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Abstract: This article describes a software environment called HybroGen , which helps to experi-
ment binary code generation at run-time. As computing architectures are getting more complex,
the application performances become data-dependent. The proposed experimental platform is
helpful in programming applications that can be reconfigured at run-time in order adapted for a
new data environment. HybroGen platform is adapted to heterogeneous architectures and can
generate instructions for different target. This platform allows to go farther than classical JIT
compilation in many directions: the code generator is smaller by three orders of magnitude, faster
by three orders of magnitude compared to JIT (Just-In-Time) platforms and allows making code
transformation that is impossible in traditional compilation scheme like code generation for non
Von Neumann accelerators or dynamic code transformations for transprecision. The latter will
be illustrated in a code example: the square root with Newton’s algorithm. We also illustre the
proposed HybroGen platform with two others examples: a multiplication with a specialization on
a value determine at run-time and a convertion of degree Celcius to degree Fahrenheit. This article
presents a proof of concept of the proposed HybroGen platform in terms of its functionalities, and
demonstrate the working status.

Keywords: transprecision; dynamic compilation; heterogeneous; just in time; code specialization

1. Introduction

Compilation and code generation! are 50 years old research domains, parallel to
the computer architecture research domain [1]. Compilers have the difficult task to
transform a source code application into a running binary code.

Due to the constant evolution of both application domains and computing systems,
this task becomes more and more complex. The difficulty comes from the fact that those
evolution goes in the opposite direction.

From the classical application development point of view, the priority is to make
programmers efficient by providing richer programming environments. As an illustra-
tion the Java SDK environment contained around 100 classes in the 1.0 release (1995)
and 13,367 for the 1.5 (J2SE 5.0 2004) release (by counting the .class objects). These two
orders of magnitude in complexity gives a very rich programming environment which
makes programmers very efficient because of the “job oriented API” (JDBC for database
applications, Graphic for gaming, etc).

This organization improves programmer efficiency but augments the “distance’
between the computing architecture and the problem to solve: the programmer generally
focuses on problem-solving by using complex APIs based on high level layers, which
augments differences between the data to compute on, and the hardware capabilities.

A first solution to this problem was to delay the code generation at run-time by using
JIT (Just-In-Time) compilation in Java. The hotspot compiler [2] is efficient, compiles
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on demand but is based on method count, not on hardware counter, nor on data set
characteristics. JIT compilation needs a huge memory footprint and needs a long latency
to react to new application behavior.

In another domain, scientific computation applications, the programmer is aware
of the underlying hardware, takes care of the performance by using efficient compilers
and uses algorithms where the data accuracy is computed at the application level. To
illustrate this, many examples are available in the classical book “Numerical Recipes” [3].
A typical example is the conjugate gradient algorithm where the iteration number relies on
a residue value. This value decreases during the computation and controls the end of the
program.

In this domain it could be interesting to do the computation with a reduced pre-
cision, which allows computing faster because by reducing the memory bandwidth
pressure, and switching to an improved precision at the end. This simple scheme is very
complex to setup practically.

In this article we present a new compilation infrastructure proof of concept that
allows solving the two identified difficulties that classical compilation chain does not
solve:

*  Make applications aware of the data-set characteristics and allow to take advantage
of this knowledge to optimize code.

*  Render possible dynamic transprecision, i.e. allow transforming the binary code at
run time to change the data types during the application run.

We presents our compilation flow and the different steps. We also show three demon-
strations examples to demonstrate the capabilities of our tool: a conversion of degree
Celcius to degree Fahrenheit, a multiplication with a specialization on a data fixed at
run-time and finally the computation of the square root with Newton’s algorithms.

The article is composed of a section 2 where we introduce some other compilation
approaches. The, section 3 presents the compilation objectives ans explains as well as the
targeted compilation scenarios. Section 4 illustrates how the compilation chain works
on small tutorial examples. Section 5 discusses the future evolution of this compilation
infrastructure. Finally, section 6 concludes this paper.

2. Related Works

Many compiler works can be cited about compilation, but there are not so many
works related to delayed code generation or at least a compilation scenario which allows
taking optimization decision at a different time than the static compilation.

