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Abstract: This article describes a software environment called HybroGen , which helps to experi-1

ment binary code generation at run-time. As computing architectures are getting more complex,2

the application performances become data-dependent. The proposed experimental platform is3

helpful in programming applications that can be reconfigured at run-time in order adapted for a4

new data environment. HybroGen platform is adapted to heterogeneous architectures and can5

generate instructions for different target. This platform allows to go farther than classical JIT6

compilation in many directions: the code generator is smaller by three orders of magnitude, faster7

by three orders of magnitude compared to JIT (Just-In-Time) platforms and allows making code8

transformation that is impossible in traditional compilation scheme like code generation for non9

Von Neumann accelerators or dynamic code transformations for transprecision. The latter will10

be illustrated in a code example: the square root with Newton’s algorithm. We also illustre the11

proposed HybroGen platform with two others examples: a multiplication with a specialization on12

a value determine at run-time and a convertion of degree Celcius to degree Fahrenheit. This article13

presents a proof of concept of the proposed HybroGen platform in terms of its functionalities, and14

demonstrate the working status.15

Keywords: transprecision; dynamic compilation; heterogeneous; just in time; code specialization16

1. Introduction17

Compilation and code generation1 are 50 years old research domains, parallel to18

the computer architecture research domain [1]. Compilers have the difficult task to19

transform a source code application into a running binary code.20

Due to the constant evolution of both application domains and computing systems,21

this task becomes more and more complex. The difficulty comes from the fact that those22

evolution goes in the opposite direction.23

From the classical application development point of view, the priority is to make24

programmers efficient by providing richer programming environments. As an illustra-25

tion the Java SDK environment contained around 100 classes in the 1.0 release (1995)26

and 13,367 for the 1.5 (J2SE 5.0 2004) release (by counting the .class objects). These two27

orders of magnitude in complexity gives a very rich programming environment which28

makes programmers very efficient because of the “job oriented API” (JDBC for database29

applications, Graphic for gaming, etc).30

This organization improves programmer efficiency but augments the “distance”31

between the computing architecture and the problem to solve: the programmer generally32

focuses on problem-solving by using complex APIs based on high level layers, which33

augments differences between the data to compute on, and the hardware capabilities.34

A first solution to this problem was to delay the code generation at run-time by using35

JIT (Just-In-Time) compilation in Java. The hotspot compiler [2] is efficient, compiles36

1 This work was supported by theEuropean H2020 FET project OPRECOMP under Grant 732631
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on demand but is based on method count, not on hardware counter, nor on data set37

characteristics. JIT compilation needs a huge memory footprint and needs a long latency38

to react to new application behavior.39

In another domain, scientific computation applications, the programmer is aware40

of the underlying hardware, takes care of the performance by using efficient compilers41

and uses algorithms where the data accuracy is computed at the application level. To42

illustrate this, many examples are available in the classical book “Numerical Recipes” [3].43

A typical example is the conjugate gradient algorithm where the iteration number relies on44

a residue value. This value decreases during the computation and controls the end of the45

program.46

In this domain it could be interesting to do the computation with a reduced pre-47

cision, which allows computing faster because by reducing the memory bandwidth48

pressure, and switching to an improved precision at the end. This simple scheme is very49

complex to setup practically.50

In this article we present a new compilation infrastructure proof of concept that51

allows solving the two identified difficulties that classical compilation chain does not52

solve:53

• Make applications aware of the data-set characteristics and allow to take advantage54

of this knowledge to optimize code.55

• Render possible dynamic transprecision, i.e. allow transforming the binary code at56

run time to change the data types during the application run.57

We presents our compilation flow and the different steps. We also show three demon-58

strations examples to demonstrate the capabilities of our tool: a conversion of degree59

Celcius to degree Fahrenheit, a multiplication with a specialization on a data fixed at60

run-time and finally the computation of the square root with Newton’s algorithms.61

