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Abstract

A dynamics of the precession of coupled atomic moments in the tight-binding (TB) approxi-

mation is presented. By implementing an angular penalty functional in the energy that captures

the magnetic effective fields self-consistently, the motion of the orientation of the local magnetic

moments is observed faster than the variation of their magnitudes. This allows the computation

of the effective atomic magnetic fields that are found consistent with the Heisenberg’s exchange

interaction, by comparison with classical atomistic spin dynamics on Fe, Co and Ni magnetic

clusters.

I. INTRODUCTION

Nowadays, the coupling between structural and magnetic properties in 3d based magnetic

materials plays a key role in the manufacture of high performance spintronics devices [1].

Moreover, it is also central in numerous anomalous evolutions of structural parameters [2]

with pressure. For instance, one of its salient consequence is that the bcc phase of α-Fe

is stabilized by its magnetic properties [3]. Thus, to accurately describe the dynamics of

3d metals and their alloys, a fully coupled spin-lattice dynamics with an ab initio level of

precision is highly desirable. Unfortunately and despite notable progress [4, 5], no such tool

is available so far.

However the theory of magnetism is fundamentally a theory of electronic structure.

Antropov et al. first presented a description of the motion of local magnetic moments

in magnetic materials [6], in the framework of first-principles methods. Their idea was mo-

tivated by the fact that the interatomic exchange energy among atomic magnetic moments

is small compared to intra-atomic exchange and bandwidth energy. Thus, this adiabatic

spin density approximation allows them to treat the angles defining the directions of these

magnetic moments as sufficiently slow varying degrees of freedom, to separate them from

the individual motion of their underlying electrons, exactly like the nuclear coordinates in

the Born-Oppenheimer adiabatic approach to molecular dynamics [7]. Moreover, by assum-

ing that the magnetization density in the immediate vicinity of each atom has a uniform
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orientation, each direction of every magnetic moment can be followed in time according

to a precession equation, as it is the case of classical atomistic spin dynamics [8]. Conse-

quently, the initial many-electron system is mimicked by this system of classical moments,

when the directions and amplitudes are determined self-consistently from the requirement

of minimizing a given free energy. Thus for each moment, the effective field that enters in

the precession equation depends only on the variation of the spin-dependant free electronic

energy as a functional of the magnetization direction only. Moreover, by assuming that the

relevant electronic correlation hole is essentially in the inner part of each atomic volume, for

this type of adiabatic transformation, the longitudinal moment dynamics is nonadiabatic in

this approach. It is governed by individual electronic spin flips like Stoner excitations, which

are also fast [9]. Thus, even if the amplitude of each moment cannot be globally constant in

time, for a small temporal excursion fast enough to keep the adiabatic approximation, the

longitudinal dynamics can be often neglected.

The paper is organized as followed. In Sec. II, we review the framework used to de-

rive non-collinear magnetism within the tight-binding (TB) approximation. Angular mag-

netic constraints are imposed by penalty functionals that are solved equally during the

self-consistently computation of the electronic structure. In Sec. II D, the derivation of an

equation of precession of the local magnetic moments that involves constrained magnetic

fields is presented that allows considerations both transverse and longitudinal dampened

torques. The dynamics of various magnetic dimers and trimers of Fe, Co and Ni is studied

in details in Secs. III A and III B to access the validity of the isotropic Heisenberg exchange

approximation, that is commonly assumed. Lastly, in Sec. III C we analyse in depth the

example of an Fe dimer exposing the strength of our method as opposed to the limitations

introduced by describing this system in the global Heisenberg picture.

II. METHODOLOGY

When an Hamiltonian H is a functional of the magnetization M , the effective field is

nothing else than the functional derivative of H with the respect of the magnetization [10].

To calculate such an effective field acting on the atomic magnetic moments, the atomistic spin

dynamics (ASD) uses a parameterized spin-Hamiltonian, where ab initio methods calculate it

at every self-consistent iteration with various methods. One of the ab initio approach consists
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in the use of constrained density functional theory (cDFT) [11], where a full accountability of

accomplishments of calculations can be found now in many references [12]. The accuracy of

the cDFT methods requires an extremely high computational price that scales quickly with

the dimension and size of the studied system. In contrast, spin-Hamiltonian methods rely on

spatial distributions of classical magnetic moments and offer an option with a computational

cost tuned by the accuracy and how interatomic exchange parameters are treated. We offer

a method that relies in between, with a lower computational cost compared with the full ab

initio aspects of the cDFT method without having to rely on a correct description of the

parameters inside a spin-Hamiltonian for a given system.

A. Magnetic tight-binding model

In this work we have used a magnetic TB model that has been described in a review

article [13] and has been extensively benchmarked and validated in many different mag-

netic systems of various dimensionalities (bulk, surfaces, interfaces, wires, clusters) [14–16],

including complex magnetic structures such as spin density wave [17] and non collinear

configurations [18].

It is based on a parametrized spd description of the electronic structure where in practice

the parameters of the Hamiltonian are determined by a careful fit of the total energy and

band structures obtained from ab-initio data over a large range of lattice constants of dif-

ferent crystallographic structures. The magnetism is described via a Stoner-like interaction

term. The Stoner parameter I of each element being also determined from a comparison to

ab-initio calculations at several lattice constants. This TB model describes the electronic,

magnetic and energetic properties with a precision close to Density Functional Theory but

at a much smaller computational effort.