2.1. Code Specialization

All standard C compilers are able to do partial evaluation and, for example, able to
replace expression containing constants by a resulting value.

The initial idea to do run-time code specialization (i.e. partial evaluation) for the C
language came from C. Consel in the 90" [4]. But at that time the underlying hardware
was simpler in terms of memory hierarchy and ALU capability.

2.2. Install Time

Many works have tried to do detect possible optimization during the program
install on a new machine.

ATLAS in 2001 [5] is a BLAS implementation with semi-automatic optimization
detection. Other works including source code generation push the limit farther for other
mathematical kernels: FFTW in 2005 [6] for FFT implementations and SPIRAL for linear
algebra kernels [7].

Interestingly, FFTW has a dynamic scheduler which chooses the best implementa-
tion at run-time, depending on the FFT signal size.
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2.3. High Level Intermediate Representation

Leaving the C language offer opportunity to rely on high-level intermediate format.
Java hostspot compiler [2] has an interesting strategy using different compiler strategy. It
starts the execution by interpreting the code, then depending on the number of function
calls, it applies different aggressiveness levels of compilation. But the strategy is only
based on function call statistics and execution timing. There is no direct relation between
the dataset and the compilation strategy and no vectorization strategy.

JavaScript also uses just-in-time compilation strategy but both Java and Javascript
have a very costly compilation phase as described in [8].

A similar approach is described in this Vapor SIMD article [9] but no practical
implementation is proposed.

2.4. deGoal

Another attempt was made with the deGoal tool [10]. This tool allows implementing
similar compilation scenarios. The programming language was portable across similar
SIMD architectures but was at assembly level which makes complex applications difficult
do implement.

3. Compiler Level Support for Transprecision

This section presents challenges in terms of compilation for applications using
transprecision.

3.1. Transprecision and Challenges for Compilers

Transprecision computing [11] is explored by the H2020 European project OPRE-
COMP. The idea is to reduce energy consumption by using approximate computing. For
example, the precision can be decreased using small float, i.e. 8-bit or 16-bit floating
point numbers. The precision is adapted during the computation with criteria to use
more precision at the end of the computation. This is particularly convenient for iterative
mathematical applications where the iteration number is controlled by a diminishing
value.

One of the characteristics of transprecision is the fact that is adaptated at run-time
and controlled by the application of the data size which is not known at compilation
time. Compiler optimization in particular loop statements cannot be used in this case
because the compiler does know when applications move to more precision.

3.2. HybroLang: a New Language

In this paper we propose HybroLang, a new language, developed within the
proposed HybroGen compilation platform. It permits to declare more complex data
types, like vector, data with varing length and multiple arithmetics: integer, float,
complex numbvers, pixels, IP addresses, etc.

3.2.1. Compiler: When Code Generation Should Arise ?

There are different code generation times to generate a code for an application. In a
standard development flow, the code is generated at static compilation time. Data values
are resolved at run-time and with only one step of compilation before the execution,
some optimization cannot be applied.

Usually programmers want to write a small code with good performance on all
computers. This is not the case in the real life, programmers need to specialize code for a
specific architecture. Moreover, programmers develop different version of the code to
adapt programs to data types like float, integer and different word size.

With HybroGen we propose to generate instructions during the execution to take
advantage of data values resolved at run-time. Our platform allows experimentations
on multiple scenarios of code generation time.
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3.2.2. Run-time Code Generation Scenarios

Compilation Execution time

(a) Static <A >

Multiple (10) kernel executions

(b )Dynamic Prooram imit < [TEFIEEELET >
Kernel init qmﬂmm

Application controlled Gﬂ[ﬂﬂ:ﬂﬂ)

|:| Code execution " Code generation

Figure 1. Chronograms of different compilation scenarios. On the top the static compiler (a),
without any code specialization at run time. On the bottom our proposition for dynamic compi-
lation (b) with 3 scenarios: binary code specialization at program init, kernel init or application
controlled

Figure 1 explains our goal in terms of code generation. On the top of the figure, we
illustrate the timing between static compilation (a) and execution time. We illustrate
a classical use case where the execution is composed of a prelude, multiple kernel
executions and a postlude.

