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ABSTRACT
RuntimeAssertion Checking (RAC) is the discipline of verifying pro-
gram assertions at runtime, i.e. when executing the code. Nowadays,
RAC usually relies on Behavioral Interface Specification Languages
(BISL) à la Eiffel for writing powerful code specifications. Since
now more than 20 years, several works have studied RAC. Most
of them have focused on BISL. Some others have also considered
combinations of RAC with others techniques, e.g. deductive verifi-
cation (DV). Very few tackle RAC as a verification technique that
soundly generates efficient code from formal annotations. Here, we
revisit these three RAC’s research areas by emphasizing the works
done in E-ACSL, which is both a BISL and a RAC tool for C code.
We also compare it to others languages and tools.

CCS CONCEPTS
• Software and its engineering → Specification languages;
Dynamic analysis; Source code generation; Software verifica-
tion; Automated static analysis.
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1 INTRODUCTION
Runtime Assertion Checking (RAC) is the discipline of verifying
program assertions at runtime, i.e. when executing the code. It
takes its roots in the late seventies when assert primitives have
been added to several programming languages, including C [13].
However, such assertions were, and still are, limited to Boolean
expressions. In the eighties, Eiffel [44] has included assertions into
its Behavioral Interface Specification Language (BISL), which also
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includes others kinds of formal annotations, such as function con-
tracts and invariants. Yet, at that time, RAC approaches remained
very practical and were not studied from a theoretical perspective.

Since now more than 20 years, several works have studied RAC.
Most of them have focused on BISL. Some others have also consid-
ered combinations of RAC with other techniques, e.g. deductive
verification (DV). Very few tackle RAC as a verification technique
that soundly generates efficient code from formal annotations. Here,
we revisit these three RAC’s research areas by emphasizing the
works done in E-ACSL, which is both a BISL [16] and a RAC tool [52]
for C code. We also compare it to others languages and tools.

2 BEHAVIORAL INTERFACE SPECIFICATION
LANGUAGES

After the success of Eiffel, new BISL were designed for mainstream
programming languages [25] at the turn of the millennium: first
JML [38] for Java, then Spec# [3] for C#, VCC [14], ACSL [4] and
E-ACSL [16] for C, CodeContract [17] for .NET, Spark2014 [26] for
Ada and, more recently, GOSPEL [11] for OCaml. Dedicated BISL
such as Boogie [40] and WhyML [22] were also designed in the
meantime: they do not target a mainstream specification language
but, instead, propose their own general-purpose specification and
programming framework.

Even if formal specifications provided by BISL are useful in their
own rights as precise code documentation, their main usage consists
in checking themwith verification tools. RAC is particularly suitable
and lightweight for this purpose. Yet, DV à la Dijkstra [24] is the
tool of choice for proving them for all possible executions. Abstract
interpretation à la Cousot [49] is also possible [18, 45], as well as
model checking [6], even if several logical properties cannot be
easily verified with these techniques. Nowadays, most tools based
on BISL support both RAC and DV, e.g. OpenJML [15] for JML,
Spec#, Spark2014, GOSPEL and, since recently, Why3 for WhyML.
Frama-C [31] relies on ACSL for DV and its subset E-ACSL for both
RAC and abstract interpretation, E-ACSL being compatible with
ACSL.

2.1 Core Features
Beyond code assertions, the core feature of BISL are function con-
tracts that allow the user to specify what a function assumes from its
callers (its preconditions), and what its implementation guarantees
(its post-conditions), assuming the preconditions are satisfied.

Figure 1 shows a function contract for a function binary_search
written in the E-ACSL language. E-ACSL, being defined as a syntac-
tic subset of ACSL, it is also an ACSL specification. Preconditions
(resp. post-conditions) are introduced with the keyword requires
(resp. ensures). The second precondition shows the use of the
built-in predicate \valid, stating that a range of memory locations
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(here, the memory cells of a between 0 and len-1) has been prop-
erly allocated. Such memory predicates are specific to ACSL and
E-ACSL that handles C code: the other BISL tackle higher-level
programming languages that ensure memory safety by design. Yet,
such properties are critical for C code. The third precondition calls
the user-defined predicate sorted: most BISL provide the ability
to define such predicates and logic functions. This one relies on
an universal quantification: BISL are usually based on first-order
logic. This specification also defines two behaviors (exists and
not_exists) guarded by assumes clauses that specify when each
of them are activated: behaviors provide a convenient way to dis-
tinguish different cases in a specification. complete and disjoint
behaviors specifies that the behaviors covers all possible cases and
do not overlap, respectively. Most BISL, including JML, Spark2014,
ACSL and E-ACSL, provide such a notion of behavior or, at least,
provide a way to specify exceptional cases, e.g. Spec# and WhyML.
The assigns clause specifies a frame condition, i.e. the modifica-
tions in the programmemorymade by the function. Here, \nothing
means that the function is effect-free (from an observational point
of view).