The article is composed of a section 2 where we introduce some other compilation62

approaches. The, section 3 presents the compilation objectives ans explains as well as the63

targeted compilation scenarios. Section 4 illustrates how the compilation chain works64

on small tutorial examples. Section 5 discusses the future evolution of this compilation65

infrastructure. Finally, section 6 concludes this paper.66

2. Related Works67

Many compiler works can be cited about compilation, but there are not so many68

works related to delayed code generation or at least a compilation scenario which allows69

taking optimization decision at a different time than the static compilation.70

2.1. Code Specialization71

All standard C compilers are able to do partial evaluation and, for example, able to72

replace expression containing constants by a resulting value.73

The initial idea to do run-time code specialization (i.e. partial evaluation) for the C74

language came from C. Consel in the 90’ [4]. But at that time the underlying hardware75

was simpler in terms of memory hierarchy and ALU capability.76

2.2. Install Time77

Many works have tried to do detect possible optimization during the program78

install on a new machine.79

ATLAS in 2001 [5] is a BLAS implementation with semi-automatic optimization80

detection. Other works including source code generation push the limit farther for other81

mathematical kernels: FFTW in 2005 [6] for FFT implementations and SPIRAL for linear82

algebra kernels [7].83

Interestingly, FFTW has a dynamic scheduler which chooses the best implementa-84

tion at run-time, depending on the FFT signal size.85
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2.3. High Level Intermediate Representation86

Leaving the C language offer opportunity to rely on high-level intermediate format.87

Java hostspot compiler [2] has an interesting strategy using different compiler strategy. It88

starts the execution by interpreting the code, then depending on the number of function89

calls, it applies different aggressiveness levels of compilation. But the strategy is only90

based on function call statistics and execution timing. There is no direct relation between91

the dataset and the compilation strategy and no vectorization strategy.92

JavaScript also uses just-in-time compilation strategy but both Java and Javascript93

have a very costly compilation phase as described in [8].94

A similar approach is described in this Vapor SIMD article [9] but no practical95

implementation is proposed.96

2.4. deGoal97

Another attempt was made with the deGoal tool [10]. This tool allows implementing98

similar compilation scenarios. The programming language was portable across similar99

SIMD architectures but was at assembly level which makes complex applications difficult100

do implement.101

3. Compiler Level Support for Transprecision102

This section presents challenges in terms of compilation for applications using103

transprecision.104

3.1. Transprecision and Challenges for Compilers105

Transprecision computing [11] is explored by the H2020 European project OPRE-106

COMP. The idea is to reduce energy consumption by using approximate computing. For107

example, the precision can be decreased using small float, i.e. 8-bit or 16-bit floating108

point numbers. The precision is adapted during the computation with criteria to use109

more precision at the end of the computation. This is particularly convenient for iterative110

mathematical applications where the iteration number is controlled by a diminishing111

value.112

One of the characteristics of transprecision is the fact that is adaptated at run-time113

and controlled by the application of the data size which is not known at compilation114

time. Compiler optimization in particular loop statements cannot be used in this case115

because the compiler does know when applications move to more precision.116

3.2. HybroLang : a New Language117

In this paper we propose HybroLang , a new language, developed within the118

proposed HybroGen compilation platform. It permits to declare more complex data119

types, like vector, data with varing length and multiple arithmetics: integer, float,120

complex numbvers, pixels, IP addresses, etc.121

3.2.1. Compiler: When Code Generation Should Arise ?122

There are different code generation times to generate a code for an application. In a123

standard development flow, the code is generated at static compilation time. Data values124

are resolved at run-time and with only one step of compilation before the execution,125

some optimization cannot be applied.126

Usually programmers want to write a small code with good performance on all127

computers. This is not the case in the real life, programmers need to specialize code for a128

specific architecture. Moreover, programmers develop different version of the code to129

adapt programs to data types like float, integer and different word size.130

With HybroGen we propose to generate instructions during the execution to take131

advantage of data values resolved at run-time. Our platform allows experimentations132

on multiple scenarios of code generation time.133
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3.2.2. Run-time Code Generation Scenarios134

Figure 1. Chronograms of different compilation scenarios. On the top the static compiler (a),
without any code specialization at run time. On the bottom our proposition for dynamic compi-
lation (b) with 3 scenarios: binary code specialization at program init, kernel init or application
controlled

