Julien Signoles 
email: julien.signoles@cea.fr
  
The E-ACSL Perspective on Runtime Assertion Checking

Keywords: Software and its engineering → Specification languages, Dynamic analysis, Source code generation, Software verification, Automated static analysis Runtime Assertion Checking, Behavioral Interface Specification Language, Source Code Generation, Combination of Static and Dynamic Analyses

Runtime Assertion Checking (RAC) is the discipline of verifying program assertions at runtime, i.e. when executing the code. Nowadays, RAC usually relies on Behavioral Interface Specification Languages (BISL) à la Eiffel for writing powerful code specifications. Since now more than 20 years, several works have studied RAC. Most of them have focused on BISL. Some others have also considered combinations of RAC with others techniques, e.g. deductive verification (DV). Very few tackle RAC as a verification technique that soundly generates efficient code from formal annotations. Here, we revisit these three RAC's research areas by emphasizing the works done in E-ACSL, which is both a BISL and a RAC tool for C code. We also compare it to others languages and tools.

includes others kinds of formal annotations, such as function contracts and invariants. Yet, at that time, RAC approaches remained very practical and were not studied from a theoretical perspective.

Since now more than 20 years, several works have studied RAC. Most of them have focused on BISL. Some others have also considered combinations of RAC with other techniques, e.g. deductive verification (DV). Very few tackle RAC as a verification technique that soundly generates efficient code from formal annotations. Here, we revisit these three RAC's research areas by emphasizing the works done in E-ACSL, which is both a BISL [START_REF] Delahaye | Common Specification Language for Static and Dynamic Analysis of C Programs[END_REF] and a RAC tool [START_REF] Signoles | E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs[END_REF] for C code. We also compare it to others languages and tools.

BEHAVIORAL INTERFACE SPECIFICATION LANGUAGES

After the success of Eiffel, new BISL were designed for mainstream programming languages [START_REF] Hatcliff | Behavioral Interface Specification Languages[END_REF] at the turn of the millennium: first JML [START_REF] Leavens | JML: A Notation for Detailed Design[END_REF] for Java, then Spec# [START_REF] Barnett | [END_REF] for C#, VCC [START_REF] Cohen | VCC: A Practical System for Verifying Concurrent C[END_REF], ACSL [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF] and E-ACSL [START_REF] Delahaye | Common Specification Language for Static and Dynamic Analysis of C Programs[END_REF] for C, CodeContract [START_REF] Fähndrich | Embedded Contract Languages[END_REF] for .NET, Spark2014 [START_REF] Hoang | SPARK 2014 and GNATprove -A competition report from builders of an industrial-strength verifying compiler[END_REF] for Ada and, more recently, GOSPEL [START_REF] Charguéraud | GOSPEL -Providing OCaml with a Formal Specification Language[END_REF] for OCaml. Dedicated BISL such as Boogie [START_REF] Leino | This is Boogie 2[END_REF] and WhyML [START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF] were also designed in the meantime: they do not target a mainstream specification language but, instead, propose their own general-purpose specification and programming framework.

Even if formal specifications provided by BISL are useful in their own rights as precise code documentation, their main usage consists in checking them with verification tools. RAC is particularly suitable and lightweight for this purpose. Yet, DV à la Dijkstra [START_REF] Hähnle | Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools[END_REF] is the tool of choice for proving them for all possible executions. Abstract interpretation à la Cousot [START_REF] Rival | Introduction to Static Analysis: An Abstract Interpretation Perspective[END_REF] is also possible [START_REF] Fähndrich | Static Contract Checking with Abstract Interpretation[END_REF][START_REF] Ouadjaout | A Library Modeling Language for the Static Analysis of C Programs[END_REF], as well as model checking [START_REF] Beckert | Modular Verification of JML Contracts Using Bounded Model Checking[END_REF], even if several logical properties cannot be easily verified with these techniques. Nowadays, most tools based on BISL support both RAC and DV, e.g. OpenJML [START_REF] Cok | OpenJML: JML for Java 7 by Extending OpenJDK[END_REF] for JML, Spec#, Spark2014, GOSPEL and, since recently, Why3 for WhyML. Frama-C [START_REF] Kirchner | Frama-C: A Software Analysis Perspective[END_REF] relies on ACSL for DV and its subset E-ACSL for both RAC and abstract interpretation, E-ACSL being compatible with ACSL.