When the data set is not known at compile time, whatever the static compilation
time devoted to the kernel compilation, the compiler should be conservative and could
not take into account the data characteristics which could be used for optimization (loop
bound, data values, needed precision, efc.).

In our case we want to generate the binary code at run-time and use dynamic
compilation (b). We list the following code generation scenarios:

Program init: the code generation takes place at the beginning of the application and
a minimal knowledge make small optimization possible. The binary code is
generated once, and the binary code is called many times.

Kernel init: in the second scenario, code generation is done at each kernel invocation.
The data set information are so rich that the generated code is very efficient, thanks
to the optimizer contained in the code generator. The code generation time could
be amortized at each kernel call.

Application driven: in some situation, the application has a knowledge of the context
and the programmer want to have the control of the code generation. For example
many mathematical applications have loops controlled by a "residue” value. This
value can be used to decide when the code generation should be called to improve
the precision.

Those scenarios will be illustrated on some tutorial examples in section 4.

3.2.3. Language

In this paper, we propose HybroLang is a new language with syntax close to C pro-
gramming language. We develop HybroLang to add support for dynamic compilation
of applications with different targeted architectures. This language uses specific data
types which are defined with a triplet type, vector size and word size. This language is
used only to describe the part of kernel that we want to optimize, we named this part a
compilette. The other part of the program is written with the language targeted, in this
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paper we have chosen C language, but we can imagine other languages like JavaScript
or python.

3.2.4. Data and Code Generation Interleaving
The main characteristics of our HybroGen environment are:

*  The possibility to delay the code generation and have versatile code generation
scheme that will be demonstrated later in this article,

¢ Variables are hardware registers,

®  There is no parenthesis expression to avoid local register allocation,

*  Special constructions #(expression) allows plugging expression results into the
binary code. This point is very important; it allows to:

- Insert values into binary code; thus avoid a memory access,
—  Change vector length at run-time,
—  Change the data type length at run-time.

Those characteristics will be demonstrated in the later examples.

3.3. HybroGen Platform

Supported arch:

- RISCV: GAP8/9 P

- Power8/9 IBM - ISA fiescrlptlon
- Registers

- gemu-riscv32 - Power8
- gemu-ppc64le

(a) Install Time (b) Compilation time (c) Compilation time (d) Execution time
Source to source Static compilation
transformation

Figure 2. Overview of HybroGen platform with 4 steps: (a) install, (b) compilation source to
source, (c) compilation source to binary and (d) execution

HybroGen is composed of 4 steps, shown in figure 2 which correspond to different
times: install time, source to source compilation time, source to binary compilation time
and execution time. At install time (a), the description of the instruction set architecture
(ISA) is stored in a database. The compilation time (b) on figure 2 maps to the com-
pilation source to source and is specific to the proposed HybroGen compilation flow.
The input is a kernel described with HybroLang language described previously. Our
compiler HybroGen implements different passes of compilation, like a classic compiler
but at the output it produces a code in an existing programming language, for this paper
it produces C code. HybroLang requests the database to construct a code generator
which writes the correct encoding at run time. After using HybroLang , we use a com-
piler for the second compilation time (c) like gcc or clang, in this paper we have used
gcc. Finally, depending on the scenario choice, at execution time (d), the code of the
compilette is executed which generates the instructions that are executed at the backend.

4. Demonstration of HybroGen for Transprecision Applications

In this section we present demonstrations and results of using HybroGen for trans-
precision applications on different platforms like power or RISC-V.

4.1. Experimental Platform

To run demonstrations a system-level simulator and real platform are used. Qemu [12]
is used to simulate POWERS and RISC-V architectures. This simulator exists for different
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architectures like x86, MIPS or ARM and support different variants. For example, there is
a version for RISC-V 32 bits and another for the 64 bits architecture. In this paper we use
gemu-riscv32 version 5.0.0 and gemu-ppcé64le version 5.0.0. We also verify our results
on a physical POWERS. For the static compilation, e.g., the source to binary compilation,
we use riscv32-elf-gcc-9.3.0 and powerpc64le-linux-gnu-gec-8.

