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ABSTRACT
As previously discussed [20], the challenges to achieve a consistent
intertwining between safety and security are rather diverse and
complex. Recent advances in safety and security suggest that risks
analyses provide guidance for achieving a comprehensive align-
ment. However, for many domains, like in aeronautics, security
is rather a recent concern whereas aircraft development has been
mostly guided by safety criteria for several decades. The referred
disparity along with the fact that security is, in many respects, a
discipline still in evolution, imposes restrictions for specifying and
applying methods to conduct safety and security co-engineering
as a unified process. In this paper, we present the progress in the
development of a model-based method, a framework and a tool
useful to conduct a security risks analysis guided by safety criteria
and goals. Among others, the approach relies on know-how found
in the state of the art, in standards like ED202, ED203 (EUROCAE)1,
as well as in open knowledge bases like CAPEC and CWE (MITRE)2.
These sources are integrated which allows the instantiation of pat-
terns of attacks, vulnerabilities, and architectures, which are crucial
elements to semi-automate the analysis. A rule-based algorithm for
exploring potential attack paths across an architecture is proposed
and implemented. The approach is finally demonstrated by analyz-
ing a combined attack-failure path in a Flight Control Systemwhich
can undermine the safety of a modern aircraft. The framework and
tool support seek safety-security by design and aim to facilitate
the reuse of case studies and to settle a basis for repeatability and
results comparison.

CCS CONCEPTS
• Applied computing → Computer-aided design; • Security
and privacy → Distributed systems security; • Computing
methodologies → Model development and analysis; • Soft-
ware and its engineering → Integrated and visual development
environments.

1https://www.eurocae.net/
2https://www.mitre.org/
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1 INTRODUCTION
The separate analyses of safety and security during systems design
are complex topics and have attracted attention in the research
community and industry for several decades. Ongoing discussions
and work recently published suggest that safety and security con-
cerns should be addressed following a co-engineering process [15],
[16]. Some advantages mentioned in the literature are preventing
design flaws due to conflicts between safety and security require-
ments not identified at early phases of the system development.
Many of the approaches proposed to separately conduct safety and
security analyses follow a risk-oriented perspective [16]. However,
despite the similarities observed in safety and security risks meth-
ods, achieving a consistent intertwining is a challenging topic [20].
Indeed, for a comprehensive and unified co-engineering process,
the consistency between concepts, metrics, methods and related
techniques seems necessary but rather hard to achieve. Among the
reasons identified, it can be mentioned the disparity in research and
application of techniques: whereas well-known methods (including
models and techniques) have been effectively applied to achieve
safety, security is, in many respects, a discipline still in evolution,
e.g. in unmanned aerial systems [14], IoT [10], and vehicular clouds
[12]. This assessment is true in particular for the aeronautics do-
main where stringent certification processes exist and are based
upon broad consensus and operable standards. In this paper we
present the advances in a method developed to align safety and
security risks analyses. The contribution of the method is three-fold.
First, the approach consists in to placing in a sequence safety and
security analyses as a primary step prior to conduct simultaneous
co-engineering. To achieve such alignment, it is proposed to first
conduct a safety analysis in order to obtain a set of safety critical
events (e.g., critical failures, minimal cut sets). Afterwards, the se-
curity analysis considers that the system attackers will target the
components whose failure shall lead to the safety critical events.
Such alignment allows to enchain safety and security analyses and
definemetrics for a consistent evaluation of combined failure-attack
paths. The second part of the contribution is the integration of open
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knowledge bases like CAPEC [18] and CWE (MITRE) [17]. It al-
lows to instantiate and reuse patterns of attacks, vulnerabilities,
and architecture technology thus easing modeling and design re-
usage and results comparison. Some model-driven techniques are
also leveraged in order to integrate airworthiness domain knowl-
edge from standards like ED202 [5], ED203 [6]. The last part of
the contribution is an algorithm for unveiling attack paths across
the components model. The algorithm is based upon rules settling
pre-conditions and post-conditions for an attack to progress up to
the critical components failure. The subsequent failure propagation
can be explored via typical methods (e.g., fault trees). The algo-
rithm relies and takes advantage of the knowledge bases CAPEC
and CWE already integrated. Overall, the method and framework
aim to increase automation of safety-security co-engineering. The
rest of the paper is structured as follows. The Section 2 provide a
quick survey including methods for co-engineering and formal tech-
niques useful for threats and robustness assessment. The Section
3 includes a description of the proposed co-engineering method.
The Section 4 gives an overview of the techniques leveraged to
support the method. The approach is finally demonstrated in Sec-
tion 5 by analyzing a Flight Control System via a critical combined
attack-failure path. Some conclusions and perspectives are finally
presented in Section 6.