Figure 1 explains our goal in terms of code generation. On the top of the figure, we135

illustrate the timing between static compilation (a) and execution time. We illustrate136

a classical use case where the execution is composed of a prelude, multiple kernel137

executions and a postlude.138

When the data set is not known at compile time, whatever the static compilation139

time devoted to the kernel compilation, the compiler should be conservative and could140

not take into account the data characteristics which could be used for optimization (loop141

bound, data values, needed precision, etc.).142

In our case we want to generate the binary code at run-time and use dynamic143

compilation (b). We list the following code generation scenarios:144

Program init: the code generation takes place at the beginning of the application and145

a minimal knowledge make small optimization possible. The binary code is146

generated once, and the binary code is called many times.147

Kernel init: in the second scenario, code generation is done at each kernel invocation.148

The data set information are so rich that the generated code is very efficient, thanks149

to the optimizer contained in the code generator. The code generation time could150

be amortized at each kernel call.151

Application driven: in some situation, the application has a knowledge of the context152

and the programmer want to have the control of the code generation. For example153

many mathematical applications have loops controlled by a "residue" value. This154

value can be used to decide when the code generation should be called to improve155

the precision.156

Those scenarios will be illustrated on some tutorial examples in section 4.157

3.2.3. Language158

In this paper, we propose HybroLang is a new language with syntax close to C pro-159

gramming language. We develop HybroLang to add support for dynamic compilation160

of applications with different targeted architectures. This language uses specific data161

types which are defined with a triplet type, vector size and word size. This language is162

used only to describe the part of kernel that we want to optimize, we named this part a163

compilette. The other part of the program is written with the language targeted, in this164
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paper we have chosen C language, but we can imagine other languages like JavaScript165

or python.166

3.2.4. Data and Code Generation Interleaving167

The main characteristics of our HybroGen environment are:168

• The possibility to delay the code generation and have versatile code generation169

scheme that will be demonstrated later in this article,170

• Variables are hardware registers,171

• There is no parenthesis expression to avoid local register allocation,172

• Special constructions #(expression) allows plugging expression results into the173

binary code. This point is very important; it allows to:174

– Insert values into binary code; thus avoid a memory access,175

– Change vector length at run-time,176

– Change the data type length at run-time.177

Those characteristics will be demonstrated in the later examples.178

3.3. HybroGen Platform179

Figure 2. Overview of HybroGen platform with 4 steps: (a) install, (b) compilation source to
source, (c) compilation source to binary and (d) execution

HybroGen is composed of 4 steps, shown in figure 2 which correspond to different180

times: install time, source to source compilation time, source to binary compilation time181

and execution time. At install time (a), the description of the instruction set architecture182

(ISA) is stored in a database. The compilation time (b) on figure 2 maps to the com-183

pilation source to source and is specific to the proposed HybroGen compilation flow.184

The input is a kernel described with HybroLang language described previously. Our185

compiler HybroGen implements different passes of compilation, like a classic compiler186

but at the output it produces a code in an existing programming language, for this paper187

it produces C code. HybroLang requests the database to construct a code generator188

which writes the correct encoding at run time. After using HybroLang , we use a com-189

piler for the second compilation time (c) like gcc or clang, in this paper we have used190

gcc. Finally, depending on the scenario choice, at execution time (d), the code of the191

compilette is executed which generates the instructions that are executed at the backend.192

4. Demonstration of HybroGen for Transprecision Applications193

In this section we present demonstrations and results of using HybroGen for trans-194

precision applications on different platforms like power or RISC-V.195

4.1. Experimental Platform196

To run demonstrations a system-level simulator and real platform are used. Qemu [12]197

is used to simulate POWER8 and RISC-V architectures. This simulator exists for different198
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architectures like x86, MIPS or ARM and support different variants. For example, there is199

a version for RISC-V 32 bits and another for the 64 bits architecture. In this paper we use200

qemu-riscv32 version 5.0.0 and qemu-ppc64le version 5.0.0. We also verify our results201

on a physical POWER8. For the static compilation, e.g., the source to binary compilation,202

we use riscv32-elf-gcc-9.3.0 and powerpc64le-linux-gnu-gcc-8.203

Figure 3. HybroLang compilation chain. Containing classical compilation steps: lexer and parser,
generic and specific IR optimizations and also specific ones: using a SQL data base to store
instructions specifications and C code generation, which will act as polymorphic binary code
generator at run-time

