Julie Dumas
email: julie.dumas@cea.fr

Henri-Pierre Charles

Kévin Mambu

Maha Kooli

Dynamic Compilation for Transprecision Applications on Heterogeneous Platform

Keywords: transprecision, dynamic compilation, heterogeneous, just in time, code specialization 16

This article describes a software environment called HybroGen , which helps to experi-1 ment binary code generation at run-time. As computing architectures are getting more complex, 2 the application performances become data-dependent. The proposed experimental platform is 3 helpful in programming applications that can be reconfigured at run-time in order adapted for a 4 new data environment. HybroGen platform is adapted to heterogeneous architectures and can 5 generate instructions for different target. This platform allows to go farther than classical JIT 6 compilation in many directions: the code generator is smaller by three orders of magnitude, faster 7 by three orders of magnitude compared to JIT (Just-In-Time) platforms and allows making code 8 transformation that is impossible in traditional compilation scheme like code generation for non 9 Von Neumann accelerators or dynamic code transformations for transprecision. The latter will 10 be illustrated in a code example: the square root with Newton's algorithm. We also illustre the 11 proposed HybroGen platform with two others examples: a multiplication with a specialization on 12 a value determine at run-time and a convertion of degree Celcius to degree Fahrenheit. This article 13 presents a proof of concept of the proposed HybroGen platform in terms of its functionalities, and 14 demonstrate the working status.

Introduction 17

Compilation and code generation1 are 50 years old research domains, parallel to 18 the computer architecture research domain [START_REF] Patterson | Years of computer architecture: From the mainframe CPU to the domain-specific tpu and the open RISC-V instruction set[END_REF]. Compilers have the difficult task to 19 transform a source code application into a running binary code.

20

Due to the constant evolution of both application domains and computing systems, 21 this task becomes more and more complex. The difficulty comes from the fact that those 22 evolution goes in the opposite direction.

23

From the classical application development point of view, the priority is to make 24 programmers efficient by providing richer programming environments. As an illustra-25 tion the Java SDK environment contained around 100 classes in the 1.0 release (1995) 26 and 13,367 for the 1.5 (J2SE 5.0 2004) release (by counting the .class objects). These two 27 orders of magnitude in complexity gives a very rich programming environment which 28 makes programmers very efficient because of the "job oriented API" (JDBC for database 29 applications, Graphic for gaming, etc).

30

This organization improves programmer efficiency but augments the "distance" 31 between the computing architecture and the problem to solve: the programmer generally 32 focuses on problem-solving by using complex APIs based on high level layers, which 33 augments differences between the data to compute on, and the hardware capabilities.

34

A first solution to this problem was to delay the code generation at run-time by using 35 JIT (Just-In-Time) compilation in Java. The hotspot compiler [START_REF] Paleczny | The java hotspot TM server compiler[END_REF] is efficient, compiles on demand but is based on method count, not on hardware counter, nor on data set characteristics. JIT compilation needs a huge memory footprint and needs a long latency to react to new application behavior.

In another domain, scientific computation applications, the programmer is aware of the underlying hardware, takes care of the performance by using efficient compilers and uses algorithms where the data accuracy is computed at the application level. To illustrate this, many examples are available in the classical book "Numerical Recipes" [START_REF] Press | Numerical recipes: the art of scientific computing[END_REF].

A typical example is the conjugate gradient algorithm where the iteration number relies on a residue value. This value decreases during the computation and controls the end of the program.

In this domain it could be interesting to do the computation with a reduced precision, which allows computing faster because by reducing the memory bandwidth pressure, and switching to an improved precision at the end. This simple scheme is very complex to setup practically.

In this article we present a new compilation infrastructure proof of concept that allows solving the two identified difficulties that classical compilation chain does not solve:

•

Make applications aware of the data-set characteristics and allow to take advantage of this knowledge to optimize code.

• Render possible dynamic transprecision, i.e. allow transforming the binary code at run time to change the data types during the application run.