/*@ predicate sorted(int* a, int len) =
\forall integer i, j; 0 <= i <= j < len ==> a[i] <= a[j]; */

/*@ requires len >= 0;
requires \valid(a + (0 .. len-1));
requires sorted(a, len);
assigns \nothing;

behavior exists:
assumes \exists integer i; 0 <= i < len && a[i] == key;
ensures 0 <= \result < len && a[\result] == key;

behavior not_exists:
assumes \forall integer i; 0 <= i < len ==> a[i] != key;
ensures \result == -1;

complete behaviors;
disjoint behaviors; */

int binary_search(int* a, int len, int key);

Figure 1: Example of an E-ACSL function contract.

Common features of most BISL also include data (or object)
invariants, loop invariants, loop variants (i.e., decreasing measures
inside loops), and ghost code. Ghost code is a powerful way to
write code as specification without interfering with the original
code [21]. Another common feature consists in referring to the
old value of some memory location, i.e. its value in the the initial
state of the contract from a post-condition. For instance, writing
ensures G == \old(G)+1; for a function f means that the global
variable G is incremented by one after having executed f . ACSL and
E-ACSL generalize this feature to any program point thanks to the
\at keyword: \at(x,L) refers to the value of x at program point
L. They are the only BISL providing this generalized form. In the
following, we will refer to such properties as multi-state properties.

2.2 Main Semantic Differences between BISL
BISL are usually based on typed first order logic. Their semantic
differences mainly come from whether the languages target more
RAC (e.g., JML, Spec#, Spark2014 and E-ACSL) or DV (e.g.,WhyML
and ACSL).

The first difference is about numbers. All BISL support bounded
numbers (machine integers and floating-point numbers), with two
possible flavors when they overflow: either raising an error, or
reducing into the bounds with the appropriate modulo operation.
For instance, JML provides both mode, while ACSL and E-ACSL use
the latter. Yet, even if convenient for formal reasoning, providing
mathematical numbers (integers over Z and real numbers) were
historically not provided for BISL targeting RAC because they are
hard or even impossible (for real numbers) to be computed in finite
time. Nowadays, JML and Spark2014 provide a mode that supports
them, while they are natively provided in E-ACSL. They are also
provided in all BISL that target DV.

A related difference is about quantifiers that must be bounded
for RAC in order to be executable in finite time. Indeed, iterating
over all natural numbers is not possible at runtime. Even if bounded
quantifiers restrict the BISL’s expressive power, it is not an issue in
practice since they affect only very few mathematical properties
that rarely occur in real code.

A key difference is related to partial functions (e.g., a division): in
classical first order logic implemented in theorem provers used by
DV tools, such functions are represented by under-specified total
functions, meaning that terms such as 1/0 are well defined, even if
their values are not specified. However, such terms and predicates
cannot be evaluated without error at runtime and so are problematic
for RAC. This issue is known as the undefinedness problem [12]. For
solving it, Chalin have proposed [10] to rely on the strong validity
principle [33], which considers that a property is valid if and only
if it is valid and defined. This semantics is consistent with the
classical semantics, since any well-defined predicate has the same
truth value in both. Nowadays, RAC-oriented BISL that also support
deductive verification (e.g. JML, Spark2014, and E-ACSL) follow
this semantics.

Another difference is pure functions, which are functions from
the underlying programming language that can be safely used in
specifications. For that purpose, they must always terminate and
be side-effect free. Such functions are usually supported by RAC-
oriented BISL (JML, Spark2014, and Spec#, whilst the E-ACSL tool
has a mode that supports them), while they are not supported by
DV-oriented BISL (ACSL,Why3, andKrakatoa [20], a variant of JML
based on Why, the ancester of Why3). Indeed, pure methods are
easy to execute for runtime assertion checkers, but lead to several
issues for consistently verify them for deductive verifiers [35].

Last, one more semantic difference between BISL is actually inde-
pendent from being RAC oriented or not. Indeed, frame conditions
may have two flavors: assigns (or writes), that make explicit the
memory locations that may be written to, and modifies, that make
explicit the memory locations whose values may be changed. The
former is stricter than the latter since, in the latter case, the other
memory locations may change if (and only if) their value is restored
before the end of the scope of the contract. There is currently no
consensus between both semantics. For instance, JML relies on the
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assigns flavor, while ACSL and E-ACSL relies on themodifies flavor,
even though they use the keyword assigns.