The figure 3 shows the different steps of our compilation chain from the figure 2204

section (b) which rewrites the HybroLang section of the application to a C version which205

will be able to generate multiple binary version. This capability to generate multiple206

binary version is very important on muliple contexts: adapt to hardware characteristics,207

dataset parameter and, as we focus on this article, on dataset precision.208

4.2. Application Scenarios of HybroGen209

Dynamic compilation allows code generation at different times during the execution210

of a program. Figure 4 presents three moments to generate instructions corresponding211

to the kernel similar to Figure 1 but in an algorithmic form. In the first case, the code is212

generated only once and at program initialization. This case illustrates a situation where213

the generated code is execute more than once, N times in the figure, to amortize the cost214

of dynamic compilation. In the figure 4 we can see that parameter of the execution, i.e. i,215

is not used for the code generation but it can use in parameter of the code generated call.216

We also see the specialization parameter s which is a parameter of the generated function217

genAdd in this figure. In the second case figure 4 part (2), the code generation takes218

place just before the execution of the kernel, this maps to the kernel initialization. In this219

case, we want to generate the most optimized code which is specific to one execution220

with constant injection. The cost of the code generation can be amortized because this221

compilette uses less instructions than a classical compiler. In the last case figure 4 part222

(3), code generation can take place several times during the execution and it sets off by a223

condition on data value. The code generation is driven by the application and especially224

the execution and results values. In transprecision applications, this ability is very useful225

to adapt precision according to data value.226

Figure 4. Code generation time where i is the compilette parameters, s corresponds to the
parameters to specialize to compilette and t is the threshold which is a condition to re-generate
code
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4.3. Demonstration Example227

To illustrate the three cases described in figure 4, we have chosen three examples:228

conversion Celcius to Fahrenheit, multiplication with a specialization on a constant229

value and square root with Newton’s algorithm. The latter example demonstrates the230

advantage of using HybroGen for transprecision applications.231

4.3.1. Celcius to Fahrenheit232

The first demonstration is the conversion of degree Celcius to degree Fahrenheit.233

This example illustrates the case of an expression of mutliple arithmetics operations. We234

have chosen this code example for its simplicity. The code of the compilette is described235

with HybroLang language as following:236

Listing 1: Celcius to Fahenreit compilette

h2_insn_t * genC2F ( h2_insn_t * ptr )237

{238

#[239

i n t 32 1 C2F ( i n t 32 1 a )240

{241

i n t 32 1 r ;242

r = a * 9 / 5 + 3 2 ;243

return r ;244

}245

]#246

return ( h2_insn_t * ) ptr ;247

}248

In all code examples, the compilette begins with the two symbols #[ and finish with249

]#. Only the compilette is rewrite in C language by HybroLang . Other lines, corresponds250

to the prototype of the C function and the last line is the return of the function.251

This example only uses arithmetic operations and we can see that HybroLang allows252

affectation with more than one operator. The function named genC2F contains the253

description of the compilette and returns a pointer to the beginning of the code generated.254

The compilette C2F is called in the main program with different parameters which255

corresponds to temperature values that we want to convert. This is a typical example of256

one code generation for several calls to generated code. A more sophisticated version257

can have data types (int in this example) in parameters and the same compilette can258

generate code for int, float 16 bits, float 32 bits or whatever. The data value description is259

very flexible with HybroLang .260

4.3.2. Multiplication with Specialization261

In this part we focus on a small example of using specialization with HybroLang ,262

which illustrates a functionality specific to HybroGen : injected value at run-time. This263

code is as small as possible to focus on specialization on data at run-time. We have chosen264

a compilette which computes a multiplication of a value by a constant. This constant265

is not known at static compilation time, but only at execution time. HybroGen can266

inject the value, b in the following code identified by #(b) in the compilette , during the267

execution. The generator named genMult written using C language and the compilette268

mult described with HybroLang are given below:269

Listing 2: Multiplication with specialization compilette

h2_insn_t * genMult ( h2_insn_t * ptr , i n t b )270

{271

#[272

i n t 32 1 mult ( i n t 32 1 a )273

{274
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i n t 32 1 r ;275

r = #( b ) * a ;276

return r ;277

}278

]#279

return ( h2_insn_t * ) ptr ;280

}281

The sentence, which contains #(b) is an example of data injection which imple-282