To avoid a too lengthy derivation, we will present a simplified version of the TB formalism

that focuses on the most salient features of the model. Let us consider a non-magnetic TB

Hamiltonian H0 written in a local basis set |i〉. The site index i is a composite object

that also includes an orbital index reference which can be dropped for simplicity. H0 is

decomposed into onsite energy terms ε0
i = 〈i|H0|i〉 and hopping integrals βij = 〈i|H0|j〉. The

eigenfunctions of the system are written as a combination of atomic orbitals |α〉 =
∑

iC
α
i |i〉

and the density matrix between sites reads ρij =
∑occ

α Cα
i C

α?
j where the summation runs
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over the occupied energy levels εα < E0
F where E0

F is the Fermi level such that
∑

i ρii is

equal to the total number of electrons Ne of the system. The total energy of a non-magnetic

system is here reduced to the band energy only [19]

E0
tot =

occ∑
α

ε0
α = Tr(ρH0) =

∑
ij

ρijH
0
ji

=
∑
ij

occ∑
α

Cα
i C

α?
j H0

ji. (1)

To this non-magnetic framework, both the magnetic interaction and the local charge

neutrality can be added by appropriate constraints, such as the total energy can be written

in a formalism where each electronic spins are treated collinear, i.e.

Etot = E0
tot +

∑
i

Ui(ni − n0
i )

2 − 1

4

∑
i

Iim
2
i , (2)

where ni = ρii = ni↑+ ni↓ and mi = ni↑− ni↓ are respectively the charge and magnetization

of site i, whereas Ii is the Stoner parameter and Ui a large positive quantity. By minimizing

Eq.(2) with respect to the normalized coefficient Cα
i , with the condition

∑
i(C

α
i )2 = 1,

this leads to a Schrödinger equation for a renormalized Hamiltonian Hσ for ↑ or ↓ spins

separately. This Hamiltonian simply reads as

Hσ = H0 +
∑
i

|i〉
(
Ui(ni − n0

i )−
1

2
Iimiσ

)
〈i|, (3)

where σ = ±1 is the spin ↑ or ↓. In this Stoner picture only the onsite terms ε0
i →

ε0
i + (Ui(ni− n0

i )− 1
2
Iimiσ) are affected by both the local charge neutrality and magnetism.

The generalization to non-collinear magnetism is straightforward. First the previous

expressions is extended to spin-orbitals with spin-dependent coefficients (Ci↑, Ci↓) on each

site. Then an onsite density matrix ρ̃i is manipulated as a 2 × 2 matrix with components

ρσσ
′

i =
∑occ

α Cα
iσC

α?
iσ′ , in order to write it more conveniently as ρ̃i = 1

2
niσ0 + 1

2
mi ·σ, where σ0

is the identity matrix ≡ I and σ = (σx, σy, σz) is a vector of Pauli matrices, mi = Tr(ρ̃iσ).

As a consequence, the Hamiltonian H then reads as

H = Hnσ0 +Hm.σ, (4)
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where the components of the vector Hamiltonian H = (Hn,Hm) are

Hn =
∑
i

(
ε0i + Ui(ni − n0

i )
)
|i〉〈i|+

∑
ij

βij|i〉〈j|, (5)

Hm = −1

2

∑
i

∆i|i〉〈i|. (6)

with ∆i = Iimi. When the total energy of the system is written as the sum of the occu-

pied eigenvalues (band energy term) of the renormalized Hamiltonian, one has to take into

account the so-called double counting terms

Etot =
occ∑
α

εα −
1

2

∑
i

Ui((ni)
2 − (n0

i )
2) +

1

4

∑
i

Ii ‖mi‖2 , (7)

where εα are the eigenvalues of the renormalized Hamiltonian.

B. Magnetic constraints in TB

When dealing with magnetic systems it is often interesting to be able to explore the

energetics of various magnetic configurations. This can achieved by trying several starting

magnetic configurations but remains a relatively limited strategy since this produces few self-

consistent solutions to compare with. It can be very interesting to consider the situation

where magnetic constraints are imposed on any given atom i of the system. Appendix A

summarizes the fixed spin method that is limited to collinear magnetism. However, among

all the practical methods of optimization under constraints [20], the penalty method is a

very handy way to proceed.

This consists to supplement the total energy with a penalty term in a similar way that

has been done for the local charge neutrality constraint. There exists many possible ways

to impose constraints on a magnetic system [11, 21, 22], which have been carefully reported

in the reference [23].

There also exists various types of penalty functional depending on the quantity to impose.