Intermediate "
HybroLang representation Intermediate C code binary

source file (IR) ——— > | representation generator
(IR)

Figure 3. HybroLang compilation chain. Containing classical compilation steps: lexer and parser,
generic and specific IR optimizations and also specific ones: using a SQL data base to store
instructions specifications and C code generation, which will act as polymorphic binary code
generator at run-time

The figure 3 shows the different steps of our compilation chain from the figure 2
section (b) which rewrites the HybroLang section of the application to a C version which
will be able to generate multiple binary version. This capability to generate multiple
binary version is very important on muliple contexts: adapt to hardware characteristics,
dataset parameter and, as we focus on this article, on dataset precision.

4.2. Application Scenarios of HybroGen

Dynamic compilation allows code generation at different times during the execution
of a program. Figure 4 presents three moments to generate instructions corresponding
to the kernel similar to Figure 1 but in an algorithmic form. In the first case, the code is
generated only once and at program initialization. This case illustrates a situation where
the generated code is execute more than once, N times in the figure, to amortize the cost
of dynamic compilation. In the figure 4 we can see that parameter of the execution, i.e. i,
is not used for the code generation but it can use in parameter of the code generated call.
We also see the specialization parameter s which is a parameter of the generated function
genAdd in this figure. In the second case figure 4 part (2), the code generation takes
place just before the execution of the kernel, this maps to the kernel initialization. In this
case, we want to generate the most optimized code which is specific to one execution
with constant injection. The cost of the code generation can be amortized because this
compilette uses less instructions than a classical compiler. In the last case figure 4 part
(3), code generation can take place several times during the execution and it sets off by a
condition on data value. The code generation is driven by the application and especially
the execution and results values. In transprecision applications, this ability is very useful
to adapt precision according to data value.

1. Program init 2. Before kernel 3. During kernel
Jadd <s> <i> Jadd <s><i> Jadd <t><i>
main main main
|[Add = genAdd(s) while (...): [Add = genAdd(FLOAT)|
while (N): Add = genAdd(s) while (f(t)):
ires = Add() res = Add()
if (g(t)):
Add = Add(DOUBLE

[ ] Code generation | gen ( )

I Call code generated

Figure 4. Code generation time where i is the compilette parameters, s corresponds to the
parameters to specialize to compilette and t is the threshold which is a condition to re-generate
code



Version June 11, 2021 submitted to J. Low Power Electron. Appl. 7 of 13

271

272

274

4.3. Demonstration Example

To illustrate the three cases described in figure 4, we have chosen three examples:
conversion Celcius to Fahrenheit, multiplication with a specialization on a constant
value and square root with Newton’s algorithm. The latter example demonstrates the
advantage of using HybroGen for transprecision applications.

4.3.1. Celcius to Fahrenheit

The first demonstration is the conversion of degree Celcius to degree Fahrenheit.
This example illustrates the case of an expression of mutliple arithmetics operations. We
have chosen this code example for its simplicity. The code of the compilette is described
with HybroLang language as following:

Listing 1: Celcius to Fahenreit compilette
h2_insn_t * genC2F(h2_insn_t x ptr)
{

#[

int 32 1 C2F (int 32 1 a)

{
int 32 1 r;
r=a=*9/5+ 32;
return r;

}

1#

return (h2_insn_t =) ptr;

In all code examples, the compilette begins with the two symbols #[ and finish with
J#. Only the compilette is rewrite in C language by HybroLang . Other lines, corresponds
to the prototype of the C function and the last line is the return of the function.

This example only uses arithmetic operations and we can see that HybroLang allows
affectation with more than one operator. The function named genC2F contains the
description of the compilette and returns a pointer to the beginning of the code generated.
The compilette C2F is called in the main program with different parameters which
corresponds to temperature values that we want to convert. This is a typical example of
one code generation for several calls to generated code. A more sophisticated version
can have data types (int in this example) in parameters and the same compilette can
generate code for int, float 16 bits, float 32 bits or whatever. The data value description is
very flexible with HybroLang .