We presents our compilation flow and the different steps. We also show three demonstrations examples to demonstrate the capabilities of our tool: a conversion of degree Celcius to degree Fahrenheit, a multiplication with a specialization on a data fixed at run-time and finally the computation of the square root with Newton's algorithms.

The article is composed of a section 2 where we introduce some other compilation approaches. The, section 3 presents the compilation objectives ans explains as well as the targeted compilation scenarios. Section 4 illustrates how the compilation chain works on small tutorial examples. Section 5 discusses the future evolution of this compilation infrastructure. Finally, section 6 concludes this paper.

Related Works

Many compiler works can be cited about compilation, but there are not so many works related to delayed code generation or at least a compilation scenario which allows taking optimization decision at a different time than the static compilation.

Code Specialization

All standard C compilers are able to do partial evaluation and, for example, able to replace expression containing constants by a resulting value.

The initial idea to do run-time code specialization (i.e. partial evaluation) for the C language came from C. Consel in the 90' [START_REF] Consel | A general approach for run-time specialization and its application to C[END_REF]. But at that time the underlying hardware was simpler in terms of memory hierarchy and ALU capability.

Install Time

Many works have tried to do detect possible optimization during the program install on a new machine.

ATLAS in 2001 [START_REF] Whaley | Automated empirical optimizations of software and the ATLAS project q[END_REF] is a BLAS implementation with semi-automatic optimization detection. Other works including source code generation push the limit farther for other mathematical kernels: FFTW in 2005 [START_REF] Frigo | The design and implementation of FFTW3[END_REF] for FFT implementations and SPIRAL for linear algebra kernels [START_REF] Puschel | SPIRAL: Code generation for DSP transforms[END_REF].

Interestingly, FFTW has a dynamic scheduler which chooses the best implementation at run-time, depending on the FFT signal size.

High Level Intermediate Representation

86

Leaving the C language offer opportunity to rely on high-level intermediate format.

87

Java hostspot compiler [START_REF] Paleczny | The java hotspot TM server compiler[END_REF] has an interesting strategy using different compiler strategy. It

92

JavaScript also uses just-in-time compilation strategy but both Java and Javascript 93 have a very costly compilation phase as described in [START_REF] Park | Reusing the Optimized Code for JavaScript Ahead-of-Time Compilation[END_REF].

94

A similar approach is described in this Vapor SIMD article [START_REF] Nuzman | Vapor SIMD: Auto-vectorize once, run everywhere[END_REF] but no practical 95 implementation is proposed. Another attempt was made with the deGoal tool [START_REF] Charles | deGoal a tool to embed dynamic code generators into applications[END_REF]. This tool allows implementing 98 similar compilation scenarios. The programming language was portable across similar 99 SIMD architectures but was at assembly level which makes complex applications difficult do implement.

Compiler Level Support for Transprecision

This section presents challenges in terms of compilation for applications using transprecision.

Transprecision and Challenges for Compilers

Transprecision computing [START_REF] Malossi | The transprecision computing paradigm: Concept, design, and applications[END_REF] is explored by the H2020 European project OPRE-COMP. The idea is to reduce energy consumption by using approximate computing. For example, the precision can be decreased using small float, i.e. 8-bit or 16-bit floating point numbers. The precision is adapted during the computation with criteria to use more precision at the end of the computation. This is particularly convenient for iterative mathematical applications where the iteration number is controlled by a diminishing value.

One of the characteristics of transprecision is the fact that is adaptated at run-time and controlled by the application of the data size which is not known at compilation time. Compiler optimization in particular loop statements cannot be used in this case because the compiler does know when applications move to more precision.

HybroLang : a New Language

In this paper we propose HybroLang , a new language, developed within the proposed HybroGen compilation platform. It permits to declare more complex data types, like vector, data with varing length and multiple arithmetics: integer, float, complex numbvers, pixels, IP addresses, etc.

Compiler: When Code Generation Should Arise ?

There are different code generation times to generate a code for an application. In a standard development flow, the code is generated at static compilation time. Data values are resolved at run-time and with only one step of compilation before the execution, some optimization cannot be applied.