One can impose a given moment mpen
i on a given atomic site i as presented in appendix B

but it is also possible to constrain only the polar angle θi between the atomic moments of

atom i and the z-axis, a penalty functional of the form λ(θi − θpen
i )2 can be considered. An

equivalent expression can apply to the azimuthal angle φi too. To constraint simultaneously

both angles, we could simply add these two functionals. However as reported by Ma and
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Dudarev [22], a combined angular penalty functional can be constructed, based on the

dot product of mi and epen
i , here considered as a unit vector of given spherical angles

(θpen
i , φpen

i ). This penalty function reads Epen
i = λ(‖mi‖ − epen

i ·mi), and leaves the norm

of the magnetization ‖mi‖ free to vary while the direction of the magnetic moment is

constraint to be the direction of epen
i . Consequently, this introduces a renormalization of

the on-site terms of the TB Hamiltonian of the form −Bpen
i ·σ with Bpen

i = −λ(ei− epen
i ),

where mi = ‖mi‖ ei. Therefore the on-site term ∆i of the magnetic Hamiltonian Hm (see

Eq. (6)) reads:

∆i = Iimi + 2Bpen
i (8)

This is exactly Eq. (1.9) of Ref. 24. The spin splitting field ∆i is the sum of the Stoner-

like exchange field Iimi and the penalization field. This penalty scheme has many specific

properties. For example by noting that −Bpen
i ·mi = Epen

i , it can be shown that there

are no double counting terms associated to the the renormalization. Consequently the total

energy can we written as in Eq. (B1) but without the last term. Moreover when λ → ∞,

ei ≈ epen
i and Bpen

i ·mi = 0 and the penalization field becomes perpendicular to the local

magnetization.

To be more specific, let us now consider the variation of the total energy with respect

to the polar and azimuthal angles. By considering a variation of angle dθ on site i and

by using the Force Theorem, it is straightforward to show that dE = −dBpen
i

dθ
·midθ =

−‖mi‖ dB
pen
i

dθi
· eidθi. Now by taking the derivative of Bpen

i · ei = 0, and by noting that

de
dθ

= eθ, we find a relationship between the polar angle variation of the energy, which is the

effective field up to a sign, and the penalty field

1

‖mi‖
∂E

∂θi
= Bpen

i · ei,θ = Bpen
i,θ , (9)

and similarly with the azimuthal angle variation of the energy

1

‖mi‖
1

sin θi

∂E

∂φi
= Bpen

i · ei,φ = Bpen
i,φ . (10)

Or in a more compact formulation

Bpen
i =

∂E

∂mi

=
1

‖mi‖
∂E

∂ei
. (11)

Thanks to these penalty functionals, it becomes possible to target any local arbitrary mag-

netic configuration to find the corresponding local effective field, which is an extremely useful
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technique to explore the magnetic energy landscape. It is also possible to assign λ as a site-

dependent parameter, by setting it to zero to constraint some atoms and let the others to

adapt, during the self-consistency cycles.

In the following section we will use the penalty formalism to map the TB model onto an

Heisenberg Hamiltonian and to derive a spin dynamics equation of motion that directly use

the penalty field hence derived.

C. Exchange parameters in TB

In this section the general features to map the total energy of an electronic structure

method onto a classical Heisenberg model is presented, that describes a system of atomic

spin, characterized by local magnetic moments mi at site i interacting via bare isotropic

interactions J0
ij:

EHeis = −1

2

∑
i 6=j

J0
ijmi ·mj,

= −1

2

∑
i 6=j

J0
ij ‖mi‖ ‖mj‖ ei · ej,

= −1

2

∑
i 6=j

Jijei · ej,

(12)

Within this approach the amplitude of the magnetization ‖mi‖ of site i can be incorporated

effectively into the bare exchange interaction to produce a dressed exchange interaction, once

assumed that the ‖mi‖ become independent of the magnetic configuration. This assumption

seems rather drastic but in many magnetic systems, where the magnetic moments are not so

dependent on the magnetic configuration or for small rotations around a given angle, which

is the case treated here. By keeping this assumption in mind, we can safely dropped the

dressed reference.

However in systems that break globally the symmetry of space rotation (particularly of

nanometer size), this fails and the classical Heisenberg model is only valid for a limited

range around a given magnetic stable (or metastable) configuration C, that preserves the

invariance by point rotation only locally. In such systems the Heisenberg model can only be

used to explore the dynamic around configuration C, that does not alter substantially the

invariance by point rotation, that are often found for low temperatures. Consequently for

higher temperatures or space transitions that reduce the point symmetry, the Jij’s become
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usually very sensitive to the structural parameters such as the interatomic distances and

local environments, preventing their transferability to various atomic structures. This point

is well illustrated in Appendix D.

Since numerical implementations of the Heisenberg model are by far simpler than elec-

tronic structure approaches, it is tempting to extract the desired exchange parameters Jij

from electronic structure calculations. To do so, several methods have been reported in the

literature. i) The simplest method is based on a fit of the total energy obtained by multiple

magnetic collinear configurations, which do not necessitate any non-collinear numerical im-

plementations neither penalty constraints [25]. ii) Another approach consists in performing

finite difference calculations of the total energy between various magnetic non-collinear con-

figurations [26], which can enlarged significantly the space of the magnetic configurations to

span. In addition by varying the relative angle between the magnetic sites, it is possible to

test the range of validity of the Heisenberg picture [27, 28]. iii) Based on this finite difference

picture, in a seminal work Liechtenstein et al derived an explicit expression of the exchange

parameters, based on second order variation of the band energy term relying on the magnetic

Force Theorem and Green’s function formalism [29]. The latter one has shown big success in

predicting various magnetic properties such as magnon excitation, critical temperature and

also used to perform dynamical calculation of magnetic moments [30]. In this work, we have

used the approach ii), where we rotated one magnetic moment of an angle θ and developed

an equation for E(θ) for each case, e.g. dimers (Sec. III A) and trimers (Sec. III B). We

have found that the energy curve between the TB model and the Heisenberg model agree

quite well, which leads to a good agreement between the spin dynamics of the two different

methods, shown later in Secs. III A and III B.