3 USING RUNTIME ASSERTION CHECKING
IN PRACTICE

Checking annotations at runtime has various applications. First,
when directly applied, RAC helps to strengthen code [9, 32] by
discovering bugs upstream, when a well-identified assertion is vio-
lated, as opposed to downstream, by observing a consequence of
the bug in the form of an unexpected outcome, typically a crash or
a weird output.

Second, combining it with testing techniques, e.g. fuzzing, allows
the user to detect more issues than using these techniques alone,
since formal annotations make more invalid behaviors (e.g., broken
invariants or invalid API uses) observable. For instance, a buffer
overflow that would overwrite data in a supposedly-unchanged
memory area A would usually remain undetected with standard
testing techniques if the test verdict would not depend on A.

Third, RAC may be combined with other verification techniques,
notably DV, in various ways [35, 43], in particular when they are
provided within a shared framework, such as Frama-C, OpenJML,
Spark2014, Spec#,Why3, or GOSPEL. An usual combination with
any static technique (typically, abstract interpretation, model check-
ing, or DV) consists in discharging as many properties as possi-
ble statically, and relying on RAC to verify the remaining ones at
runtime: it lowers the amount of effort and the level of expertise
required by the static verifications, while reducing the runtime
overheads induced by RAC. When combined with DV, RAC also
helps debug formal annotations before proving them, find counter-
examples in case of proof failure and, more generally, help to un-
derstand why a property is not automatically proven [5, 48].

Besides, even if not new, a recent trend consists in seeing BISL as
low-level code-oriented specification languages which high-level
properties may be generated to. It leads to enhance the area of appli-
cations of tools based on such languages, including RAC. Such high-
level properties include liveness properties [23], non-interference
properties [2], security automata [27], relational properties [7], and
system-wide properties [50]. In the same spirit, implicit proper-
ties can be made explicit thanks to BISL. An example is security
weaknesses [46] for which the implicit semantics depends on the
underlying programming language. It worth noting that these ap-
proaches usually combine RAC with other verification techniques.

4 COMPILING FORMAL ASSERTIONS
Checking assertions at runtime requires to compile them into exe-
cutable code. This process has only received little attention [12, 39]
up to now. It might be explained by two reasons. First, it looks
like most BISL’s designers and tool providers do not consider it as
challenging enough as expressed by the authors of Spec#: who state
that “The run-time checker is straightforward” [3], while dedicating
the rest of their paper to DV. Second, even if designing procedure
for checking properties at runtime is at the heart of Runtime Ver-
ification, the relevant community is more appealed by checking
temporal properties [19] than behavioral properties.

Yet, generating sound and efficient code from formal properties
as powerful as the ones allowed in BISL is not straightforward. The

rest of this section considers a few concrete examples for supporting
this claim. All of them are related to research works that have
been carried out within E-ACSL [52], the runtime assertion checker
of Frama-C [31]. While Frama-C supports ACSL as specification
language, its E-ACSL plug-in focuses on E-ACSL, its executable
subset whose semantics is based on strong validity.

Three other properties are usually important for RAC tools:
trustworthyness, transparency and isolation [30]. Trustworthyness
means that, if a failure is detected, then there indeed should be one.
Transparency means that the monitored program should function-
ally behave as the original one if no failure is detected. Isolation
means that a failure, if any, must be reported at the point where
the annotation is written, and not later.

4.1 Mathematical Properties
Checking mathematical properties efficiently and soundly at run-
time is hard: relying on machine numbers is unsound if BISL sup-
ports mathematical numbers, while relying on dedicated libraries
that encode mathematical numbers in the target programming lan-
guage, such as GMP1 for C code, is not efficient.

For being both efficient and sound, E-ACSL relies on a dedicated
static type system [36] that automatically infers a precise type
in which it is sound to compute a mathematical operation over
mathematical integers in Z or rationals in Q. For instance, on a 64-
bit architecture, if x is a variable of type int, it infers that x+1 may
be soundly computed in type long: x+1might overflow if computed
over int, but it would be unnecessary inefficient to use a GMP
addition in such a context. Spark2014 has adapted the E-ACSL’s
type system to its context, but does not support rational numbers
yet: as far as we know, E-ACSL is the only RAC tool that support
properties over rational numbers.

Even if the code generated thanks to this type system has been
proven to be very efficient in practice, it is worth noting that ad-
ditional research should be carried out for handling definitions of
recursive logic functions and inductive predicates in a precise and
sound way. Also, no RAC tool currently supports irrational num-
bers. Actually, it is not possible to get a verdict at runtime in finite
time in general in that context (for instance, for equalities over
irrational numbers). Yet practical solutions based on incomplete
verdicts should be possible.