ments code specialization at run time. The result of this compilette is a function which283

multiplies by the specific constant b.284

4.3.3. Square Root with Newton’s Algorithm285

This application is a perfect example of using transprecision for computation. The286

computation of the square root with Newton’s algorithm uses a function for one step287

of the iteration. At each step, an approximate value of the square root of the value u is288

computed with the formula: (u + (val/u))/2 where val is the precision. This function289

written with HybroLang is:290

Listing 3: Square root with Newton’s algorithm compilette

h2_insn_t * g e n I t e r a t e ( h2_insn_t * ptr , i n t FloatWidth )291

{292

#[293

f l t # ( FloatWidth ) 1 i t e r a t e ( f l t # ( FloatWidth ) 1 u ,294

f l t # ( FloatWidth ) 1 val , f l t # ( FloatWidth ) 1 div )295

{296

f l t # ( FloatWidth ) 1 r , tmp1 , tmp2 ;297

tmp1 = val / u ;298

tmp2 = u + tmp1 ;299

return tmp2 / div ;300

}301

]#302

303

return ( h2_insn_t * ) ptr ;304

}305

At the beginning of the application, float precision is sufficient to compute an306

approximate result but during the execution if there is no difference between the current307

and the previous result, then the application generates a new code with better precision.308

The program stops when a step of the iteration has achieved a result with the required309

precision. The main program is described below:310

Listing 4: Square root with Newton’s algorithm main

i n t main ( i n t argc , char * * argv )311

{312

. . .313

f P t r 1 = ( p i f f ) g e n I t e r a t e ( ptr , FLOAT ) ;314

do315

{316

i f ( ( d i f f < prec f ) && i s F l o a t )317

{ / * Code g e n e r a t i o n with d o u b l e f o r b e t t e r p r e c i s i o n * /318

f P t r 2 = ( pidd ) g e n I t e r a t e ( ptr , DOUBLE) ;319

i s F l o a t = Fa l se ;320

}321

value = next ;322

next = ( i s F l o a t ) ? f P t r 1 ( value , af , 2 . 0 ) : f P t r 2 ( value , af , 2 . 0 ) ;323
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d i f f = ABS( next − value ) ;324

} while ( i s F l o a t || ( ! i s F l o a t && ( d i f f > precd ) ) ) ;325

}326

In this code, we can see two calls to genIterate, which is the function responsible327

for code generation, the first with float precision and the second with double precision.328

The computation of one step of iterations corresponds to the call of fPtr1 or fPtr2 where329

value maps to the previous result, af is the precision that we want to obtain. At the end330

of the loop, we compute the difference between the current and the previous result to331

decide if the precision has been reached to change to double precision or to stop the332

program.333

4.4. An example of HybroGen Compilation for Multiplication with Specialization334

To detail the different step of HybroGen flow, we provide an example of the appli-335

cation Multiplication with specialization described previously.336

4.4.1. Static Compilation with HybroLang337

HybroLang compiler transforms the compilette in C Code which is composed of338

call to generate function. Each instruction of the compilette corresponds to one or339

more call to generate functions which are in charge to select instructions based on data340

types and type of each operand. In Multiplication with specialization, the main341

operation is the multiplication, HybroLang converts that in a call to power_genMUl_3 or342

riscv_genMUl_3 respectively for POWER and RISC-V architecture, the number 3 refers343

to the number of operands because C language does not allow overloaded function. In344

this example, the first and the second parameters are the same and maps to an integer345

register with a word size fixed to 32 bits and initialized with value of b to specialize in346

this code on b. Finally this register contains the result of the multiplication. The third347

parameter maps to the first register in input which is represented by the variable a in the348

initial code. To summaize, the generation of the code for the multiplication of a by b to349

transform on two functions of generation as following:350

h2_sValue_t a = { REGISTER , ’ i ’ , 1 , 32 , 10 , 0 } ;351

h2_sValue_t h2_0 = { REGISTER , ’ i ’ , 1 , 32 , 6 , 0 } ;352

riscv_genMV_2 ( h2_0 , ( h2_sValue_t ) {VALUE, ’ i ’ , 1 , 32 , 0 , ( b ) } ) ;353