Details of the derived expression for both cases and the fitting of the energies to find the

respective exchange coupling parameter Jij for each case is explored in more details at the

Appendix D.

D. Spin-dynamics in TB

The change in direction of each of the local magnetic moments mi = Tr(ρ̃iσ) with time

is given by the transverse torque of this moment only with the effective pulsation, which is
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in return precisely Beff
i ≡ −B

pen
i = − ∂E

∂mi
,

dmi

dt
= mi ×

Beff
i

~
=
Bpen
i

~
×mi (13)

Because Beff
i is constructed orthogonal to mi, B

eff
i is itself a cross product of a functional of

mi, by mi. Eq. (13) is nothing else than the Larmor’s precession equation, which is itself a

non-relativistic limit of a more complex motion of spinning particles in a co-moving frame

[31].

In practice, TB SCF calculations are first performed without any constraint to identify

the stable magnetic (or metastable) states meq
i . Such a magnetic state is not necessarily

unique and the process has to be repeated in frustrated systems that produce degenerate

states. However this process can be systematized by considering methods for finding mini-

mum energy paths of transitions in magnetic systems [32]. Moreover if a precession around

the equilibrium magnetization is considered, the longitudinal term vanishes because Beff
i is

constructed orthogonal to mi. Then a given spin direction mi(0) is chosen in the neighbor-

hood of this equilibrium state and a constrained SCF calculation is performed according to

the chosen penalty method described above, to get the local effective field. Thus, a spin dy-

namics is produced by solving Eq.(13) in time by using an explicit solver. In this case, each

local moment may have different starting amplitude, that remains constant over time and

their motion evolve on local spheres, according to the Rodrigues’ rotation formula, that is

presented in Appendix C. The procedure is repeated for each time step of the spin dynamics.

III. SPIN DYNAMICS OF MAGNETIC CLUSTERS

In this section, we study the dynamics of the magnetic moments under two different

scenarios: using an ”in house” atomic spin dynamics (ASD) as implemented in Ref. [33]

based on an Heisenberg Hamiltonian and the tight-binding spin dynamics (TBSD) method

described in the previous Sec. II. This is applied for the most simple cases, i.e. dimers

and equilateral triangle trimers of equivalent atoms for which the corresponding effective

exchange interaction J is obtained from our TB model and then used in the ASD for com-

parison with TBSD. Note that since in the ASD code the dynamics is expressed in terms of

unit vectors and the effective field is written as − ∂E
∂ei

(with no ‖mi‖ factor) we have used in

the TBSD an effective field given by −‖mi‖Bpen
i .
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We would like to highlight that Ref. [34] have explored aspects of the results presented in

this paper, in parallel. Most of their efforts was to verify if the effective field is exactly the

negative of the constraining field, which acts as a Lagrange multiplier to stabilize an out-

of-equilibrium, noncollinear magnetic configuration, a point raised in Ref. 21. However, the

quality of the derived effective field by constrained method is very sensitive to the numerical

limit of the Lagrange multiplier, a point we have carefully monitored. It is noteworthy to

say that our results are complementary and do not overlap in any way, specially in the

spin-dynamics aspect of this work.

A. Magnetic dimers

Many studies have already addressed the spin dynamics of both quantum and classical

Heisenberg dimers [35], not always systematically by looking the temporal dynamics of each

of their individual moments. Using the method described in Sec. II D, we studied the time

evolution of the net magnetic moments, here treated as a classical tridimensional vectors,

for magnetic dimers of Fe, Co and Ni. First, Eq. (13) is solved and the precession of these

magnetic moments is analyzed without damping, by starting from a tilted angle of 10◦ from

the z-axis for each atomic site, as the initial configuration. Then by using the method

presented in the Appendix D, our findings are compared with an atomistic spin dynamics

approach using the exchange coupling J extracted from the angular dependence of the total

energy. Our results, depicted in Fig. 1, show that all the three dimers behave well as under

the Heisenberg interaction in the studied limit, i.e. the effective field Beff
i can be described

by a constant isotropic exchange, Eq. (12), that does not depend on the instantaneous

magnetic configuration. As shown in Appendix D, between θ = 0◦ and θ = 10◦ the fit

between the energy calculated from the TB onto a Heisenberg Hamiltonian works perfectly,

but that does not hold true for higher angles. It means that a simple bi-linear Heisenberg

Hamiltonian is not enough to describe the system globally, but only locally with respect to

the magnetic configuration. Because the z-component of the magnetization is constant in

time, the z-component of the ASD torque is exactly zero, which is not the case in the TB

dynamics. However, this can be consistently monitored by decreasing the timestep used to

integrate the precession equation, Eq. (13).