Core Features

Beyond code assertions, the core feature of BISL are function contracts that allow the user to specify what a function assumes from its callers (its preconditions), and what its implementation guarantees (its post-conditions), assuming the preconditions are satisfied.

Figure 1 shows a function contract for a function binary_search written in the E-ACSL language. E-ACSL, being defined as a syntactic subset of ACSL, it is also an ACSL specification. Preconditions (resp. post-conditions) are introduced with the keyword requires (resp. ensures). The second precondition shows the use of the built-in predicate \valid, stating that a range of memory locations (here, the memory cells of a between 0 and len-1) has been properly allocated. Such memory predicates are specific to ACSL and E-ACSL that handles C code: the other BISL tackle higher-level programming languages that ensure memory safety by design. Yet, such properties are critical for C code. The third precondition calls the user-defined predicate sorted: most BISL provide the ability to define such predicates and logic functions. This one relies on an universal quantification: BISL are usually based on first-order logic. This specification also defines two behaviors (exists and not_exists) guarded by assumes clauses that specify when each of them are activated: behaviors provide a convenient way to distinguish different cases in a specification. complete and disjoint behaviors specifies that the behaviors covers all possible cases and do not overlap, respectively. Most BISL, including JML, Spark2014, ACSL and E-ACSL, provide such a notion of behavior or, at least, provide a way to specify exceptional cases, e.g. Spec# and WhyML. The assigns clause specifies a frame condition, i.e. the modifications in the program memory made by the function. Here, \nothing means that the function is effect-free (from an observational point of view). Common features of most BISL also include data (or object) invariants, loop invariants, loop variants (i.e., decreasing measures inside loops), and ghost code. Ghost code is a powerful way to write code as specification without interfering with the original code [START_REF] Filliâtre | The Spirit of Ghost Code[END_REF]. Another common feature consists in referring to the old value of some memory location, i.e. its value in the the initial state of the contract from a post-condition. For instance, writing ensures G == \old(G)+1; for a function f means that the global variable G is incremented by one after having executed f . ACSL and E-ACSL generalize this feature to any program point thanks to the \at keyword: \at(x,L) refers to the value of x at program point L. They are the only BISL providing this generalized form. In the following, we will refer to such properties as multi-state properties.

Main Semantic Differences between BISL

BISL are usually based on typed first order logic. Their semantic differences mainly come from whether the languages target more RAC (e.g., JML, Spec#, Spark2014 and E-ACSL) or DV (e.g., WhyML and ACSL).

The first difference is about numbers. All BISL support bounded numbers (machine integers and floating-point numbers), with two possible flavors when they overflow: either raising an error, or reducing into the bounds with the appropriate modulo operation. For instance, JML provides both mode, while ACSL and E-ACSL use the latter. Yet, even if convenient for formal reasoning, providing mathematical numbers (integers over Z and real numbers) were historically not provided for BISL targeting RAC because they are hard or even impossible (for real numbers) to be computed in finite time. Nowadays, JML and Spark2014 provide a mode that supports them, while they are natively provided in E-ACSL. They are also provided in all BISL that target DV.

A related difference is about quantifiers that must be bounded for RAC in order to be executable in finite time. Indeed, iterating over all natural numbers is not possible at runtime. Even if bounded quantifiers restrict the BISL's expressive power, it is not an issue in practice since they affect only very few mathematical properties that rarely occur in real code.

A key difference is related to partial functions (e.g., a division): in classical first order logic implemented in theorem provers used by DV tools, such functions are represented by under-specified total functions, meaning that terms such as 1/0 are well defined, even if their values are not specified. However, such terms and predicates cannot be evaluated without error at runtime and so are problematic for RAC. This issue is known as the undefinedness problem [START_REF] Cheon | A runtime assertion checker for the Java Modeling Language[END_REF]. For solving it, Chalin have proposed [START_REF] Chalin | A Sound Assertion Semantics for the Dependable Systems Evolution Verifying Compiler[END_REF] to rely on the strong validity principle [START_REF] Konikowska | A three-valued logic for software specification and validation[END_REF], which considers that a property is valid if and only if it is valid and defined. This semantics is consistent with the classical semantics, since any well-defined predicate has the same truth value in both. Nowadays, RAC-oriented BISL that also support deductive verification (e.g. JML, Spark2014, and E-ACSL) follow this semantics.