2 RELATEDWORKS
As discussed in the previous section, the similarities between safety
and security has lead to multiple attempts at reusing techniques
from one field to another and integrating risks identified from
both points of view as evidenced by Pietre Cambacedes et al. in
[23]. The following section gives a brief overview of some of those
techniques. More particularly, it focuses on tree-based techniques or
tool-supported techniques but more complete comparative surveys
like [24] are also available. Tree based formalisms, introduced with
fault trees for safety[11] and attack trees for cybersecurity[26]
are widely used and can also be combined together. For example
the Extended Fault Trees proposed by Fovino et al.[7] describes a
way to integrate cybersecurity and safety analysis in one common
tree representation. Further extension have also been made to this
formalism like the support for describing mitigations, as evidenced
by the approaches described by Kordy et al.[13] and Roy et al.[25].
The main advantage of this kind of approach is that quantifying the
risk can then rely on reusable assessments where attacks have an
initial risk and mitigation reduce this risk. Boolean Driven Markov
Processes (BDMP), introduced by Pietre Cambacedes et al.[22],
are another kind of tree-based formalism for analysing threats.
Originally developed for safety analysis, they also take into account
causality relations between branches, certain events being able to
enable other parts of the tree. This results in the production of
metrics like a Mean Time To Security Failure, similar to the notion
of MTTF in safety, but relies on the availability of similar metrics
for individual attack steps, which are often not readily available.
These tree-based methods can also quickly become difficult to use
because, as the size of the system grows, so does the size and
number of the trees. Other formalisms can be used to counter
this problem, for example graph-based representations like the
one described by Sommestad et al. in [28] which has been put in

practice in the Cysemol language[27]. This approach derives risks
from a description of the system architecture which also helps the
systematic identification of scenarios. Cysemol also functions as an
expert system to reduce the need of a dedicated cybersecurity expert
for assessing threats, however because of the constant evolution
of the field, this system still has to be regularly maintained. The
STPA-Sec ontology introduced by Pereira et al.[21] is another recent
development which aims at facilitating the construction of threat
scenarios, however it does not provide a way to manage the expert’s
knowledge for assessing those scenarios. Our approach aims to
complement those approaches by using architectural description
and expert knowledge to guide the identification and evaluation of
cybersecurity threats and integrating them in safety analyses.

3 PROPOSED SAFETY-SECURITY ANALYSIS
METHOD

The proposed approach aims to be complementary to the related
works described in Section 2. Its novelty comes from the integration
of the following aspects. First, the method integrates standardized
domain knowledge in the aim of increasing attacks coverage while
still limiting complexity. Secondly, it is based upon standardized
model-driven languages what eases modeling and facilitates models
re-usability, exchange and results comparison. Last yet not the least,
along with the integration of attack and failure paths, some means
to automate their identification are given. The most salient features
of the method are summarized in four phases and described in the
following subsections.