4.3.2. Multiplication with Specialization

In this part we focus on a small example of using specialization with HybroLang,
which illustrates a functionality specific to HybroGen : injected value at run-time. This
code is as small as possible to focus on specialization on data at run-time. We have chosen
a compilette which computes a multiplication of a value by a constant. This constant
is not known at static compilation time, but only at execution time. HybroGen can
inject the value, b in the following code identified by #(b) in the compilette , during the
execution. The generator named genMult written using C language and the compilette
mult described with HybroLang are given below:

Listing 2: Multiplication with specialization compilette

h2_insn_t * genMult(h2_insn_t * ptr, int b)
{

#[

int 32 1 mult (int 32 1 a)

{
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275 int 32 1 r ;

276 r = #(b) * a,

277 return r;

278 }

279 ]#

280 return (h2_insn_t *) ptr;

281 }

202 The sentence, which contains #(b) is an example of data injection which imple-

2es ments code specialization at run time. The result of this compilette is a function which
2ea multiplies by the specific constant b.

205 4.3.3. Square Root with Newton’s Algorithm

280 This application is a perfect example of using transprecision for computation. The
:e7  computation of the square root with Newton'’s algorithm uses a function for one step
208 Of the iteration. At each step, an approximate value of the square root of the value u is
20 computed with the formula: (u + (val/u))/2 where val is the precision. This function
200 written with HybroLang is:

Listing 3: Square root with Newton’s algorithm compilette
201 h2_insn_t + genlterate(h2_insn_t = ptr, int FloatWidth)

202 {

203 #[

208 flt #(FloatWidth) 1 iterate(flt #(FloatWidth) 1 u,
208 flt #(FloatWidth) 1 val, flt #(FloatWidth) 1 div )
206 {

207 flt #(FloatWidth) 1 r, tmpl, tmp2;

208 tmpl = val / u,

200 tmp2 = u + tmpl;

300 return tmp2 / div;

301 }

302 ]#

304 return (h2_insn_t =) ptr;

305 }

306 At the beginning of the application, float precision is sufficient to compute an

sz approximate result but during the execution if there is no difference between the current
s and the previous result, then the application generates a new code with better precision.
s The program stops when a step of the iteration has achieved a result with the required
s10 precision. The main program is described below:

Listing 4: Square root with Newton’s algorithm main

su  int main(int argc, char xxargv)

312 {

314 fPtrl = (piff) genlterate (ptr, FLOAT);

315 dO

316 {

317 if ((diff < precf) && isFloat)

318 { /+ Code generation with double for better precision =/
310 fPtr2 = (pidd) genlterate (ptr, DOUBLE);

320 isFloat = False;

321 }

322 value = next;

323 next = (isFloat)?fPtrl(value, af, 2.0):fPtr2(value, af, 2.0);
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diff = ABS(next — value);
} while ( isFloat || (!isFloat && (diff > precd)));

In this code, we can see two calls to genlterate, which is the function responsible
for code generation, the first with float precision and the second with double precision.
The computation of one step of iterations corresponds to the call of fPtrl or fPtr2 where
value maps to the previous result, af is the precision that we want to obtain. At the end
of the loop, we compute the difference between the current and the previous result to
decide if the precision has been reached to change to double precision or to stop the
program.

4.4. An example of HybroGen Compilation for Multiplication with Specialization

To detail the different step of HybroGen flow, we provide an example of the appli-
cation Multiplication with specialization described previously.

4.4.1. Static Compilation with HybroLang

HybroLang compiler transforms the compilette in C Code which is composed of
call to generate function. Each instruction of the compilette corresponds to one or
more call to generate functions which are in charge to select instructions based on data
types and type of each operand. In Multiplication with specialization, the main
operation is the multiplication, HybroLang converts that in a call to power_genMUI_3 or
riscv_genMUI_3 respectively for POWER and RISC-V architecture, the number 3 refers
to the number of operands because C language does not allow overloaded function. In
this example, the first and the second parameters are the same and maps to an integer
register with a word size fixed to 32 bits and initialized with value of b to specialize in
this code on b. Finally this register contains the result of the multiplication. The third
parameter maps to the first register in input which is represented by the variable a in the
initial code. To summaize, the generation of the code for the multiplication of a by b to
transform on two functions of generation as following:

h2_sValue_t a = {REGISTER, ’i’, 1, 32, 10, 0};

h2_sValue_t h2_0 = {REGISTER, ’i’, 1, 32, 6, 0};
riscv_genMV_2(h2_0, (h2_sValue_t) {VALUE, "i’, 1, 32, 0, (b)});
riscv_genMUL_3(h2_0, h2_0, a);