We can monitor that the precession frequency, as calculated in the appendix C, is well

11
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Figure 1. (color online) Magnetization and torque dynamics of individual moments for for

dimers of Fe (black), Co (red) and Ni (green). TBSD (resp. ASD) results are in solid lines

(resp. circles). Unit of torques is PHz. Initial conditions are m1 = g(− sin(10◦), 0, cos(10◦)),

m2 = g(sin(10◦), 0, cos(10◦)), where g are the SCF Landé factor for each atom (see Appendix D).

reproduced by the TB calculations.

B. Magnetic trimers

It is known in the literature that in some specific situations, the exchange coupling and

Dzyaloshinskii-Moriya interactions calculated from the ferromagnetic (FM) state are not a

good fit for predictions of magnetic properties, e.g. close to the paramagnetic state [36] or

the transition from the FM to the skyrmion phase [37]. This is mainly because that in these

scenarios, interactions of higher order play an important role and even sometimes a central

role, such as the value of considering the 4-spin interaction in case of stabilizing the skyrmion

phase in hexagonal Fe film of one-atomic-layer thickness on the Ir(111) surface [38]. These
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higher order interactions can be seen as if the exchange constants become kinetic functions of

the magnetization state, a possibility theorized long time ago [39]. One could argue that it is

only needed a high-order more specific spin-Hamiltonian to describe the problem, but in some

other cases the so called beyond-Heisenberg interactions can also be present, i.e. interactions

that cannot be mapped into a spin-Hamiltonian [40] or cases where the Heisenberg picture

is simply broken [41]. Our goal here is to explore the limits and differences between the

spin dynamics features using a spin-Hamiltonian and our presented here TB spin dynamics

method.

In order to do that, the magnetization dynamics of magnetic equilateral triangle trimers

of Fe, Co and Ni is explored, as can be seen in Fig. 2 The magnetization dynamics of Fe,

Co and Ni triangle trimers, are depicted in Fig. 3 as well as the torques in Fig. 4.

In order to evaluate the exchange coupling between the magnetic moments in this case, an

analogous procedure to what was done to the dimer is performed, more precisely described in

the Appendix D. Fitting with the energy obtained from the TB calculation, the parameters

are reported in Appendix D. Note that in this particular case J12 = J23 = J31 due to the

symmetry. Initially, self-consistent calculations under the angular penalty function were

performed in order to determine the magnetic moments of each atom in the system. With

that information, one performs simulations of the magnetization dynamics using the spin

Hamiltonian, Eq. (12). Parallel to it, the process described in Sec. II D is followed, the

magnetization dynamics is calculated and the comparison between the different methods is

shown in Fig. 3. Similarly to the dimers case, the systems here presented show themselves as

Heisenberg systems within the studied limit, e.g. θ = 10◦, when calculating the precession

of the magnetic moments around the z-axis.

So far, these limits have served to prove the reliability of our method, and not to justify

the extra computational cost introduced to reproduce the behavior of an ASD approach. In

the next section we exhibit the simplest situation that demonstrate its relevance.

C. Configuration dependence of the exchange coupling parameters Jij

The task of finding a reliable Hamiltonian to describe variations of magnetic configura-

tions is not straightforward. Continuous efforts have been made throughout the years in

the attempt to understand the microscopic origin of these exchange parameters and their
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Figure 2. (color online) a) Schematic representation of the the equilateral triangle trimer.

consequences [42]. Recently, a method to calculate the exchange coupling parameter Jij for

any given magnetic configuration, via first-principles simulations, was developed and ap-

plied to study these interactions on Fe-bcc [43]. In fact, these configuration dependent Jij’s
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Figure 3. (color online) Magnetization dynamics of Fe (black), Co (red) and Ni (green) tri-

angle trimers. TBSD (resp. ASD) results are in solid (resp. circles) lines. Initial condi-

tions are m1(0) = g(−0.17365, 0.0, 0.98481), m2(0) = g(0.08682,−0.15038, 0.98481), m3(0) =

g(0.08682, 0.15038, 0.98481), where g are the SCF Landé factor for each atom (see text).

significantly improved the spin-wave dispersion comparison between the theory and the ex-

periment. Within the TB approximation, Ref. [44] reports a configuration dependence of the

exchange parameters by comparing various effective field Beff between the Heisenberg model

and direct TB calculations. Moreover, it is crucial to understand the relevance of higher or-

der parameters in the expansion of the magnetic Hamiltonian, e.g. and bi-quadratic terms,

3-spins, 4-spins, etc., as can be seen in works like Refs. [28, 38] and [45]. Lastly Ref. [46]

as implemented in Ref. [47], offers an attractive solution to the problem of a statistically

under-represented magnetic reference state, but at a cost of a span of the entire magnetic

configuration space. In principle, this allows the derivation of effective exchange coupling

constants that average the effect of more than 2 independent configurations of spins. Un-
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Figure 4. (color online) Torque dynamics of Fe (black), Co (red) and Ni (green) triangle trimers.

TBSD (resp. ASD) results are in solid (resp. circles) lines. Units of the torques are in PHz. Initial

conditions are identical than those in Fig. 3.

fortunately this statistical method is more suitable in the dilute magnetic limit and appears

not adequate to capture the magnetic behavior of a single specific dimer or trimer. Moreover

its implementation for alloys is complex.

