magnitude of the lateral error during the whole
path following task. The surface error outside of a corridor
is defined by the criterion Aoff in Eq. (7). And the total
surface error Aerr is defined as a special case of the Aoff
metric, with a threshold of ylim = 0m.

Aoff =

N∑
n=0

|y(tn)|≥ylim

∣∣∣∣ṡ(tn)(∣∣∣∣y(tn) + ẏ(tn) dt

2

∣∣∣∣− ylim

)∣∣∣∣ dt [m2]

(7)
with:

{
ṡ(t) = v(t) cos(θ̃(t))

ẏ(t) = v(t) sin(θ̃(t))

A path set is used to gather an average result over multiple
simulations (paths that are not used during the training
process). This set is composed of 14 paths with a length of
around 200m each. Trajectories are categorized in 3 groups
according to the curvature peaks. The first group A gathers
all paths with curvature peaks below 0.05m−1, the second
one (group B) with curvature peaks from 0.05 to 0.12m−1,
and the last one (group C) with curvature peaks from 0.12
to 0.3m−1.

Table I gathers the results obtained with the testing path set
under good grip conditions. The neural network based speed
controller outperforms the other methods over all the metrics.
In accordance with the method design, the neural network
method keeps its peak errors very close to the threshold
lateral error of 0.2m, and therefore obtains an surface error
above the threshold almost equal to zero.

Whereas both the static speed and the kinematic methods
struggle to keep the peak errors below the 0.2m threshold.
Even though the steering MPC is designed for constant
speed, the average speed is too high for proper path fol-
lowing during high curvature parts. This effect is even more
pronounced on paths with high peaks in the curvature. The
peak error increases by 170% from group A to group C.

The kinematic controller is successful in reducing the total
surface error with a modulation based on the curvature. The
benefit of this method increase as the peak curvature rises
when compared to the static speed method. This behavior
is mainly due to a lower average speed in this context,
which limits the dynamic effects. Even though the kinematic
controller is more efficient than the constant speed method,
the neural network based controller achieves a lower surface
error in the traj C category.

Fig. 4 shows the results for the category C paths using the
three considered methods. The Kinematic and neural network
controllers generate similar speed profiles, However two key
differences are apparent. First, the neural network controller
is reacting to the dynamic phenomena by decreasing the
speed near 80m due to the lateral error increase, with the
lowest speed value reached at the curvature peak. This speed
reduction helps to correct the angular error induced by the
curvature and keeps the lateral error below the threshold
(0.2m). In contrast, the kinematic method does not adapt
to this situation and the lateral error starts increasing near
90m, and continues to increase until 105m.

Secondly, the neural network controller is exploiting the
characteristics of the steering MPC, as it has learned to work



Method NN based Kinematic speed Static speed
Metrics peak error Aerr Aoff peak error Aerr Aoff peak error Aerr Aoff

group A 0.21±0.03 21.81±3.94 0.03±0.05 0.49±0.28 29.65±8.15 5.31±5.46 0.48±0.26 28.64±8.80 5.01±5.60
group B 0.20±0.01 20.73±2.05 0.01±0.02 0.43±0.21 27.69±6.94 4.44±3.82 0.65±0.19 31.34±9.36 8.03±6.22
group C 0.20±0.03 14.77±5.66 0.02±0.04 0.52±0.35 21.98±11.96 4.87±6.70 1.30±0.88 33.58±24.79 16.68±18.48

TABLE I
RESULTS OBTAINED ON TESTED PATHS. PEAK ERROR IS IN [m], Aerr IS IN [m2], AND Aoff IS IN [m2]
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Fig. 4. Speed modulation obtained with the selected methods

Fig. 5. Robufast on the field Fig. 6. trajectory shape over the field

with it during the learning process. At the beginning of a
high-speed turn, the steering MPC is slightly understeering
and then an oversteer to minimize lateral error. This behavior
is visible around 50m with the static speed and the neural
network controllers. Due to the fact that the kinematic
controller is based on the curvature rate, it is reducing the
speed value before the turn without regard to the MPC
behavior, therefore the MPC cannot function optimally.

In summary, the NN speed controller has learned the sub-
tleties of dynamics in order to avoid oversteer and understeer
due to the large slip angles induced by the difficult condi-
tions. In contrast, the kinematic speed does not take these into
account, which justifies the results obtained. Further research
could involve a pure dynamic MPC steering controller using
an ML-based model to obtain a fairer comparison with the
proposed RL speed control.

IV. EXPERIMENTAL RESULTS

Further tests were performed with the Robufast experi-
mental platform (Fig. 5). Those tests aims to proove the
transferability of a simulated training applied onto a real
application. This comparison with and without the speed
modulation, combined with the MPC steering controller,
highlights the value of the proposed method.

The neural network speed controller used for this experi-
ment was trained to avoid lateral errors above a threshold of
0.4m. It was then tested along with a constant speed strategy,
over the trajectory as shown in Fig. 6 & Fig. 7. Special care
was taken for these tests, in order to generate a trajectory
different from those of the training process. This was done
in order to verify the generalization of the neural network

speed controller to different trajectories. Each test was run
several times to validate the repeatability of the results, which
are presented below.