riscv_genMUL_3 ( h2_0 , h2_0 , a ) ;354

4.4.2. Back-end Code Generation Using Database Request355

Generation functions are composed of a conditional structure to select the best356

instruction. For example, riscv_genMV_2 is used to select instruction for move operation357

with 2 operands. This function is generated by HybroLang as following:358

void riscv_genMV_2 ( h2_sValue_t P0 , h2_sValue_t P1 ) {359

i f ( ( P0 . a r i t h == ’ i ’ ) && ( P0 . wLen <= 32) && ( P0 . vLen == 1)360

&& i s R e g i s t e r ( P0 ) && i s R e g i s t e r ( P1 ) ) {361

RV32I_MV_RR_I_32 ( P0 . regNro , P1 . regNro ) ;362

}363

e lse i f ( ( P0 . a r i t h == ’ i ’ ) && ( P0 . wLen <= 32) && ( P0 . vLen == 1)364

&& i s R e g i s t e r ( P0 ) && isValue ( P1 ) ) {365

RV32I_MV_RI_I_32 ( P0 . regNro , P1 . valueImm ) ;366

}367

e lse {368

h2_codeGenerationOK = 0 ;369

}370

}371
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In this function, the first case maps to move operation from register P1 to register372

P0, the second case corresponds to move operation of integer P1 to register P0. We373

also generated error messages if there is no operation for this operand. For example,374

move a float into a register is not possible with this selector function. Functions like375

RV32I_MV_RI_I_32 called by selector function write instruction encodage. This macro376

is generated with SQL request to a database which contains instructions encodage and377

format for different architectures and variants. The Application Binary Interface (ABI) is378

also described in the database and requested by HybroLang to build c code.379

4.4.3. Binary Code Generation at Execution380

Finally, the execution of this compilette on RISC-V architecture produces these381

instructions:382

0 x19008 : o r i t1 , zero , 3383

0 x1900c : mul t1 , t1 , a0384

0 x19010 : mv t0 , t1385

0 x19014 : mv a0 , t0386

0 x19018 : r e t387

The same program executed on POWER gives this result:388

0 x4000021260 : l i r15 , 3389

0 x4000021264 : mullw r15 , r15 , r3390

0 x4000021268 : addi r14 , r15 , 0391

0 x400002126c : addi r3 , r14 , 0392

0 x4000021270 : b l r393

Register t1 and r15 respectively for RISC-V and POWER, contain the specialize value:394

3 in this execution. This value is multiplying with instructions mull and mullw by the395

value in input register a0 or r15. To improve the performances of HybroGen , some396

passes of optimization are needed to reduce to number of move. For example, the result397

of the multiplication can be stored in t1 or r3, the ouput register for respectively RISC-V398

and POWER.399

The example below shows instructions generated with a specialize value fixed to -5:400

0 x4000021260 : l i r15 ,−5401

0 x4000021264 : mullw r15 , r15 , r3402

0 x4000021268 : addi r14 , r15 , 0403

0 x400002126c : addi r3 , r14 , 0404

0 x4000021270 : b l r405

A careful reader has noticed that those tutorial codes are not optimal. We know406

that there is specialized instructions which use constant values, these examples are only407

to explain the workflow and shows that HybroGen could generate multiple binary code408

from the same compilette.409

4.5. Metrics and Evaluation of HybroGen Flow410

To evaluate HybroGen compilation flow, the number of Lines of Code (LoC) is a411

good indicator to evaluate the extra cost to port C code to hybrid HybroLang and C412

code. Table 1 presents the number of LoC for three applications and for the different413

parts of the code. Compilette code is written with HybroLang and we can see that it is414

very small 12 and 14 lines depending on the application. This code is compiled with415

HybroLang which generates C code specific for an architecture. For all the applications416

and the two targeted architecture, the number of lines of C code generated is between417

96 and 284. This difference can be explained by the number of instructions in the418

database for each architecture and for the semantic instructions and arithmetic use in419

the application. The latter column corresponds to C code use for management like call420

to the generators, call to generated code and parameters for management. This code is421
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the same for all architectures and depends on applications. For these applications the422

number of lines of code is between 28 and 55.