3.1 Context and security perimeter
In this phase, the parameters to conduct the security and safety
analyses are selected. Regarding the security part, confidentiality,
integrity, authenticity, availability, and non-repudiation are among
the criteria to select. Regarding the safety part, reliability, availabil-
ity, tolerance to failure, and maintainability can be in the scope of
the study. The scales and metrics for evaluating the risks associated
should be accordingly included and harmonized. Thus, the func-
tions for measuring and evaluating overall likelihoods, severity of
impacts, risks and their acceptability should be specified. The anal-
ysis relies upon a view of the target system and its context which
are captured via a model. Since a reliable security analysis often
demands details of the architecture, the model should provide func-
tional and system views including components, subcomponents,
ports and connectors. In fact, the analysis of attack likelihood/dif-
ficulty requires details about the architecture technology as well
as the identification of existing control measures and their pro-
tection features. The last yet quite important step of this phase is
the definition of a security perimeter, i.e., a border circumventing
the target of study and the untrusted context including the hostile
activity. Ports and connectors are thus concerned by the definition
of the security perimeter which can be settled at aircraft, system,
subsystem or component levels.

3.2 Knowledge bases instantiating
The instantiating of knowledge bases aims to facilitate reasoning
and integration of security and safety aspects, specially for the non-
savvy. To do so, the vulnerabilities of patterns are first instantiated
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according to the components technology already specified in the
model. Once done, the attack patterns can also be instantiated
according to component technology and its vulnerabilities. This is
a crucial nonetheless complex step which unfortunately can not be
automated and demands expert intervention and validation. Even
so, a guidance for the selection and instantiating of patterns can
be provided. More concretely, attack and vulnerability patterns
can be cross-related in advance by identifying the attributes that
match. E.g. both attack and vulnerability patterns can include the
attribute OS Architecture, if a component, and by extension its
vulnerabilities, is associated with a specific OS, attack patterns
targeting the same or no particular OS will be selected by default.
Thematched attributes can afterwards be re-used during the pattern
instantiating by suggesting suitable candidates according to the
specific architecture component. The selected patterns are finally
associated to elements in the security perimeter (e.g., exposed ports)
thus defining attack vectors.

3.3 Attack scenarios
The attack scenarios are identified considering the set of compo-
nents whose failure or misbehavior is a condition for the safety
events to unfold. The referred components are assumed as poten-
tial targets of attacks and are called Threats Conditions. Successful
attack scenarios shall finally lead to Threats Conditions having an
impact on the overall system safety. Thus, the severity of attacks
can be inherited from the impact assessment of safety events. Since
different resources, knowledge, skills and also motivations (gain/in-
vestment trade-off) are necessary for an attack to be deployed, the
attack scenarios should also be associated to the potential sources
of threats and attacker profiles. To ease the exploration of paths
from exposed ports in the security perimeter, towards the Threats
Conditions components, an algorithm is deployed. The algorithm
is based upon rules Pre-Condition ⇒ Post-Condition. The Pre-Conditions
are tuples with the syntax shown in (1).

(𝐴𝑡𝑡𝑎𝑐𝑘𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑖 , {𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑗 },¬{𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑘 })
(1)

The associations between attack and vulnerability patterns are
inherited from previous phase 3. The negated Countermeasures mean
that their effectiveness to prevent the attack is at stake or is limited,
e.g., due to partial vulnerability coverage. The Post-Conditions take
the syntax shown in (2).

({𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚}, {𝑃𝑜𝑟𝑡𝑇𝑦𝑝𝑒𝑛}, {𝐴𝑡𝑡𝑎𝑐𝑘𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑓 𝑓 𝑒𝑐𝑡𝑝 }) (2)

The Post-Conditions contain the exploited Vulnerabilities which allow
attack progression through specific PortTypes. The Attack Action Effect
become new Pre-Conditions useful to re-apply the rule on compo-
nents connected to compromised ports. The architecture explo-
ration and unveiling of potential attack paths results from iterating
over linked components. To ease model exploration, the Algorithm
1 for attack path discovering was implemented. It receives an archi-
tecture 𝐴𝑟𝑐ℎ := (𝐶, 𝐿) defined by a set of components 𝐶 and links
𝐿, 𝐿 ⊂ 𝑃 × 𝑃 , over a set of ports 𝑃 for inter-component communica-
tion. Each component is a tuple 𝐶𝑖 := (𝑇𝑖 , 𝑃𝑖 ,𝑉𝑖 ,𝐶𝑀𝑖 , 𝐹𝑖 : 𝐼𝑖 ↦→ 𝑂𝑖 )
where 𝑇𝑖 specifies the component technology type, 𝑃𝑖 its ports,

3For now, the tuples (AttackPattern, Vulnerability, ¬ Countermeasure) should be
defined, validated and maintained by an expert.