Usually programmers want to write a small code with good performance on all computers. This is not the case in the real life, programmers need to specialize code for a specific architecture. Moreover, programmers develop different version of the code to adapt programs to data types like float, integer and different word size.

With HybroGen we propose to generate instructions during the execution to take advantage of data values resolved at run-time. Our platform allows experimentations on multiple scenarios of code generation time. When the data set is not known at compile time, whatever the static compilation time devoted to the kernel compilation, the compiler should be conservative and could not take into account the data characteristics which could be used for optimization (loop bound, data values, needed precision, etc.).

Run-time Code Generation Scenarios

In our case we want to generate the binary code at run-time and use dynamic compilation (b). We list the following code generation scenarios:

Program init: the code generation takes place at the beginning of the application and a minimal knowledge make small optimization possible. The binary code is generated once, and the binary code is called many times.

Kernel init: in the second scenario, code generation is done at each kernel invocation.

The data set information are so rich that the generated code is very efficient, thanks to the optimizer contained in the code generator. The code generation time could be amortized at each kernel call.

Application driven: in some situation, the application has a knowledge of the context and the programmer want to have the control of the code generation. For example many mathematical applications have loops controlled by a "residue" value. This value can be used to decide when the code generation should be called to improve the precision.

Those scenarios will be illustrated on some tutorial examples in section 4.

Language

In this paper, we propose HybroLang is a new language with syntax close to C programming language. We develop HybroLang to add support for dynamic compilation of applications with different targeted architectures. This language uses specific data types which are defined with a triplet type, vector size and word size. This language is used only to describe the part of kernel that we want to optimize, we named this part a compilette. The other part of the program is written with the language targeted, in this paper we have chosen C language, but we can imagine other languages like JavaScript or python.

Data and Code Generation Interleaving

The main characteristics of our HybroGen environment are:

• The possibility to delay the code generation and have versatile code generation scheme that will be demonstrated later in this article, Those characteristics will be demonstrated in the later examples. The input is a kernel described with HybroLang language described previously. Our compiler HybroGen implements different passes of compilation, like a classic compiler but at the output it produces a code in an existing programming language, for this paper it produces C code. HybroLang requests the database to construct a code generator which writes the correct encoding at run time. After using HybroLang , we use a compiler for the second compilation time (c) like gcc or clang, in this paper we have used gcc. Finally, depending on the scenario choice, at execution time (d), the code of the compilette is executed which generates the instructions that are executed at the backend.

HybroGen Platform

Demonstration of HybroGen for Transprecision Applications

In this section we present demonstrations and results of using HybroGen for transprecision applications on different platforms like power or RISC-V.

Experimental Platform

To run demonstrations a system-level simulator and real platform are used. Qemu [START_REF] Bellard | a fast and portable dynamic translator[END_REF] is used to simulate POWER8 and RISC-V architectures. This simulator exists for different architectures like x86, MIPS or ARM and support different variants. For example, there is a version for RISC-V 32 bits and another for the 64 bits architecture. In this paper we use qemu-riscv32 version 5.0.0 and qemu-ppc64le version 5.0.0. We also verify our results on a physical POWER8. For the static compilation, e.g., the source to binary compilation, we use riscv32-elf-gcc-9.3.0 and powerpc64le-linux-gnu-gcc-8. The figure 3 shows the different steps of our compilation chain from the figure 2 section (b) which rewrites the HybroLang section of the application to a C version which will be able to generate multiple binary version. This capability to generate multiple binary version is very important on muliple contexts: adapt to hardware characteristics, dataset parameter and, as we focus on this article, on dataset precision.

Application Scenarios of HybroGen

Dynamic compilation allows code generation at different times during the execution of a program. Figure 4 presents three moments to generate instructions corresponding to the kernel similar to Figure 1 but in an algorithmic form. In the first case, the code is generated only once and at program initialization. This case illustrates a situation where the generated code is execute more than once, N times in the figure, to amortize the cost of dynamic compilation. In the figure 4 we can see that parameter of the execution, i.e. i, is not used for the code generation but it can use in parameter of the code generated call.