Another difference is pure functions, which are functions from the underlying programming language that can be safely used in specifications. For that purpose, they must always terminate and be side-effect free. Such functions are usually supported by RACoriented BISL (JML, Spark2014, and Spec#, whilst the E-ACSL tool has a mode that supports them), while they are not supported by DV-oriented BISL (ACSL, Why3, and Krakatoa [START_REF] Filliâtre | The Why/Krakatoa/Caduceus Platform for Deductive Program Verification[END_REF], a variant of JML based on Why, the ancester of Why3). Indeed, pure methods are easy to execute for runtime assertion checkers, but lead to several issues for consistently verify them for deductive verifiers [START_REF] Kosmatov | Static vs Dynamic Verification in Why3, Frama-C and SPARK[END_REF].

Last, one more semantic difference between BISL is actually independent from being RAC oriented or not. Indeed, frame conditions may have two flavors: assigns (or writes), that make explicit the memory locations that may be written to, and modifies, that make explicit the memory locations whose values may be changed. The former is stricter than the latter since, in the latter case, the other memory locations may change if (and only if) their value is restored before the end of the scope of the contract. There is currently no consensus between both semantics. For instance, JML relies on the assigns flavor, while ACSL and E-ACSL relies on the modifies flavor, even though they use the keyword assigns.

USING RUNTIME ASSERTION CHECKING IN PRACTICE

Checking annotations at runtime has various applications. First, when directly applied, RAC helps to strengthen code [START_REF] Casalnuovo | Assert Use in GitHub Projects[END_REF][START_REF] Kochhar | Revisiting Assert Use in GitHub Projects[END_REF] by discovering bugs upstream, when a well-identified assertion is violated, as opposed to downstream, by observing a consequence of the bug in the form of an unexpected outcome, typically a crash or a weird output. Second, combining it with testing techniques, e.g. fuzzing, allows the user to detect more issues than using these techniques alone, since formal annotations make more invalid behaviors (e.g., broken invariants or invalid API uses) observable. For instance, a buffer overflow that would overwrite data in a supposedly-unchanged memory area A would usually remain undetected with standard testing techniques if the test verdict would not depend on A.

Third, RAC may be combined with other verification techniques, notably DV, in various ways [START_REF] Kosmatov | Static vs Dynamic Verification in Why3, Frama-C and SPARK[END_REF][START_REF] Maurica | Runtime Assertion Checking and Static Verification: Collaborative Partners[END_REF], in particular when they are provided within a shared framework, such as Frama-C, OpenJML, Spark2014, Spec#, Why3, or GOSPEL. An usual combination with any static technique (typically, abstract interpretation, model checking, or DV) consists in discharging as properties as possible statically, and relying on RAC to verify the remaining ones at runtime: it lowers the amount of effort and the level of expertise required by the static verifications, while reducing the runtime overheads induced by RAC. When combined with DV, RAC also helps debug formal annotations before proving them, find counterexamples in case of proof failure and, more generally, help to understand why a property is not automatically proven [START_REF] Becker | Explaining Counterexamples with Giant-Step Assertion Checking[END_REF][START_REF] Petiot | How testing helps to diagnose proof failures[END_REF].

Besides, even if not new, a recent trend consists in seeing BISL as low-level code-oriented specification languages which high-level properties may be generated to. It leads to enhance the area of applications of tools based on such languages, including RAC. Such highlevel properties include liveness properties [START_REF] Giorgetti | Verification of class liveness properties with Java Modeling Language[END_REF], non-interference properties [START_REF] Barany | Hybrid Information Flow Analysis for Real-World C Code[END_REF], security automata [START_REF] Huisman | A Formal Connection between Security Automata and JML Annotations[END_REF], relational properties [START_REF] Blatter | Static and Dynamic Verification of Relational Properties on Self-composed C Code[END_REF], and system-wide properties [START_REF] Robles | Tame Your Annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties[END_REF]. In the same spirit, implicit properties can be made explicit thanks to BISL. An example is security weaknesses [START_REF] Pariente | Static Analysis and Runtime Assertion Checking: Contribution to Security Counter-Measures[END_REF] for which the implicit semantics depends on the underlying programming language. It worth noting that these approaches usually combine RAC with other verification techniques.