4.4.2. Back-end Code Generation Using Database Request

Generation functions are composed of a conditional structure to select the best
instruction. For example, riscv_genMV_2 is used to select instruction for move operation
with 2 operands. This function is generated by HybroLang as following:

void riscv_genMV_2(h2_sValue_t PO, h2_sValue_t P1){
if ((PO.arith == "i’) && (PO.wLen <= 32) && (PO.vLen == 1)
&& isRegister (P0) && isRegister (P1)) {
RV32I_MV_RR_I_32(P0.regNro, P1l.regNro);
}
else if ((PO.arith == "i’) && (P0.wLen <= 32) && (PO.vLen ==
&& isRegister (P0) && isValue(P1)) |{
RV32I_MV_RI_I 32(P0.regNro, P1.valuelmm);
}
else {
h2_codeGenerationOK = 0;

1)
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In this function, the first case maps to move operation from register P1 to register
PO, the second case corresponds to move operation of integer P1 to register P0. We
also generated error messages if there is no operation for this operand. For example,
move a float into a register is not possible with this selector function. Functions like
RV32I_MV_RI_I_32 called by selector function write instruction encodage. This macro
is generated with SQL request to a database which contains instructions encodage and
format for different architectures and variants. The Application Binary Interface (ABI) is
also described in the database and requested by HybroLang to build c code.

4.4.3. Binary Code Generation at Execution

Finally, the execution of this compilette on RISC-V architecture produces these
instructions:

0x19008: ori tl,zero,3
0x1900c: mul tl,t1,a0
0x19010: my t0, t1
0x19014: mv a0, t0
0x19018: ret

The same program executed on POWER gives this result:

0x4000021260: li rl5,3
0x4000021264 : mullw r15,r15,r3
0x4000021268: addi rl4,r15,0
0x400002126¢: addi r3,r14,0
0x4000021270: blr

Register t1 and r15 respectively for RISC-V and POWER, contain the specialize value:
3 in this execution. This value is multiplying with instructions mull and mullw by the
value in input register a0 or r15. To improve the performances of HybroGen , some
passes of optimization are needed to reduce to number of move. For example, the result
of the multiplication can be stored in t1 or r3, the ouput register for respectively RISC-V
and POWER.

The example below shows instructions generated with a specialize value fixed to -5:

0x4000021260: li rl5,-5
0x4000021264 : mullw r15,r15,r3
0x4000021268: addi rl4 ,r15,0
0x400002126¢: addi r3,r14,0
0x4000021270: blr

A careful reader has noticed that those tutorial codes are not optimal. We know
that there is specialized instructions which use constant values, these examples are only
to explain the workflow and shows that HybroGen could generate multiple binary code
from the same compilette.

4.5. Metrics and Evaluation of HybroGen Flow

To evaluate HybroGen compilation flow, the number of Lines of Code (LoC) is a
good indicator to evaluate the extra cost to port C code to hybrid HybroLang and C
code. Table 1 presents the number of LoC for three applications and for the different
parts of the code. Compilette code is written with HybroLang and we can see that it is
very small 12 and 14 lines depending on the application. This code is compiled with
HybroLang which generates C code specific for an architecture. For all the applications
and the two targeted architecture, the number of lines of C code generated is between
96 and 284. This difference can be explained by the number of instructions in the
database for each architecture and for the semantic instructions and arithmetic use in
the application. The latter column corresponds to C code use for management like call
to the generators, call to generated code and parameters for management. This code is
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the same for all architectures and depends on applications. For these applications the
number of lines of code is between 28 and 55.