We also see the specialization parameter s which is a parameter of the generated function genAdd in this figure. In the second case figure 4 part (2), the code generation takes place just before the execution of the kernel, this maps to the kernel initialization. In this case, we want to generate the most optimized code which is specific to one execution with constant injection. The cost of the code generation can be amortized because this compilette uses less instructions than a classical compiler. In the last case figure 4 part

(3), code generation can take place several times during the execution and it sets off by a condition on data value. The code generation is driven by the application and especially the execution and results values. In transprecision applications, this ability is very useful to adapt precision according to data value. Code generation time where i is the compilette parameters, s corresponds to the parameters to specialize to compilette and t is the threshold which is a condition to re-generate code

Demonstration Example

To illustrate the three cases described in figure 4, we have chosen three examples: conversion Celcius to Fahrenheit, multiplication with a specialization on a constant value and square root with Newton's algorithm. The latter example demonstrates the advantage of using HybroGen for transprecision applications.

Celcius to Fahrenheit

The first demonstration is the conversion of degree Celcius to degree Fahrenheit.

This example illustrates the case of an expression of mutliple arithmetics operations. We have chosen this code example for its simplicity. The code of the compilette is described with HybroLang language as following: The compilette C2F is called in the main program with different parameters which corresponds to temperature values that we want to convert. This is a typical example of one code generation for several calls to generated code. A more sophisticated version can have data types (int in this example) in parameters and the same compilette can generate code for int, float 16 bits, float 32 bits or whatever. The data value description is very flexible with HybroLang .

Multiplication with Specialization

In this part we focus on a small example of using specialization with HybroLang , which illustrates a functionality specific to HybroGen : injected value at run-time. This code is as small as possible to focus on specialization on data at run-time. We have chosen a compilette which computes a multiplication of a value by a constant. This constant } while (i s F l o a t || (! i s F l o a t && (d i f f > precd))) ;

}

In this code, we can see two calls to genIterate, which is the function responsible for code generation, the first with float precision and the second with double precision.

The computation of one step of iterations corresponds to the call of fPtr1 or fPtr2 where value maps to the previous result, af is the precision that we want to obtain. At the end of the loop, we compute the difference between the current and the previous result to decide if the precision has been reached to change to double precision or to stop the program.

An example of HybroGen Compilation for Multiplication with Specialization

To detail the different step of HybroGen flow, we provide an example of the application Multiplication with specialization described previously. A careful reader has noticed that those tutorial codes are not optimal. We know that there is specialized instructions which use constant values, these examples are only to explain the workflow and shows that HybroGen could generate multiple binary code from the same compilette.

Metrics and Evaluation of HybroGen Flow

To evaluate HybroGen compilation flow, the number of Lines of Code (LoC) is a good indicator to evaluate the extra cost to port C code to hybrid HybroLang and C code. Table 1 presents the number of LoC for three applications and for the different parts of the code. Compilette code is written with HybroLang and we can see that it is very small 12 and 14 lines depending on the application. This code is compiled with

HybroLang which generates C code specific for an architecture. For all the applications and the two targeted architecture, the number of lines of C code generated is between 96 and 284. This difference can be explained by the number of instructions in the database for each architecture and for the semantic instructions and arithmetic use in the application. The latter column corresponds to C code use for management like call to the generators, call to generated code and parameters for management. This code is the same for all architectures and depends on applications. For these applications the number of lines of code is between 28 and 55.

Applications

Discussion and working direction

This article has presented a new compilation infrastructure called HybroGen . We have shown that our tool is already working on small examples, which was a challenge in term of compilation chain complexity.

Our technical targeted metrics are (1) code generation speed and (2) code generation size. As we use the same code generation scheme than deGoal [START_REF] Charles | deGoal a tool to embed dynamic code generators into applications[END_REF] we already know that those two metrics are similar and faster and smaller than any JIT compiler.