Initially, the robot was positioned with a lateral error of
more than one meter. The constant speed controller was set to
4m s−1, as this achieves a similar travel time when compared
to the neural network speed controller.

Results from Fig. 7 show that the neural network method
is capable of maintaining the lateral error below the 0.4m
threshold, whereas the constant speed controller which has a
similar travel time could not achieve a similar performance.
Over the surface error metric (Eq. 7 with ylim = 0),
the neural network method has 20.35m2 of surface error,
while constant speed method has 32.98m2 of surface error.
This shows a reduction of 38.3% in the neural network
method’s surface error when compared to the constant speed
method. As such, the neural network method was capable of
significantly reducing the overall surface error and preserving
the 0.4m lateral error threshold with a similar travel time,
by modulating the target speed in real time.

From Fig. 7, the neural network method seems to be
decelerating the robot before each turn (red area on the
velocity plot). This shows the neural network is anticipating
the behavior of the robot during turning, as decelerating pre-
vents strong dynamic effects from occurring. Furthermore,
this shows that the neural network is safely adapting the
speed value to the new states that were observed, which
demonstrates the transferability of the method to real world
experiments, as the simulation used during the training
process was not a perfectly accurate robotic model.

The proposed neural network method also obtained good
reactive behavior to external perturbation. At 60m and 90m
a strong lateral error occurs due to the terrain quality in the
corners, these lateral errors cause the neural network method
to decelerate in order to give more time to the steering
controller, allowing the robot to converge while limiting the
amplitude of the lateral error.

At 100m, an oversteer occurred at the exit of the second
turn, leading to large angular and lateral errors with a
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Fig. 7. Velocity and lateral error in the real world experiment
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Fig. 8. Comparative plot between a neural network trained with and without cornering stiffnesses, in real world experiments

constant speed. With the neural network method however,
the speed setpoint was reduced from 3.6m s−1 to 1.9m s−1

at 93m, while the steering controller reduced the steering
angle to about 5◦. Both actions in tandem, allowed the
system to converge back to a low lateral error with minimal
perturbations. After the lateral error returned to acceptable
values, the steering controller restored the original steer angle
and the neural network method started a new acceleration
phase. This modulation of the speed by the neural network
minimized the error that was induced from the environment,
allowing for a stable path following with minimal error.

In order to validate the importance of cornering stiffness
inputs, a comparative experiment was done. The results of
said experiment are displayed on Fig. 8. The neural network
method that was trained without the cornering stiffnesses
obtained considerably worse performance over the lateral
error with a lower speed. From s = 10 to the end of the
trajectory, the neural network with the cornering stiffnesses
obtained a surface error of 2.77m2, while the neural network
without the cornering stiffnesses obtained a surface error
of 4.89m2, a 43.4% reduction in the surface error. This
implies that the cornering stiffnesses are necessary in order
to anticipate the future dynamic behavior of the next corner,
and to slow down if necessary or to speed up if possible.

While a strict constraint over lateral error can be met in the
simulated environment, in real application it is more difficult
due to external disturbances such as GPS signal inaccuracies
or terrain topology, as they can induce unmodeled lateral
errors. Those disturbances cannot be anticipated and can
be difficult to accurately model. As such this limits the
reliability of the solution, and safety margins must be taken
into account when defining the lateral error threshold.

High speed experiments have also shown unmodeled peaks
in the lateral error that occurred in a deceleration phase
during the corner (e.g. the spike at s = 60m). This implies
some load transfer is occurring during the deceleration that is

increasing the vertical force on the front wheels. The change
in the vertical force causes a drastic change in the steering
and the tyre grip, causing the system to react considerably
faster, and as such causing oversteer which in turn produces
higher error than those experienced in simulation.

V. CONCLUSIONS AND PERSPECTIVES
A reinforcement learning approach was proposed for speed

fluctuation over a path following task. This method consists
in training a neural network in order to control the acceler-
ation for the speed setpoint to be as high as possible while
maintaining the lateral error below a fixed threshold.

The neural network trained with a wide variety of paths,
perception qualities and grip conditions was successful in
setting the speed for both simulation and during real experi-
ments. The simulator, based on a vehicle dynamic model,
was able to train a model that is capable of obtaining
favorable performance at high speed, in a real application
without the use of transfer learning. This approach using a
simple lateral error constraint can easily be extended to other
hard constraints, such as a maximum angular deviation. Fur-
thermore, the methodology is independent from the steering
system and can be applied to other robot architectures with
very little modifications.

However, some drawbacks appeared during the experi-
ments. The longitudinal dynamic interactions may be consid-
ered in order to ensure an improved path following with less
oversteering. And an improved steering controller designed
to take into account speed variations, might improve the
performance substantially.

Future works will consider a specific speed control for
each wheel motor in order to increase the rotation speed of
the system, similar to a previous deterministic approach [5].
Transfer learning techniques may also be involved to improve
results by considering the real world wheel/ground dynamics.
Merging this approach with previous work in online gain
setting [33] is also being considered for future contributions.
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