COMPILING FORMAL ASSERTIONS

Checking assertions at runtime requires to compile them into executable code. This process has only received little attention [START_REF] Cheon | A runtime assertion checker for the Java Modeling Language[END_REF][START_REF] Lehner | A Formal Definition of JML in Coq and its Application to Runtime Assertion Checking[END_REF] up to now. It might be explained by two reasons. First, it looks like most BISL's designers and tool providers do not consider it as challenging enough as expressed by the authors of Spec#: who state that "The run-time checker is straightforward" [START_REF] Barnett | [END_REF], while dedicating the rest of their paper to DV. Second, even if designing procedure for checking properties at runtime is at the heart of Runtime Verification, the relevant community is more appealed by checking temporal properties [START_REF] Falcone | A Tutorial on Runtime Verification[END_REF] than behavioral properties.

Yet, generating sound and efficient code from formal properties as powerful as the ones allowed in BISL is not straightforward. The rest of this section considers a few concrete examples for supporting this claim. All of them are related to research works that have been carried out within E-ACSL [START_REF] Signoles | E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs[END_REF], the runtime assertion checker of Frama-C [START_REF] Kirchner | Frama-C: A Software Analysis Perspective[END_REF]. While Frama-C supports ACSL as specification language, its E-ACSL plug-in focuses on E-ACSL, its executable subset whose semantics is based on strong validity.

Three other properties are usually important for RAC tools: trustworthyness, transparency and isolation [START_REF] Kandziora | Runtime assertion checking of JML annotations in multithreaded applications with e-OpenJML[END_REF]. Trustworthyness means that, if a failure is detected, then there indeed should be one. Transparency means that the monitored program should functionally behave as the original one if no failure is detected. Isolation means that a failure, if any, must be reported at the point where the annotation is written, and not later.

Mathematical Properties

Checking mathematical properties efficiently and soundly at runtime is hard: relying on machine numbers is unsound if BISL supports mathematical numbers, while relying on dedicated libraries that encode mathematical numbers in the target programming language, such as GMP1 for C code, is not efficient.

For being both efficient and sound, E-ACSL relies on a dedicated static type system [START_REF] Kosmatov | Efficient Runtime Assertion Checking for Properties over Mathematical Numbers[END_REF] that automatically infers a precise type in which it is sound to compute a mathematical operation over mathematical integers in Z or rationals in Q. For instance, on a 64bit architecture, if x is a variable of type int, it infers that x+1 may be soundly computed in type long: x+1 might overflow if computed over int, but it would be unnecessary inefficient to use a GMP addition in such a context. Spark2014 has adapted the E-ACSL's type system to its context, but does not support rational numbers yet: as far as we know, E-ACSL is the only RAC tool that support properties over rational numbers.

Even if the code generated thanks to this type system has been proven to be very efficient in practice, it is worth noting that additional research should be carried out for handling definitions of recursive logic functions and inductive predicates in a precise and sound way. Also, no RAC tool currently supports irrational numbers. Actually, it is not possible to get a verdict at runtime in finite time in general in that context (for instance, for equalities over irrational numbers). Yet practical solutions based on incomplete verdicts should be possible.

Multi-State Properties

Checking multi-state properties, such as P: x == \at(x,L)+1, at runtime might seem straightforward: it just requires to save the value of x at program point L and use it when evaluating P. The first versions of E-ACSL followed this way. Yet, it is unsound in the general case. Consider for instance the predicate Q: \forall integer i,j; 0<=i<LEN ==> 0<=j<i ==> t[i][j] == \at(t[i][j],L)+1: the variables i and j are local to predicate Q and so cannot be used at L. Soundness requires to copy the relevant memory cells of t. Yet, knowing at compile time the exact memory cells that must be copied out is undecidable in the general case. For instance, if LEN is a variable, it might be unbound at L, or its value might have changed between L and the definition of Q. To circumvent this issue, existing approaches copy the whole memory block that contains t [START_REF] Kosiuczenko | An Abstract Machine for the Old Value Retrieval[END_REF][START_REF] Petiot | Instrumentation of Annotated C Programs for Test Generation[END_REF]. Yet, it is not always efficient since it often copies too many memory cells. Therefore, the current version of E-ACSL implements an hybrid approach that statically computes an over-approximation of the memory cells that need to be copied out. In the best case, it is similar to the former E-ACSL implementation (but sound), whilst, in the worst case, it is similar to the other approaches. Therefore, it reconciles soundness and efficiency. Yet, it is worth noting, that no approach solves efficiently the problem in the general case: there is still room for improvements here.

Memory Properties

As already explained, memory properties, such as the predicate valid(p+(0..len-1)) used in Figure 1, are specific to ACSL and E-ACSL. Yet, checking such properties at runtime is the purpose of memory debuggers, which focus in detecting memory errors at runtime, such as buffer and heap overflows, and accesses to uninitialized data in the program memory.