𝑉𝑖 the set of vulnerabilities, 𝐶𝑀𝑖 the security countermeasures
whereas 𝐹𝑖 : 𝐼𝑖 ↦→ 𝑂𝑖 is a function that maps input ports 𝐼𝑖 into
output ports 𝑂𝑖 . 𝐴𝑡𝑡 := (𝑇𝑎𝑡 ,𝑉𝑎𝑡 , 𝐴𝑎𝑡 ) is an attack pattern where
𝑇𝑎𝑡 and 𝑉𝑎𝑡 are respectively the technology and vulnerabilities
known by the attacker and 𝐴𝑎𝑡 is the set of allowed actions over
the architecture. The algorithm 1 first searches for a match between
attacker knowledge and the component technology and vulnera-
bilities. Once found, it then verifies that the attack is feasible by
verifying that an exploitable vulnerability without corresponding
countermeasure truly exists (𝑣𝑖, 𝑗 ,¬𝑐𝑚𝑖,𝑘 ). In such case, the compo-
nent𝐶𝑖 is thus compromised and added to the𝐴𝑡𝑡𝑃𝑎𝑡ℎ. To infer the
attack progression, a rule Pre-Condition ⇒ Post-Condition should be
selected ensuring that the attack satisfy its pre-conditions. The out-
put ports𝑂𝑖,𝑙 satisfying the post-conditions are then identified. The
attack can further progress through associated connectors, ports
𝑂𝑚,𝑛 , and respective components 𝐶𝑚 .

Data: 𝐴𝑟𝑐ℎ := (𝐶, 𝐿), 𝐿 ⊂ 𝑃 × 𝑃 , 𝐶𝑖 ∈ 𝐶 ,
𝐶𝑖 := (𝑇𝑖 , 𝑃𝑖 ,𝑉𝑖 ,𝐶𝑀𝑖 , 𝐹𝑖 : 𝐼𝑖 ↦→ 𝑂𝑖 ), 𝐼𝑖 ⊂ 𝑃𝑖 , 𝑂𝑖 ⊂ 𝑃𝑖 ,
𝐴𝑡𝑡 := (𝑇𝑎𝑡 ,𝑉𝑎𝑡 , 𝐴𝑎𝑡 )

Result: Attack path sequence 𝐴𝑡𝑡𝑃𝑎𝑡ℎ
Select component: 𝐶𝑖 ∈ 𝐶 , Target components:
𝑇𝑎𝑟𝑔𝑒𝑡 := [𝐶𝑖], Explored components: 𝐸𝑥𝑝 := ∅ ;
while 𝑇𝑎𝑟𝑔𝑒𝑡 ≠ ∅ do

𝐶𝑖 := 𝑇𝑎𝑟𝑔𝑒𝑡 .𝑛𝑒𝑥𝑡 ();
𝑇𝑎𝑟𝑔𝑒𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝐶𝑖 );
𝐸𝑥𝑝.𝑎𝑑𝑑 (𝐶𝑖 );
if 𝑇𝑖 ∩𝑇𝑎𝑡 ≠ ∅, 𝑉𝑖 ∩𝑉𝑎𝑡 ≠ ∅, 𝐴𝑐𝑐𝑒𝑠𝑠 (𝐼𝑖 ) ∈ 𝐴𝑎𝑡 then