Applications Compilette code Generated code Main without
(HybroLang ) (C) compilette (C)

RISC-V POWER
Celcius to Fahrenheit 12 179 284 36
Multiplication 12 96 102 28
with specialization
Square root 14 159 188 55
with Newton algorithm

Table 1: Lines of Code (LoC) of C and HybroLang for demonstration applications

423

5. Discussion and working direction424

This article has presented a new compilation infrastructure called HybroGen . We425

have shown that our tool is already working on small examples, which was a challenge426

in term of compilation chain complexity.427

Our technical targeted metrics are (1) code generation speed and (2) code generation428

size. As we use the same code generation scheme than deGoal [10] we already know429

that those two metrics are similar and faster and smaller than any JIT compiler.430

As scientific targets we want to follow two main objectives which are:431

Scientific support for transprecision: we target to support applications containing run-432

time transprecision and support scientific transprecision applications. This ob-433

jective is very useful on hardware platforms which contains many floating point434

representations. For example, RISC-V platform from GreenWaves, the GAP9, has435

support for floating point variants of 8, 16 and 32 bits. RISC-V standard platform436

has support for 32 and 64 bits while IBM Power8 platform has support for 32, 64437

bits. Those platforms are good candidates.438

Compilation support for non Von Neumann architecture: we also support code gen-439

eration for “in memory computing” devices[13]. On those devices the difficulty440

comes from the fact that there is two synchronized instruction flows to generate.441

This platform is not in the scope of this article.442

Metrics to fight with : this article has showed a proof of concept an initial results. We’ll443

continue to improve our HybroGen tool and in the future experiments we will444

focus on other metrics which are :445

Speedup for scientific applications : thanks to our run-time optimization we446

will have speedups that will help scientific applications which need run-time447

transprecision support. Mainly those whose rely on a residue value that448

decrease.449

Code generation speed : as we can regenerate the binary code very often, it’s very450

important to generate it as fast as possible. HybroGen is designed to generate451

binary code generator which are very fast because our compiler is able to452

restrict the code generation to the only instructions that are needed by the453

application.454

Code generator size thanks to the previous point, our final code generator are455

very small (KB order or magnitude), does not rely on external library and can456

be suited for embedded systems.457

The table 2 summarized the current supported platforms.458

Our HybroGen infrastructure will be open source but is not yet ready for a public459

release. Nevertheless, it is possible to the HybroLang input sources, the output C and460
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ISA Instruction set emulator Hardware
RISCV qemu-riscv32 GreenWave / Gap9 platform

CSRAM qemu-riscv32 CEA / RiscV + In MemoryComputing
+ In Memory Processing plugin

Power qemu-ppc64le IBM / Power8 systems
Kalray kvx-mppa Kalray / Coolidge

Table 2: Supported hardware platforms, working both in simulation mode and on
hardware platforms

a Makefile containing the commands to run the application. The public repository is461

https://github.com/oprecomp/HybroLang and contains a README which explains462

how to reproduce the experimentation and run the applications.463

6. Conclusion464

In this article we have demonstrated the opportunity to break classical compilation465

static strategies and open the door to make applications auto-adaptive to the context.466

We have demonstrated three new code generation scenarios which have binary467

code generation at run-time in common. The first one shows only binary code generation,468

the second code specialization at run time and the third shows a code specialization469

based on transprecision.470

Our HybroGen infrastructure proof of concept give to the programmer the possibil-471

ity to control his application and link data parameter to the architecture.472

We have shown in this article that those capabilities are useful, does not rely on473

complex and big JIT infrastructures and the binary code is small and fast.474

We continue to extend our HybroGen infrastructure and develop demonstrations475

of its capabilities in two directions: (1) on scientific demonstrators of the transprecision476

capabilities because it is a challenge for IA applications and (2) on heterogeneity, i.e.477

the capability to generate binary code at run-time for multiple processors from high478

performance Power8 up to small RISC-V compute nodes.479

Our HybroGen infrastructure will be open-source but has not reached a release480

quality. Nevertheless, we share the code examples version (HybroLang , generated C481

code) in the following repository https://github.com/oprecomp/HybroLang. Running482

those code allows reproducing the code generation scenarios described in this article.483
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