As scientific targets we want to follow two main objectives which are: Scientific support for transprecision: we target to support applications containing runtime transprecision and support scientific transprecision applications. This objective is very useful on hardware platforms which contains many floating point representations. For example, RISC-V platform from GreenWaves, the GAP9, has support for floating point variants of 8, 16 and 32 bits. RISC-V standard platform has support for 32 and 64 bits while IBM Power8 platform has support for 32, 64 bits. Those platforms are good candidates.

Compilation support for non Von Neumann architecture: we also support code generation for "in memory computing" devices [START_REF] Noel | A 35.6 TOPS/W/mm 2 3-Stage Pipelined Computational SRAM With Adjustable Form Factor for Highly Data-Centric Applications[END_REF]. On those devices the difficulty comes from the fact that there is two synchronized instruction flows to generate. This platform is not in the scope of this article.

Metrics to fight with : this article has showed a proof of concept an initial results. We'll continue to improve our HybroGen tool and in the future experiments we will focus on other metrics which are : Speedup for scientific applications : thanks to our run-time optimization we will have speedups that will help scientific applications which need run-time transprecision support. Mainly those whose rely on a residue value that decrease. We have shown in this article that those capabilities are useful, does not rely on 473 complex and big JIT infrastructures and the binary code is small and fast.

ISA

474

We continue to extend our HybroGen infrastructure and develop demonstrations

88

 starts the execution by interpreting the code, then depending on the number of function 89 calls, it applies different aggressiveness levels of compilation. But the strategy is only 90 based on function call statistics and execution timing. There is no direct relation between 91 the dataset and the compilation strategy and no vectorization strategy.

Figure 1 .Figure 1

 11 Figure 1. Chronograms of different compilation scenarios. On the top the static compiler (a), without any code specialization at run time. On the bottom our proposition for dynamic compilation (b) with 3 scenarios: binary code specialization at program init, kernel init or application controlled Figure 1 explains our goal in terms of code generation. On the top of the figure, we illustrate the timing between static compilation (a) and execution time. We illustrate a classical use case where the execution is composed of a prelude, multiple kernel executions and a postlude.

Figure 2 .

 2 Figure 2. Overview of HybroGen platform with 4 steps: (a) install, (b) compilation source to source, (c) compilation source to binary and (d) execution HybroGen is composed of 4 steps, shown in figure 2 which correspond to different times: install time, source to source compilation time, source to binary compilation time and execution time. At install time (a), the description of the instruction set architecture (ISA) is stored in a database. The compilation time (b) on figure 2 maps to the compilation source to source and is specific to the proposed HybroGen compilation flow.

Figure 3 .

 3 Figure3. HybroLang compilation chain. Containing classical compilation steps: lexer and parser, generic and specific IR optimizations and also specific ones: using a SQL data base to store instructions specifications and C code generation, which will act as polymorphic binary code generator at run-time

Figure 4 .

 4 Figure 4.Code generation time where i is the compilette parameters, s corresponds to the parameters to specialize to compilette and t is the threshold which is a condition to re-generate code

Listing 1 :

 1 Celcius to Fahenreit compilette h 2 _ i n s n _ t * genC2F (h 2 _ i n s n _ t * p t r) u r n (h 2 _ i n s n _ t *) p t r ; } In all code examples, the compilette begins with the two symbols #[and finish with]#. Only the compilette is rewrite in C language by HybroLang . Other lines, corresponds to the prototype of the C function and the last line is the return of the function. This example only uses arithmetic operations and we can see that HybroLang allows affectation with more than one operator. The function named genC2F contains the description of the compilette and returns a pointer to the beginning of the code generated.