for all 𝑣𝑖, 𝑗 ∈ 𝑉𝑖 ∩𝑉𝑎𝑡 , 𝑐𝑚𝑖,𝑘 ∈ 𝐶𝑀𝑖 ;
if 𝑣𝑖, 𝑗 ,¬𝑐𝑚𝑖,𝑘 then

Select 𝑅𝑢𝑙𝑒 = 𝑃𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⇒ 𝑃𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⋔
𝐴𝑡𝑡 ∩ 𝑃𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≠ ∅;
𝐴𝑡𝑡𝑃𝑎𝑡ℎ.𝑎𝑑𝑑 (𝐶𝑖 );
for all 𝑂𝑖,𝑙 ∈ 𝑂𝑖 , (𝑂𝑖,𝑙 , 𝑃𝑚,𝑛) ∈ 𝐿;
if 𝑂𝑖,𝑙 ∩ 𝑃𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≠ ∅, 𝐶𝑚 ∉ 𝐸𝑥𝑝 then

𝑇𝑎𝑟𝑔𝑒𝑡 .𝑎𝑑𝑑 (𝐶𝑚);
else

end
else

end
else

end
end
Algorithm 1: Algorithm for attack path computation

3.4 Risks assessment and treatment
Once the attack paths are well identified, the assessment of its po-
tential occurrence is performed. For that, likelihood, difficulty, and
probability are among the qualitative and quantitative metrics pro-
posed in the literature. Notice that the tuples (1) and (2) elicited in
previous phase are a basis to propose metrics for measuring attack
occurrence. The function for risks evaluation is applied to each
target component (Threat Condition): RiskLevel(AttackOccurrence, Im-
pactSeverity). The function for risks acceptability finally determine
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the unbearable risks for which treatment strategies need to be ap-
plied. The risk avoidance strategy can be applied by iterating on
the Attack Scenarios by removing/modifying the Threat Sources
and/or Attack Patterns. The risk reduction strategy can be applied
either by eliciting more effective countermeasures or by remov-
ing vulnerabilities (component technology update/upgrade). This
finally implies to update Pre-Condition⇒Post-Condition rules to reflect
more constrained attacker options.

4 LEVERAGED TECHNIQUES FOR
SAFETY-SECURITY CO-ENGINEERING

The following subsections describe the salient techniques leveraged
to support the method specified in Section 3.

4.1 Module for CAPEC and CWE importing
and integration

To support the identification of attack scenarios described in Section
3.3, the CAPEC[18] and CWE[17] knowledge bases, respectively
containing attack patterns and software weaknesses, were lever-
aged. Those knowledge bases are structured in a way that facilitates
the specification of potential vulnerabilities associated with an as-
set and define how to enchain attacks on specific assets to build a
scenario. While the weaknesses in CWE have a higher level of ab-
straction than vulnerabilities, they are still useful in our approach
because they describe in detail exploitable patterns without be-
ing tied to specific implementations as is the case in CVE [19], a
concrete vulnerability repository which allows to take into con-
sideration potentially unknown vulnerabilities. CAPEC and CWE
are linked together as attack patterns link to relevant weaknesses
and vice-versa. Additionally, both knowledge bases are structured
in a way that allows to identify the technology characteristics of
potential targets. This structure allows us to provide the user with
a list of potential weaknesses and attacks potentially relevant for
the system under analysis. Figure 1 shows the specific CAPEC and
CWE attributes used to cross-relate attack patterns, vulnerabilities
and components technology.

Figure 1: Specific CAPEC and CWE attributes cross-related
to the component architecture

Since CAPEC also contains information about attacks’ prece-
dence, it is plausible to build more complex attack scenarios by
suggesting attacks which may follow or precede another. CWE also
provides information on potential mitigations or detection methods
which can then be taken into account in the design as a counter
measure against the weakness. Both bases also have evaluations for
likelihood and impact which can be used when performing risks

evaluation. To use these knowledge bases inside the tool, a trans-
formation was implemented from the XML files made available
by MITRE [18], [17] which results in the listing shown in Figure
2. This approach allows to support the user in a semi-automated
way to handle large systems with more ease. It also leads to a more
reproducible analysis, relying on standardised formats and reusable
knowledge.