In this context, the most efficient technique is memory shadowing that stores pieces of information about the program memory in order to detect memory issues. Memory shadowing usually associates addresses from program memory to values stored in a disjoint memory space, called shadow memory, and accessible in constant time. The way of structuring these shadow values is refered to as shadow state encoding and may vary from one tool to another. One of the most efficient memory debuggers is currently AddressSanitizer [START_REF] Serebryany | AddressSanitizer: A Fast Address Sanity Checker[END_REF]. Despite their efficiency, classical memory shadowing techniques are not able to detect all memory defects, in particular block-level memory errors (typically, accessing to an allocated block from another block) [START_REF] Jakobsson | Fast as a Shadow, Expressive as a Tree: Optimized Memory Monitoring for C[END_REF] or temporal memory errors (typically, accessing to a pointed-to object that is not the same as when the pointer was created) [START_REF] Simpson | MemSafe: Ensuring the Spatial and Temporal Memory Safety of C at Runtime[END_REF][START_REF] Vorobyov | Runtime Detection of Temporal Memory Errors[END_REF]. Even if cleverly using the space left between aligned allocated blocks help circumvent partially this issue [START_REF] Jones | Backwards-compatible bounds checking for arrays and pointers in C programs[END_REF][START_REF] Serebryany | AddressSanitizer: A Fast Address Sanity Checker[END_REF], it is not enough for all memory properties.

Beyond memory shadowing, others techniques do exist, such as fat pointers [START_REF] Austin | Efficient Detection of All Pointer and Array Access Errors[END_REF] or dictionary-based approaches [START_REF] Jones | Backwards-compatible bounds checking for arrays and pointers in C programs[END_REF]. The former extends the pointer representation with information about memory block bounds. Yet, it suffers from modifying the size of pointed data, which makes this technique very hard to use safely in practice. The latter associates to each allocated memory address the necessary pieces of information and storing them in a separated dictionary. While powerful, this technique has efficiency issue since the dictionnary is not accessed in constant time.

E-ACSL has first tried a dictionary based approach [START_REF] Kosmatov | An Optimized Memory Monitoring for Runtime Assertion Checking of C Programs[END_REF]. Yet, it was not efficient enough in practice. Then, an hybrid approach mixing a dictionary and a shadow memory has been experimented with better results [START_REF] Jakobsson | Fast as a Shadow, Expressive as a Tree: Optimized Memory Monitoring for C[END_REF]. However, its implementation was hardly maintainable. Finally, we design a shadow-based technique relying on two new shadow state encodings (for the heap and the stack). It is efficient enough in practice [START_REF] Vorobyov | Shadow State Encoding for Efficient Monitoring of Block-level Properties[END_REF], while more expressive than the existing shadow-based techniques in most cases [START_REF] Vorobyov | Detection of Security Vulnerabilities in C Code using Runtime Verification[END_REF]. In particular, it is able to detect that the program incorrectly accesses to a memory block from another memory block, even if both have been properly allocated earlier. It is worth noting that the instrumentation is independent from the underlying representation [START_REF] Ly | Verified Runtime Assertion Checking for Memory Properties[END_REF].

Static analysis can also optimize the instrumentation by preventing monitoring irrelevant memory blocks [START_REF] Ly | Soundness of a Dataflow Analysis for Memory Monitoring[END_REF]. Thanks to the collaborative facilities provided by Frama-C, it is also possible to discharge most memory properties before running E-ACSL [START_REF] Pariente | Static Analysis and Runtime Assertion Checking: Contribution to Security Counter-Measures[END_REF], typically by using Eva [START_REF] Blazy | Structuring Abstract Interpreters through State and Value Abstractions[END_REF], the abstract interpretation-based static analyzer of Frama-C. Both techniques makes the code generated by E-ACSL much more efficient.

CONCLUSION AND FUTURE WORK

BISL are now well understood and more and more used in frameworks that combine RAC and DV, such as Frama-C, OpenJML, Spark2014 and Why3. Yet, the process of generating executable code from formal assertions has not been extensively studied. The works done on E-ACSL, the RAC tool of Frama-C, show that being both sound and efficient is often challenging and several open questions are still to be addressed, including efficient monitoring of properties over irrational numbers, monitoring of advanced multistate properties, and monitoring of advanced memory properties.
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