Listing 4 :

 4 is not known at static compilation time, but only at execution time. HybroGen can inject the value, b in the following code identified by #(b) in the compilette , during the execution. The generator named genMult written using C language and the compilette mult described with HybroLang are given below: Listing 2: Multiplication with specialization compilette h 2 _ i n s n _ t * genMult (h 2 _ i n s n _ t * ptr , i n t b) { # [i n t 32 1 mult (i n t 32 1 a) u r n (h 2 _ i n s n _ t *) p t r ; } The sentence, which contains #(b) is an example of data injection which implements code specialization at run time. The result of this compilette is a function which multiplies by the specific constant b.4.3.3. Square Root with Newton's AlgorithmThis application is a perfect example of using transprecision for computation. The computation of the square root with Newton's algorithm uses a function for one step of the iteration. At each step, an approximate value of the square root of the value u is computed with the formula: (u + (val/u))/2 where val is the precision. This function written with HybroLang is: Listing 3: Square root with Newton's algorithm compilette h 2 _ i n s n _ t * g e n I t e r a t e (h 2 _ i n s n _ t * ptr , i n t FloatWidth) { # [f l t # (FloatWidth) 1 i t e r a t e (f l t # (FloatWidth) 1 u , f l t # (FloatWidth) 1 val , f l t # (FloatWidth) u r n (h 2 _ i n s n _ t *) p t r ; } At the beginning of the application, float precision is sufficient to compute an approximate result but during the execution if there is no difference between the current and the previous result, then the application generates a new code with better precision.The program stops when a step of the iteration has achieved a result with the required precision. The main program is described below: Square root with Newton's algorithm main i n t main (i n t argc , char * * argv) { . . . f P t r 1 = (p i f f) g e n I t e r a t e (ptr , FLOAT) ; do { i f ((d i f f < p r e c f) && i s F l o a t) { / * Code g e n e r a t i o n w i t h d o u b l e f o r b e t t e r p r e c i s i o n * / f P t r 2 = (pidd) g e n I t e r a t e (ptr , DOUBLE) ; i s F l o a t = F a l s e ; } value = ne xt ; ne xt = (i s F l o a t) ? f P t r 1 (value , af , 2 . 0) : f P t r 2 (value , af , 2 . 0) ; d i f f = ABS (n extvalue) ;

4. 4 . 1 .

 41 Static Compilation with HybroLangHybroLang compiler transforms the compilette in C Code which is composed of call to generate function. Each instruction of the compilette corresponds to one or more call to generate functions which are in charge to select instructions based on data types and type of each operand. In Multiplication with specialization, the main operation is the multiplication, HybroLang converts that in a call to power_genMUl_3 or riscv_genMUl_3 respectively for POWER and RISC-V architecture, the number 3 refers to the number of operands because C language does not allow overloaded function. In this example, the first and the second parameters are the same and maps to an integer register with a word size fixed to 32 bits and initialized with value of b to specialize in this code on b. Finally this register contains the result of the multiplication. The third parameter maps to the first register in input which is represented by the variable a in the initial code. To summaize, the generation of the code for the multiplication of a by b to transform on two functions of generation as following: h2_sValue_t a = { REGISTER , ' i ' , 1 , 3 2 , 1 0 , 0 } ; h2_sValue_t h2_0 = { REGISTER , ' i ' , 1 , 3 2 , 6 , 0 } ; riscv_genMV_2 (h2_0 , (h2_sValue_t) {VALUE, ' i ' , 1 , 3 2 , 0 , (b) }) ; riscv_genMUL_3 (h2_0 , h2_0 , a) ; 4.4.2. Back-end Code Generation Using Database Request Generation functions are composed of a conditional structure to select the best instruction. For example, riscv_genMV_2 is used to select instruction for move operation with 2 operands. This function is generated by HybroLang as following: void riscv_genMV_2 (h2_sValue_t P0 , h2_sValue_t P1) { i f ((P0 . a r i t h == ' i ') && (P0 . wLen <= 3 2) && (P0 . vLen == 1) && i s R e g i s t e r (P0) && i s R e g i s t e r (P1)) { RV32I_MV_RR_I_32 (P0 . regNro , P1 . regNro) ; } e l s e i f ((P0 . a r i t h == ' i ') && (P0 . wLen <= 3 2) && (P0 . vLen == 1) && i s R e g i s t e r (P0) && i s V a l u e (P1)) { RV32I_MV_RI_I_32 (P0 . regNro , P1 . valueImm) ; } e l s e { h2_codeGenerationOK = 0 ; } }In this function, the first case maps to move operation from register P1 to register P0, the second case corresponds to move operation of integer P1 to register P0. We also generated error messages if there is no operation for this operand. For example, move a float into a register is not possible with this selector function. Functions like RV32I_MV_RI_I_32 called by selector function write instruction encodage. This macro is generated with SQL request to a database which contains instructions encodage and format for different architectures and variants. The Application Binary Interface (ABI) is also described in the database and requested by HybroLang to build c code.4.4.3. Binary Code Generation at ExecutionFinally, the execution of this compilette on RISC-V architecture produces these instructions:Register t1 and r15 respectively for RISC-V and POWER, contain the specialize value: 3 in this execution. This value is multiplying with instructions mull and mullw by the value in input register a0 or r15. To improve the performances of HybroGen , some passes of optimization are needed to reduce to number of move. For example, the result of the multiplication can be stored in t1 or r3, the ouput register for respectively RISC-V and POWER.The example below shows instructions generated with a specialize value fixed to -5:

