

Link between ablation and line emission for hydrogen fuelling pellet in LHD

E Geulin, B Pégourié, M Goto, G Motojima, R Sakamoto, A Matsuyama

► To cite this version:

E Geulin, B Pégourié, M Goto, G Motojima, R Sakamoto, et al.. Link between ablation and line emission for hydrogen fuelling pellet in LHD. EPS 2021 - 47th EPS Conference on Plasma Physics, European physical society, Jun 2021, Virtual conference, France. pp.P2.1045. cea-03301578

HAL Id: cea-03301578 https://cea.hal.science/cea-03301578

Submitted on 3 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Link between ablation and line emission for hydrogen fuelling pellet in LHD

<u>E. Geulin</u>¹, B Pégourié¹, M. Goto², G. Motojima², R. Sakamoto², A. Matsuyama³

 ¹ IRFM, CEA cadarache, 13108 Saint-Paul-lez-Durance, France
 ² NIFS, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292, Japan
 ³ QST Rokkasho, Aomori, Japan

EPS - 22/06/2021 Poster session

1/10

Pellets in nuclear fusion:

Fueling	Fuel the plasma core after ablation and homogenization (drift phase) \rightarrow Cloudlet physical and geometrical characteristics as initial conditions of the drift phase
ELM Pacing	Local pressure perturbation in the plasma edge \rightarrow Depends mainly on the ablation profile
Disruption mitigation	Shattered pellets for increasing density \rightarrow Depends on ablation profile of multiple fragments in rapidly evolving plasma
<u>Up to now :</u>	•

- <u>Ablation rate</u> \propto Line emission H_a
- <u>Volume averaged</u> cloudlets parameters determined

Experimental apparatus – LHD

DE LA RECHERCHE À CINDUSTRI

Experimental apparatus – LHD

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

<u>3 diagnostics were used :</u>

• High speed imaging spectroscopy

DE LA RECHERCHE À CINDUSTRIE

Experimental apparatus – LHD

IRfm

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

- High speed imaging spectroscopy
 - multibranch fiberscope + fast camera
 - \circ 1 image every 20 µs, exposure time: 2 µs.
 - Each objective lens is equipped with a band <u>filter</u> (H_{β} with two filter widths: 5 and 20 nm, and the continuum close to $\lambda = 576$ nm)
 - Spatial resolution :
 6mm + degradation (Transfer Function)

BE LA RECHERCHE À CINAGETRIA

Experimental apparatus – LHD

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

- High speed imaging spectroscopy
- Fast diodes

DE LA RECHERCHE À CINDUSTRI

Experimental apparatus – LHD

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

- High speed imaging spectroscopy
- Fast diodes
 - Time resolution : $2 \mu s$
 - Same set of <u>filters</u>

DE LA RECHERCHE À CINDUSTRI

Experimental apparatus – LHD

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

- High speed imaging spectroscopy
- Fast diodes
- Absolutely calibrated high-resolution spectrometer

BE CARECHERCHE À CINDUSTRI

Experimental apparatus – LHD

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

- High speed imaging spectroscopy
- Fast diodes
- Absolutely calibrated high-resolution spectrometer
 - \circ 1 spectrum every 16 µs, time resolution 84 µs
 - $\circ \quad \text{domain } \lambda = 370 710 \text{ nm}$

BE LA RECHERCHE À CINBUSTRIE

Experimental apparatus – LHD

The LHD stellarator :

- R = 3.6 m,
- a = 0.6m,
- B = 3 T

3 diagnostics were used :

- High speed imaging spectroscopy
- Fast diodes
- Absolutely calibrated high-resolution spectrometer

 \Rightarrow Accurate time cross calibration of the 3 diagnostics

 \Rightarrow Camera image + Diode + Spectrum consistent every 20 μ s

3/10

Objectives:

- I. For each cloudlet determine: <u>density(n)</u>, <u>temperature(T)</u>, <u>radius(R)</u>, <u>length(Z)</u>
- II. Get the local ablation rate
- III. Determine its link with the different line emission

<u>Model:</u>

Radiation model coupled to a 3-D radiative transfer calculation

- □ Local thermodynamic equilibrium assumed
- Line Emission / Bremsstrahlung / Radiative attachment / Recombination taken into account
- Cloudlet assumed cylindrically symmetric

Result 1 / 5 : Non-unicity of spectrum fit

- The only cloudlet spectrum can be fitted by severals (n,T,R,Z) Z = 2.22 m, R = 0.13 cm Z = 0.05 m, R = 1.90 cm
 - ⇒ Need Spectrum and images simultaneously to get cloudlet characteristics
 - ⇒ Multiple volumes (here 2) are required to get realistic dimensions

Result 2 / 5: Spectrum + image fit results in unique solution

Result from camera & spectrum datas

- I. Spectrum with the different emission components
- II. Image best fit longitudinal and normalized transverse cuts. Here :

Result 3 / 5: Cloudlet parameters along pellet path

- A. A dense : $(\approx 10^{25} \text{m}^{-3})$ and cold $(\approx 1 \text{ eV})$ core
- B. A thin less dense ($\approx 10^{24}$ m⁻³) and hotter (≈ 2 eV) external layer
- II. The contribution of the thin layer to the spectrum is small but its presence is required for an accurate fit of the images

I. Ablation rate is calculated as Nv,

→ <u>cloudlets particle contents N</u> (i.e. the ablation rate multiplied by the time for building a cloudlet) → <u>cloudlet ejection frequency v</u> (i.e. the inverse of the time for building a cloudlet)

II. v is determined from the oscillations of the diode signals (from 50 to 100 kHz, increasing along the pellet path).

Result 5 / 5: Link between ablation rate and line emission

<u>The ablation rate</u> and <u>emission</u> dependence with time shows although the general trend of the ablation rate and line emissions are similar,

- \Rightarrow no clear proportionality can be established between them
- \Rightarrow one cannot accurately infer the ablation profile from line emission.

- I. The unambiguous determination of ablation cloudlet characteristics requires the knowledge of calibrated images and spectrum.
- II. The model and procedure described here allows to evaluate:
 - The cloudlet geometry, density and temperature distributions,
 - The local (i.e. instantaneous) ablation rate,
 - The relation between line emission $(H_a, H_{\beta}...)$ and the ablation rate \Rightarrow No strict proportionality is observed between them.

Objectives and Modeling

Objectives:

- I. For each cloudlet determine : <u>density(n)</u>, <u>temperature(T)</u>, <u>radius(R)</u>, <u>length(Z)</u>
- II. Get the local ablation rate
- III. Determine its link with the different line emission

Model :

Radiation model coupled to a 3-D radiative transfer calculation

- Local thermodynamic equilibrium assumed
- Line Emission / Bremsstrahlung / Radiative attachment / Recombination taken into account
- Cloudlet assumed cylindrically symmetric