Figure 2: Overview of imported knowledge bases

4.2 UML profile for safety and security
engineering

The framework for safety-security co-engineering is inspired by,
and based upon Model Driven Engineering (MDE) techniques and
built on top of Papyrus [3]. One of the most salient features of
Papyrus is the support for defining domain specific languages via
UML [9] or SysML [8] profile implementations. A profile is indeed
an implementation of a meta-model which is adequate to capture
and stereotype fundamental concepts, features, dependencies/rela-
tionships associated to a specific domain or concern. The developed
profile supports modeling of domain specific knowledge related to
aircraft technology and in particular components, communication
channels, software architecture, OS, etc. An excerpt of the profile
diagram is shown in Figure 3.
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Figure 3: Excerpt of the profile for modeling and analysis of security and safety

The profile is also a mean to deploy the interfaces necessary to
import external knowledge sources from CAPEC [18] and CWE
[17]. UML has been selected as a basis language to implement our
profile in order to keep a good balance between its genericity and
its capacity to capture the most salient notions and features of
CAPEC and CWE. More concretely, the UML profile facilitates the
assignment of weaknesses to components/assets and attack patterns
to the ports (as depicted in Figure 1) thus settling potential pre-
conditions for attack continuation troughout its connections. The
attack progression inside the system towards its goal thus depends
upon the components/assets, their interfaces and the weaknessess
in both. These elements are structured to support the identification
and exploration of attack-failure paths as shown in Figure 4.

Figure 4: Structure of an attack-failure path model

Along with the referred modeling capabilities, the profile is en-
riched with elements useful to semi-automate analyses. More specif-
ically, the elements necessary for model analysis like the system
context (e.g.,security perimeter), the parameters for safety-security
criteria, the metrics for the assessment of safety events occurrence
and the severity of impact. Overall, the identification of attack sce-
narios, the assessment and treatment of risks are also integrated
and designed via the profile.

4.3 Framework for safety-security design and
analysis

The design and analysis framework covers all the phases of the
method introduced in Section 3 and is built on top of Papyrus [3], an
Eclipse module for Model Driven Engineering supporting UML2.0
and which is available under the EPL license. The main modeling
and analysis features are summarized in the following paragraphs.
To support modeling, the user can first define the parameters for
the analysis as described in Subsection 3.1. Some default templates

are available and can be imported so as to provide guidance in
this task. Dedicated diagrams are implemented to separately model
vulnerabilities and security countermeasures, as well as to visualize
the imported knowledge bases (see Figure 2). These model elements
are to be reused during the definition of the target system which is
modeled in two steps. In the first step, a functional view is designed
including its decomposition. In the second step, an internal view
of the architecture is given thus detailing components, subcompo-
nents, ports and connectors. The components view is amenable for
refinements and several architecture layers can be created what
facilitates the introduction of security perimeters at different levels.
The traceability of model elements ensures the consistency in case
of cross-layer analyses. As part of the analyses activities supported,
the exploration of Attack Scenarios is based upon the model of
Threats (Sources and Attack Patterns) and upon the identification
of targeted components (Threats Conditions). The attack-failure
paths are obtained by an implementation of the algorithm described
in Subsection 3.3. Finally, the functions for assessing attack-failure
paths occurrence (likelihood, difficulty, probability) and the ones for
evaluation and treatment of risks offer method support as described
in Subsection 3.4. An overview of the modeling frontend is shown
in Figure 6.

5 CASE STUDY: ANALYSIS OF A FLIGHT
CONTROL SYSTEM

The method and leveraged techniques respectively described in
Sections 3 and 4, were applied to analyze an industry-size case
study covering all electronic systems of an aircraft (4MB model
size). The case study is inspired in the incident report [2] involving
a Flight Control subsystem leading to an unexpected aircraft div-
ing and temporary loss of flight control. In the incident, a specific
input signal pattern, sent by a sensor of the aircraft, triggered a
flight control system misbehaviour leading to the wrong activation
of compensation mechanisms to avoid a nonexistent stall condi-
tion. Due to lack of space, the approach is shown on the specific
subsystem concerned by the incident.
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5.1 Target system and safety critical event
The Figure 5a represents the system considered in this study. The
two main elements of this system are the Air Data and Inertial
Reference System (ADIRS) and the Electrical Flight Control System
(EFCS).