463 6 .

 6 Conclusion 464 In this article we have demonstrated the opportunity to break classical compilation 465 static strategies and open the door to make applications auto-adaptive to the context. 466 We have demonstrated three new code generation scenarios which have binary 467 code generation at run-time in common. The first one shows only binary code generation, 468 the second code specialization at run time and the third shows a code specialization 469 based on transprecision. 470 Our HybroGen infrastructure proof of concept give to the programmer the possibil-471 ity to control his application and link data parameter to the architecture.

 472

475

 of its capabilities in two directions:[START_REF] Patterson | Years of computer architecture: From the mainframe CPU to the domain-specific tpu and the open RISC-V instruction set[END_REF] on scientific demonstrators of the transprecision 476 capabilities because it is a challenge for IA applications and (2) on heterogeneity, i.e. 477 the capability to generate binary code at run-time for multiple processors from high 478 performance Power8 up to small RISC-V compute nodes. 479 Our HybroGen infrastructure will be open-source but has not reached a release 480 quality. Nevertheless, we share the code examples version (HybroLang , generated C 481 code) in the following repository https://github.com/oprecomp/HybroLang. Running 482 those code allows reproducing the code generation scenarios described in this article.

Table 1 :

 1 Lines of Code (LoC) of C and HybroLang for demonstration applications

		Compilette code Generated code	Main without
		(HybroLang)	(C)		compilette (C)
			RISC-V POWER	
	Celcius to Fahrenheit	12	179	284	36
	Multiplication	12	96	102	28
	with specialization				
	Square root	14	159	188	55
	with Newton algorithm				

Table 2 :

 2 Supported hardware platforms, working both in simulation mode and on hardware platforms a Makefile containing the commands to run the application. The public repository is 461 https://github.com/oprecomp/HybroLang and contains a README which explains 462 how to reproduce the experimentation and run the applications.

		Instruction set emulator	Hardware
	RISCV	qemu-riscv32	GreenWave / Gap9 platform
	CSRAM	qemu-riscv32	CEA / RiscV + In MemoryComputing
		+ In Memory Processing plugin	
	Power	qemu-ppc64le	IBM / Power8 systems
	Kalray	kvx-mppa	Kalray / Coolidge

This work was supported by theEuropean H2020 FET project OPRECOMP under Grant 732631 Version June 11,

submitted to J. Low Power Electron. Appl. https://www.mdpi.com/journal/jlpea

Code generation speed : as we can regenerate the binary code very often, it's very important to generate it as fast as possible. HybroGen is designed to generate binary code generator which are very fast because our compiler is able to restrict the code generation to the only instructions that are needed by the application.

Code generator size thanks to the previous point, our final code generator are very small (KB order or magnitude), does not rely on external library and can be suited for embedded systems.

The table 2 summarized the current supported platforms.

Our HybroGen infrastructure will be open source but is not yet ready for a public release. Nevertheless, it is possible to the HybroLang input sources, the output C and