Applications Compilette code | Generated code Main without

(HybroLang) ©) compilette (C)
RISC-V | POWER

Celcius to Fahrenheit 12 179 284 36

Multiplication 12 96 102 28

with specialization

Square root 14 159 188 55

with Newton algorithm

Table 1: Lines of Code (LoC) of C and HybroLang for demonstration applications

5. Discussion and working direction

This article has presented a new compilation infrastructure called HybroGen . We
have shown that our tool is already working on small examples, which was a challenge
in term of compilation chain complexity.

Our technical targeted metrics are (1) code generation speed and (2) code generation
size. As we use the same code generation scheme than deGoal [10] we already know
that those two metrics are similar and faster and smaller than any JIT compiler.

As scientific targets we want to follow two main objectives which are:

Scientific support for transprecision: we target to support applications containing run-
time transprecision and support scientific transprecision applications. This ob-
jective is very useful on hardware platforms which contains many floating point
representations. For example, RISC-V platform from GreenWaves, the GAP9, has
support for floating point variants of 8, 16 and 32 bits. RISC-V standard platform
has support for 32 and 64 bits while IBM Power8 platform has support for 32, 64
bits. Those platforms are good candidates.

Compilation support for non Von Neumann architecture: we also support code gen-
eration for “in memory computing” devices[13]. On those devices the difficulty
comes from the fact that there is two synchronized instruction flows to generate.

This platform is not in the scope of this article.

Metrics to fight with : this article has showed a proof of concept an initial results. We'll
continue to improve our HybroGen tool and in the future experiments we will
focus on other metrics which are :

Speedup for scientific applications : thanks to our run-time optimization we
will have speedups that will help scientific applications which need run-time
transprecision support. Mainly those whose rely on a residue value that
decrease.

Code generation speed : as we can regenerate the binary code very often, it’s very
important to generate it as fast as possible. HybroGen is designed to generate
binary code generator which are very fast because our compiler is able to
restrict the code generation to the only instructions that are needed by the
application.

Code generator size thanks to the previous point, our final code generator are
very small (KB order or magnitude), does not rely on external library and can
be suited for embedded systems.

The table 2 summarized the current supported platforms.
Our HybroGen infrastructure will be open source but is not yet ready for a public
release. Nevertheless, it is possible to the HybroLang input sources, the output C and
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| ISA |  Instruction set emulator \ Hardware \
RISCV gemu-riscv32 GreenWave / Gap9 platform
CSRAM gemu-riscv32 CEA / RiscV + In MemoryComputing
+ In Memory Processing plugin
Power gemu-ppcodle IBM / Power8 systems
Kalray kvx-mppa Kalray / Coolidge

Table 2: Supported hardware platforms, working both in simulation mode and on
hardware platforms

261 aMakefile containing the commands to run the application. The public repository is
a2 https://github.com/oprecomp/HybroLang and contains a README which explains
a3 how to reproduce the experimentation and run the applications.

sa 6. Conclusion

265 In this article we have demonstrated the opportunity to break classical compilation
aes static strategies and open the door to make applications auto-adaptive to the context.
a67 We have demonstrated three new code generation scenarios which have binary

ses code generation at run-time in common. The first one shows only binary code generation,
se0 the second code specialization at run time and the third shows a code specialization
a0 based on transprecision.

a7y Our HybroGen infrastructure proof of concept give to the programmer the possibil-
a2 ity to control his application and link data parameter to the architecture.

a3 We have shown in this article that those capabilities are useful, does not rely on
aza  complex and big JIT infrastructures and the binary code is small and fast.

a78 We continue to extend our HybroGen infrastructure and develop demonstrations

are  Of its capabilities in two directions: (1) on scientific demonstrators of the transprecision
a7 capabilities because it is a challenge for IA applications and (2) on heterogeneity, i.e.
a7e  the capability to generate binary code at run-time for multiple processors from high
ao  performance Power8 up to small RISC-V compute nodes.

aso Our HybroGen infrastructure will be open-source but has not reached a release
s quality. Nevertheless, we share the code examples version (HybroLang , generated C
a2 code) in the following repository https:/ /github.com/oprecomp/HybroLang. Running
sz those code allows reproducing the code generation scenarios described in this article.
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