4.2 Multi-State Properties
Checking multi-state properties, such as P: x == \at(x,L)+1,
at runtime might seem straightforward: it just requires to save
the value of x at program point L and use it when evaluating
P . The first versions of E-ACSL followed this way. Yet, it is un-
sound in the general case. Consider for instance the predicate Q:
\forall integer i,j; 0<=i<LEN ==> 0<=j<i ==> t[i][j] ==
\at(t[i][j],L)+1: the variables i and j are local to predicate Q
and so cannot be used at L. Soundness requires to copy the relevant
memory cells of t. Yet, knowing at compile time the exact memory
cells that must be copied out is undecidable in the general case.
For instance, if LEN is a variable, it might be unbound at L, or its
value might have changed between L and the definition of Q . To
circumvent this issue, existing approaches copy the whole memory
1https://gmplib.org/
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block that contains t [34, 47]. Yet, it is not always efficient since it
often copies too many memory cells. Therefore, the current version
of E-ACSL implements an hybrid approach that statically computes
an over-approximation of the memory cells that need to be copied
out. In the best case, it is similar to the former E-ACSL implementa-
tion (but sound), whilst, in the worst case, it is similar to the other
approaches. Therefore, it reconciles soundness and efficiency. Yet,
it is worth noting, that no approach solves efficiently the problem
in the general case: there is still room for improvements here.

4.3 Memory Properties
As already explained, memory properties, such as the predicate
valid(p+(0..len-1)) used in Figure 1, are specific to ACSL and
E-ACSL. Yet, checking such properties at runtime is the purpose
of memory debuggers, which focus in detecting memory errors
at runtime, such as buffer and heap overflows, and accesses to
uninitialized data in the program memory.

In this context, the most efficient technique is memory shadow-
ing that stores pieces of information about the program memory
in order to detect memory issues. Memory shadowing usually asso-
ciates addresses from programmemory to values stored in a disjoint
memory space, called shadow memory, and accessible in constant
time. The way of structuring these shadow values is refered to as
shadow state encoding and may vary from one tool to another. One
of the most efficient memory debuggers is currently AddressSan-
itizer [51]. Despite their efficiency, classical memory shadowing
techniques are not able to detect all memory defects, in particu-
lar block-level memory errors (typically, accessing to an allocated
block from another block) [28] or temporal memory errors (typi-
cally, accessing to a pointed-to object that is not the same as when
the pointer was created) [53, 55]. Even if cleverly using the space
left between aligned allocated blocks help circumvent partially this
issue [29, 51], it is not enough for all memory properties.

Beyond memory shadowing, others techniques do exist, such as
fat pointers [1] or dictionary-based approaches [29]. The former
extends the pointer representation with information about memory
block bounds. Yet, it suffers from modifying the size of pointed
data, which makes this technique very hard to use safely in prac-
tice. The latter associates to each allocated memory address the
necessary pieces of information and storing them in a separated
dictionary. While powerful, this technique has efficiency issue since
the dictionnary is not accessed in constant time.

E-ACSL has first tried a dictionary based approach [37]. Yet, it
was not efficient enough in practice. Then, an hybrid approach
mixing a dictionary and a shadow memory has been experimented
with better results [28]. However, its implementation was hardly
maintainable. Finally, we design a shadow-based technique relying
on two new shadow state encodings (for the heap and the stack). It
is efficient enough in practice [56], while more expressive than the
existing shadow-based techniques in most cases [54]. In particular,
it is able to detect that the program incorrectly accesses to amemory
block from another memory block, even if both have been properly
allocated earlier. It is worth noting that the instrumentation is
independent from the underlying representation [42].

Static analysis can also optimize the instrumentation by pre-
venting monitoring irrelevant memory blocks [41]. Thanks to the

collaborative facilities provided by Frama-C, it is also possible to
discharge most memory properties before running E-ACSL [46],
typically by using Eva [8], the abstract interpretation-based static
analyzer of Frama-C. Both techniques makes the code generated
by E-ACSL much more efficient.

5 CONCLUSION AND FUTUREWORK
BISL are now well understood and more and more used in frame-
works that combine RAC and DV, such as Frama-C, OpenJML,
Spark2014 and Why3. Yet, the process of generating executable
code from formal assertions has not been extensively studied. The
works done on E-ACSL, the RAC tool of Frama-C, show that be-
ing both sound and efficient is often challenging and several open
questions are still to be addressed, including efficient monitoring of
properties over irrational numbers, monitoring of advanced multi-
state properties, and monitoring of advanced memory properties.
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