(a) Flight Control System Architecture

(b) Location of the Angle of Attack sensors

Figure 5: Internal and external views of the aircraft architec-
ture. Figure (b) is borrowed from the ATSB report [2]

The ADIRS is charged with collecting data from the different
sensors in the aircraft and then computing different flight parame-
ters. The parameters are sent to the EFCS where they are compared
to inputs coming from the crew flight controls or the autopilot to
determine the actual commands to be sent to the flight surfaces
actuators. The failure in this event is a misbehaviour of the algo-
rithm charged with filtering erroneous values in the angle of attack
(AOA) measurements. Confronted with a particular pattern in the
measurements for this parameter,the output of the algorithm was
set to an erroneous value for several seconds. This in turn led the
EFCS to activate compensation mechanisms as the AOA value was
above their activation threshold. The mechanisms are in place to
avoid a loss of control of the aircraft due to being unable to gen-
erate enough lift (stall condition). This resulted in actions on the
elevators which led to a sudden dive of the aircraft (stall recover-
ing). The unnecessary dive caused injuries among the passengers
of the aircraft while the crew tried to take control back which was
only restored after the erroneous input was finally discarded by the
flight control system.

5.2 FCS Threat scenario
The incident described in the previous Subsection 5.2 clearly demon-
strates a potential impact on safety. To intertwine the safety as-
sessment with the security analysis, it should be inferred whether
an attacker can trigger the incident intentionally and how. The
attacker’s goal can be take over the control of, or at least be able
to have enough influence, on the measurement of the AOA so as
to recreate the pattern leading to the -wrong- aircraft dive for stall
recovering. By analyzing the Figure 5a, we go from the source
of malfunctioning -the EFCS- and trace back to the origin of the
measurement. The following potential targets arise: the ARINC
429 bus conveying the measurements from the ADIRS towards the
EFCS, the ADIRS, the connection between the AOA sensor and the
ADIRS, and the sensor itself. As described in the incident report
[2], the connection between the AOA sensor and the ADIRS is a
raw wire conveying an analogical value which is particularly vul-
nerable since neither the integrity nor the authenticity of the data
are protected. Figure 5b shows the location of the AOA sensors
what suggests that a significant amount of wiring is disposed over
the aircraft fuselage towards the ADIRS in the cockpit. According
to this hypothesis, an attacker can use a directed electromagnetic
impulsion device to recreate the incriminated pattern on the wiring.

5.3 FCS Threat scenario assessment and
evaluation

To assess the attack scenario, the tool filters a list of attack and
vulnerability patterns according to the technology of the component
selected as attack entry. The CAPEC attack pattern shown in Table
1 is selected due to its name (Fault Injection) and after inspecting
its definition. A vulnerability that corresponds to the attack is also
selected from CWE (see Table 2) and both patterns are instantiated.

Table 1: Attack pattern instantiated from CAPEC

Attribute Value

Pattern ID 624
Name Fault Injection
Description
summary

The adversary uses disruptive signals or events (e.g.
electromagnetic pulses, laser pulses, clock glitches,
etc.) to cause faulty behavior in electronic devices.

Attacker
prerequisites

Physical access to the system:: The adversary must
be cognizant of where fault injection vulnerabilities
exist in the system in order to leverage them for ex-
ploitation.

Resources
required

The relevant sensors and tools to detect and analyze
fault/side-channel data from a system. A tool capable
of injecting fault/side-channel data into a system or
application.

Criticality Typical severity: high. Typical likelihood: low.
Solutions and
mitigations

Implement robust physical security countermeasures
and monitoring.