So far, we have calculated the exchange coupling parameters by fitting the energy from

the TB calculations around the ground state, i.e. FM for Fe, Co and Ni. These past studies

have revealed the non-Heisenberg behavior of Fe in particular and in order to illustrate our

argument, we picked up the Fe dimer as an example. For a dimer, one can express the total

TB energy as an expansion on a basis of Legendre polynomials up to a given order N , such

as

E(θ)− E(0) =
N∑
n=1

J
(n)
12 Pn(cos(θ)). (14)
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When this series ends to N = 1, J
(1)
12 is just the usual intensity of the Heisenberg coupling

constant. If this series ends to N ≥ 2, we can interpret J
(2)
12 as a biquadratic component

of the intensity of the magnetic coupling, characterized by a beyond-Heisenberg behavior.

In the Fig. 5 we show on the left, the total energy of Fe dimer as a function of the angle

θ between the magnetic moments of each Fe atom, along with the exchange coupling J
(1)
ij

calculated by fitting the Heisenberg model around the local θ (at every step of θ = 10◦), on

the right.
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Figure 5. (color online) TB total energy as a function of the angle between the two magnetic

moments of an Fe dimer on the left y-axis and the N = 1 exchange coupling parameter derived

locally for each angle, on the right y-axis. In addition, the TB total energy is globally fitted

by expansion in Legendre polynomials in terms of cos(θ). Here, N = 1 would be the bi-linear

Heisenberg Hamiltonian, N = 2 includes the bi-quadratic term and so on so forth.

It is clear from the total energy calculations that, for that case, it cannot be fitted by

a simple bi-linear Heisenberg model. We tried then to add a bi-quadratic correction to the
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model as cos2(θ), as done in Ref. [48], by analyzing the P2(cos(θ)) = 1
2

(3 cos2(θ)− 1) part

of the Legendre expansion, and then reported in the Fig. 5 along the N = 2 curve. One can

note that this N = 2 term improves globally the model curve, but quite not match the TB

calculations rigorously, in particular in the range of angles when the FM order is not the

preferred magnetic ground state. It is needed to go up to the 6-th order to get a reasonable

fit that captures all the energetic features, including the reversal in the sign of the energy

behavior at intermediate angles. It is noteworthy to mention that the magnetic moment

of each of the Fe atoms changes throughout the rotation of about 40% (data not shown),

from 3 µB (FM configuration) to ≈ 1.8µB (AF configuration); a feature that is also not

covered by the Heisenberg model. The parametric derivation of such a simple configuration

space indicates the magnitude of the task at hand in much more complex systems, such as

alloys and materials with non-collinear magnetic configurations as ground state. However we

argue that properties strongly dependent on small variations around the ground state, such

as spin-wave spectra, are well described with a local Heisenberg Hamiltonian, as already

anticipated by Holstein and Primakoff [49], but we need a more precise electronic structure

behavior, in order to compute the correct effective field far from the ground state and not

necessarily represented by the magnon state of lowest energy. In that scenario the effective

field directly derived from the electronic structure, produces the correct dynamics in time

for any directions of any local magnetic moments, without prior knowledge of any exchange

values and represents, by construction, a direct solution to avoid such issue.

IV. CONCLUSION

In this paper, we have presented a method that offers an alternative between full ab

initio and spin-Hamiltonian based spin-dynamics. Our approach uses a penalty functional

on the magnetic moments of each site in order to calculate self-consistently, at every time

step, the respective effective magnetic field. We have solved the precession equation on

each site, without damping, for dimers and trimers of Fe, Co and Ni, and compared our

findings with an ASD approach, where the magnetic effective field is not calculated directly

from the electronic structure, but from a parameterized spin-Hamiltonian. The exchange

coupling interaction J , as a parameter, was calculated by fitting the TB total energy with a

parameterized spin-Hamiltonian for a range of directions of the atomic magnetic moments.
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Our results showed that within this limit, they can be seen as good Heisenberg systems

locally and the comparison between the TB and ASD are fairly good. That is not the

case where the same set of magnetic moments connect different magnetic extrema, meaning

that different parametric local representations have to be calculated, which breaks the whole

Heisenberg picture. For those systems, one cannot map globally the electronic structure onto

a single Heisenberg model, although these parameters still can predict with good accuracy

properties of their local ground states. We have illustrated this situation by studying the

dependance of the total energy of an Fe dimer, as a function of the angle between the

atomic magnetic moments, and proved that this cannot be mapped globally into a bi-

linear Heisenberg Hamiltonian only. In fact, a high-order expansion in power of the angular

directions between the atomic magnetic moments is mandatory to match the landscape

of the TB energy adequately. Finally, the TBSD here presented is a satisfying solution,

with a reasonable computational cost, to study the spin-dynamics of systems that are not

dominated by the pair Heisenberg’s interaction only, because the construction of the ab initio

effective field is free from such hypothesis. This technique may serve also to investigate the

dynamics of more complex magnetic systems that include spin-orbit mediated interactions

in low dimensional symmetries, and appears to be both versatile and general.
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Appendix A: Fixed spin moment

The fixed spin moment calculation is probably the most straightforward method, but is

limited to the case of collinear magnetism and is independent of the site index. This is to
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impose exactly a total magnetization of the system and therefore the total number of ↑ and

↓ electrons. One therefore needs to define two separate Fermi levels Eσ
F . For a homogeneous

system where each atom carries the same charge and the same magnetization, the total

energy is

Etot =

|ε↑α|<E↑
F∑

α

ε↑α +

|ε↓α|<E↓
F∑

α

ε↓α +
1

4
Im2, (A1)

where εσα = ε0
α − 1

2
Imσ. Then the total energy can be rewritten as

Etot =

|ε0α|<E
↑
F+ 1

2
Im∑

α

ε0
α +

|ε0α|<E
↓
F−

1
2
Im∑

α

ε0
α −

1

4
Im2. (A2)

Consequently, the derivative of the total energy with the magnetization becomes simply

proportional to the difference of Fermi’s energies

dEtot

dm
=

(E↑F − E
↓
F )

2
. (A3)

An effective field Beff = −(E↑F −E
↓
F )/2, aligned to these moments, can be defined. It comes

out that at the extrema of Etot, the two Fermi levels are equal and the effective field becomes

zero. By looking at the sign of the second derivative of the energy around m = 0, this is

simple to recover the Stoner criterion as described in the reference [50]. Although useful,

the fixed spin moment method is limited to rather homogeneous systems.

Appendix B: Penalty method for atomic spin moment

Let us consider the case where a given magnetization mpen
i is imposed on each atom.

A quadratic penalty term as Epen
i = λ

2
‖mi −mpen

i ‖
2 can be added to each site, where

λ is a large positive number. In principle λ should go to infinity, but in practice a good

compromise is found by increasing its value and to check the convergence of the desired

quantity computed with. However, this problem can be circumvented by implementing

the Augmented Lagrangian Method, that introduces a quadratic constraint term in the

renormalized Hamiltonian, such as the λ parameter remains finite [51]. This is at the cost

of an additional computational complexity and the penalization approach with a sufficient

large λ term is preferred.

This consists to supplement Eq.(6) with the term λ(mi −m0
i )|i〉〈i|. Consequently, the

on-site diagonal renormalization term can formally be written Ui∆niσ0−(BStoner
i +Bpen

i ) ·σ
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withBStoner
i = 1

2
Iimi, B

pen
i = −λ(mi−mpen

i ) and ∆ni = (ni−n0
i ). The total energy should

be corrected accordingly by the double counting terms and reads

Etot[{m0
i }] =

occ∑
α

εα −
1

2

∑
i

Ui((ni)
2 − (n0

i )
2)

+
1

4

∑
i

Ii ‖mi‖2 − λ

2

∑
i

(‖mi‖2 − ‖mpen
i ‖

2). (B1)

In the limit λ → ∞, −λ(mi − mpen
i ) ≈ Bpen∞

i and mi ≈ mpen
i . Consequently, the

corresponding double counting term −λ
2
(‖mi‖2−‖mpen

i ‖
2) can be rewritten asBpen∞

i ·mpen
i .

The fixed spin moment can be seen as a special case of the penalty method applied for

collinear magnetism with only one type of atom. The term −Bpenσ in the renormalized

Hamiltonian just shifts rigidly the eigenvalues by −Bpen for ↑ spin and Bpen for ↓ spin,

such as εα = ε0
α − 1

2
Imσ − Bpenσ. The total energy of Eq.(A2) is recovered once provided

Eσ
F = EF + σBpen. Then one gets Bpen = 1

2
(E↑F − E

↓
F ) = −Beff.

Appendix C: Solution of the spin dynamics of ferromagnetic dimers

The motion of each individual moments of ferromagnetic dimers within the Heisenberg

interaction is a two-body problem admitting an exact solution. Let’s Ω0
s ≡ J0/~ the mag-

nitude of the exchange pulsation and E = −J0m1 ·m2 its interaction energy, with J0 > 0.

The motion of each undamped moment is the solution of a set of 2 coupled equations of

precession, which are
dm1

dt
= Ω0

sm2 ×m1,

dm2

dt
= Ω0

sm1 ×m2,

(C1)

with the given initial conditions m1(0) and m2(0).

Equivalently when using an Heisenberg Hamiltonian with normalized vectors E = −Je1 ·

e2, with J = J0m2 (where m is the amplitude of the magnetization) we get the coupled

evolution equations:

de1

dt
= Ωse2 × e1,

de2

dt
= Ωse1 × e2,

(C2)

with Ωs ≡ J/~. This motion is decoupled in the frame of the magnetization e ≡ (e1 + e2).

In this frame, by combining Eqs.(C2) together, one finds de
dt

= 0 and consequently e is a
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constant vector given by the initial conditions e = (e1(0) + e2(0)). By noting that Ωse2 ×

e1 = Ωs(e1 + e2)× e1 = Ωse× e1, Eqs. (C2) become fully decoupled:

de1

dt
= Ωse× e1,

de2

dt
= Ωse× e2.