Once instantiated, the patterns are leveraged in order to define
the rules to perform a semi-automatic attack path exploration. To
do so, the tuples Pre-Conditions (1) and Post-Conditions (2) defined in
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Figure 6: Overview of the attack-failure path in the FCS threat scenario and generated fault tree

Table 2: Vulnerability pattern instantiated from CWE

Attribute Value

Weakness ID 790
Name Improper Filtering of Special Elements.
Description The software receives data from an upstream compo-

nent, but does not filter or incorrectly filters special
elements before sending it to a downstream compo-
nent.

Modes of intro-
duction

:::PHASE:Implementation:DESCRIPTION:::

Common conse-
quences

::SCOPE:Integrity:TECHNICAL IM-
PACT:Unexpected State::

Subsection 3.3 are taken as reference. A definition of Pre-Conditions is
obtained by extracting the contents of the Attack and Vulnerability
patterns as follows:

(𝐹𝑎𝑢𝑙𝑡𝐼𝑛 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝐷624,𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝐷790,¬{𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝐷624 })
(3)

To define the Post-Condition of the rule, we focus on the Common
consequences of the Vulnerability in Table 2. We can easily infer
that any impact on data or signals integrity can finally lead to an
unexpected component state. By cross-relating this fact with the
Description of the Attack in Table 1, the referred consequence can
be expected at every component and port where improper or no

filtering of signals is observed. This Post-Condition is formalized as
follows:

(𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝐷790, 𝐴𝑙𝑙𝑃𝑜𝑟𝑡𝑇𝑦𝑝𝑒,𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐼𝐷624)
(4)

Once defined, the rules are entered to the algorithm 1 and applied to
explore the target system depicted in Figure 5a. The outcomes show
that output ports of the ADIRS are impacted and consequently the
attack is propagated via the ARINC 429 towards the EFCS. Since
the Pre-Conditions (3) are also satisfied at EFCS level, consequently,
the Post-Conditions (4) are again held implying that the EFCS output
ports degrade to unexpected state. The attack finally reaches the
target component, i.e., the Flight Surfaces Actuators thus leading to
the critical safety event described in Subsection 5.1. An overview
of the attack path and respective fault tree are shown in Figure 6.

To conduct the risk assessment, the Criticality levels in Table
1 are first considered (Typical severity: high. Typical likelihood: low.).
However, the criticality of the incident according to ARP-4761 [1] is
Catastrophic (Failure may cause a crash), so the severity is increased
to Very high4. The resulting risk becomes unbearable and it needs
to be reduced, e.g., by deploying electromagnetic protections or
by redesign of filtering functions in the Flight Control System
components. Once deployed, a method iteration is conducted to
evaluate the residual risk.

4It is assumed that the safety expert conducts such assessment or intervenes afterwards
to confirm or disapprove it
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6 CONCLUSIONS AND PERSPECTIVES
This paper presents a method and framework to conduct a security
analysis guided by safety events. The method proposes to place in
a sequence security and safety analyses and gives means to har-
monize fundamental concepts, metrics and techniques which are
typically but separately applied in risks analyses. The approach
mainly addresses the identification and evaluation of combined
attack-failure paths across an architecture model. To ease modeling
and analysis, the framework integrates open knowledge bases con-
taining patterns of attacks and vulnerabilities and allows to instan-
tiate them according to the architecture technology. Some model
driven engineering techniques were leveraged in order to ease the
integration of knowledge related to the aeronautics and airwor-
thiness domains. An algorithm was also defined to automatically
explore the system architecture and to unveil attack-failure paths.
The algorithm is based upon a set of predicate rules which settle
pre-conditions for the attack actions to occur, and post-conditions
declaring the respective impact on components and ports. The over-
all approach was demonstrated in an industry-size case study in
the aeronautics domain which provides a basis for scaling. In par-
ticular, models and analysis outcomes are amenable for re-usage,
exchange and comparison. As perspectives, probabilistic methods
can be applied to quantitatively evaluate the trade-off vulnerability
vs. countermeasures. The attack-failure path algorithm and rules
can be extended and consolidated by analyzing further case studies
from other application domains. The formalization of architecture
models and rules via a language and semantics can help to soundly
verify properties on attack-failure paths.
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