(C3)

Then the motion of each of these unit vectors ei is simply the motion of a vector in a constant

field. Its solution is given by the Rodrigues’ formula [52]

ei(t) = cos(Ωst)ei(0) + sin(Ωst)e+ (1− cos(Ωst))χiei(0)× e, (C4)

where χi ≡ ei(0) · e.

The same reasoning can be derived for trimers of identical atoms with the same exchange

parameters applied up to the first neighboring shell, in between. In that very specific case,

each atomic spin follows the same equation of precession, namely

dei
dt

= Ωse× ei, (C5)

with e ≡
∑3

i=1 ei(0), where e is found to be constant of motion. Consequently for trimers

with identical atoms and interactions, the precession frequency, and thus the value of the

exchange parameter, can be measured from a single motion of any spins, as depicted in

Figs. 3 and 4.

Appendix D: Calculation of the exchange coupling parameters

The macroscopic nature of the exchange coupling parameters and how they are influenced

by the various circumstances have been widely discussed in the literature. The Bethe-

Slater [53] (BS) curve explains in an insightful way, by means of direct exchange and the

distance between nearest-neighbor (NN) atoms, the trends followed by ferromagnetism (FM)

and antiferromagnetism (AFM) ground state of the 3d transition metals from bcc Cr to

hcp Co. Recent studies [54] have shown that, even for the bulk case of such elements,

the BS curve reveals a complicated background behind the macroscopic picture. Such NN

interactions depend not only on the distance but also the symmetry and their bonds, i.e.

influenced by the crystal field. That kind of dependence has also been seen in supported

nanoclusters [55], where for the same distance, different values for the exchange coupling
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parameter can be found. In case of small clusters, like the dimers and trimers studied

here, the local density of states of each atom is very localized, which set apart the majority

band from the minority band. It implies in a large band splitting that directly affects the

value of the of the exchange coupling parameter [56, 57]. As coordination number increases,

the hybridization results in the broadening of such bands, shifting the center of it closer

to the Fermi energy, thus decreasing the value of the exchange coupling parameter as the

coordination number increases [58, 59]. Moreover, the results here presented follow this

logic, as well as the BS curve trend.

For each of the magnetic configurations, the total energy is computed with the TB param-

eters found in reference [13]. When only one rotating single magnetic moment is considered,

the total energy in the Heisenberg model can be written as a function of the angle with the

z-axis, labelled θ. For the dimer it reads

Edimer(θ)− Edimer(0) = Jdimer(1− cos(θ)), (D1)

and for the trimer

Etrimer(θ)− Etrimer(0) = 2Jtrimer(1− cos(θ)). (D2)

As seen in Fig. 6, Eqs. (D1) and (D2) can be fitted with the total energy computed in the

TB approximation, in order to find the respective exchange coupling parameters J . For the

dimer, it is obvious that J12 = J21 ≡ Jdimer and for the trimer, because of the C3 symmetry,

J12 = J23 = J31 ≡ Jtrimer also. The fact that the fitting and the energy curve fall on top of

each other, means that both Jdimer and Jtrimer are constants within the limit considered of θ,

i.e. the electronic interaction in these systems is dominated mainly by the Heisenberg’s pair

interaction (12) in that range. The computed values taken for an equal distance d = 2Å

between atoms are reported in the tables I and II.

Finally another strategy has been tested to evaluate the exchange parameters. Instead

of considering the total energy variations E(θ) as the reference quantity, we have fitted

the variation of the effective field Bpen as a function of the deviation angle θ. Indeed it is

straightforward to show that ‖Bpen‖ ‖m‖ is equal to J sin θ for the dimer and 2J sin θ for

the trimer, respectively. The results are reported in parenthesis in the tables I and II. The

agreement between the two approaches is good and could be systematically improved by

increasing the penalization constant λ.
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g (µB) Jdimer (eV)

Fe 3 0.616 (0.605)

Co 2 0.574 (0.561)

Ni 1 0.341 (0.312)

Table I. Values of the computed SCF magnetization and exchange parameter for dimers (inter-

atomic distance of 2Å) calculated in the TB approximation. In parenthesis is shown the result

obtained from the fit of the effective field.

g (µB) Jtrimer (eV)

Fe 2.6666 0.442 (0.463)

Co 1.6666 0.279 (0.273)

Ni 0.6666 0.089 (0.103)

Table II. Values of the computed SCF magnetization and exchange parameter for equilateral trian-

gle trimers calculated in the TB approximation. In parenthesis is shown the result obtained from

the fit of the effective field.
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P. Söderlind, R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, Phys. Rev. B 50, 5918

(1994).

[3] H. C. Hsueh, J. Crain, G. Y. Guo, H. Y. Chen, C. C. Lee, K. P. Chang, and H. L. Shih,

Phys. Rev. B 66, 052420 (2002); O. Mathon, F. Baudelet, J. P. Itié, A. Polian, M. d’Astuto,
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[55] P. Mavropoulos, S. Lounis, and S. Blügel, physica status solidi (b) 247, 1187 (2010); D. C.

d. M. Rodrigues, M. Pereiro, A. Bergman, O. Eriksson, and A. B. Klautau, J. Phys.: Con-

dens. Matter 29, 025807 (2016); A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel, and
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