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Abstract 

The present manuscript is meant to provide a companion pedagogical approach to an information theoretic measure, the 

“Transfer Entropy” method, useful to assess causality in complex (time series) datasets. This manuscript describes useful 

basics for the forthcoming discussion on the causal chain of events that leads to the onset of a spontaneous and stable edge 

transport barrier in flux-driven gyrokinetics when core, edge and scrape-off layer regions self-consistently interplay. 

1. INTRODUCTION 

For over three decades, the observation of rapid core confinement improvement upon favourable modifications 

of edge operating conditions has been a nagging source of puzzlement for experimentalists investigating 

conditions for a lasting source of fusion energy in tokamaks. The transport properties of drift-wave turbulence 

and the interaction of the confined plasma with its material boundaries have long been recognised as essential to 

the resolution of this conundrum. Key aspects of the turbulent dynamics in the plasma edge are poorly 

quantified, owing to the disparity of temporal and spatial scales and the inadequacy of performing scale 

separations. A forthcoming paper [1] will be detailing three key results that arise when a material boundary is 

introduced in flux-driven gyrokinetics, effectively interconnecting core, edge and Scrape-Off Layer (SOL) 

regions. We show that (a) turbulence is not only locally driven by local gradients but nonlocally controlled by 

fluxes of turbulence activity, primarily though not exclusively borne at the edge. This `nonlocal’ influence is 

mediated through vortex-flow localised interactions near the material boundaries and has two major 

consequences: (b) the nonlinear destabilisation of the linearly stable edge, providing a possible resolution for the 

so-called `shortfall’ conundrum and (c) the spontaneous emergence of a stable and localised transport barrier at 

the closed/open field line transition, possible prelude to the formation of a pedestal. In the present manuscript, 

we focus on the latter point and discuss a general technique, the so-called ``Transfer Entropy” imported from 

information theory that provides a useful tool to assess the causal chain of events that leads to the onset of this 

stable edge transport barrier. This point is of course of basic interest: it allows to precisely test theoretical 

frameworks from the perspective of primitive equations and as such provides important guidelines for reduced 

modelling. 

2. CHAIN OF CAUSALITY AND THE ``TRANSFER ENTROPY” (T.E.) METHOD 

Unravelling causal chains of events in complex datasets is challenging yet especially rewarding when the dataset 

stems from either experimental measurements or has been computed from the primitive equations. Low-

frequency microturbulence in fusion plasmas is appropriately described by gyrokinetics. GYSELA[2] models 

ions and trapped electrons gyro-kinetically in the core and edge regions as well as the closed/open field line 

transition and the Scrape-Off Layer (SOL) through introduction of a simplified penalised limiter[3] mimicking 

the role of a heat and momentum sink. Core, edge and SOL are treated on an equal footing. As we find strong 

interplay between these distinct regions and the spontaneous development of a stable edge transport barrier, the 

flux of information across the edge is complex and typically not merely locally influenced. In other words, its 

evolution is not only subject to variations of the local free energy, ie. the mean local gradients. Investigating 

techniques that may allow to disentangle the causal chain of events is very desirable and would provide 

quantitative insight regarding the dominant feedback loops involved.  
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Causality detection in information theory is actively debated [4]. We will focus here on a simple nonlinear 

extension of the Granger causality, introduced by Schreiber [5] as the ``Transfer Entropy” (TE) method and 

investigated in magnetised plasmas by Van Milligen et al. [6] and Nicolau [7]. Let us state at this point that our 

goal here is not to provide a discussion on the concept of causality itself but rather put to use one of its possible 

manifestations –defining causality let alone inferring it is indeed still lively discussed [8]. The idea behind TE is 

simple yet powerful: let’s consider a time series (xi) with 0  i  n, of realisations of observable X. If one can 

better predict its next realisation xn+1 using additional data from another time series (yj) with 0  j  n of 

observable Y, then we shall say that ``Y transfers information (i.e. causes) X”, or more accurately as “Y 

forecasts X”, which constitutes our definition of causality here. This idea is quantified measuring deviation of 

transition probabilities from independence, i.e. from a stationary Markov process. In its simplest expression, as 

used here, if processes X and Y are independent, then the following generalised Markov property holds for all 0 

 k  n: p(xn+1|xn-k,yn-k) = p(xn+1|xn-k). The standard notation for conditional probabilities is used here: p(a|b) is 

the probability of a knowing b. If now processes X and Y are not independent, the ratio of these two transition 

probabilities provides a measure of how much information they may share, i.e. how much knowing values in Y 

in addition to past values in X may help to better evaluate next-step xn+1. This idea leads to the following 

definition of the Transfer Entropy (TE) from process Y to process X: 
 

 
 

where k is thus a time lag and represents the k-past of times series X and Y. The summation process is detailed 

below, in Eq.(3). The TE can equivalently be recast as a conditional mutual information and represents the 

additional amount of information that must be added to adequately represent the studied process p(xn+1|xn-k,yn-k) 

with respect to its reference Markov process p(xn+1|xn-k). In the absence of information flow from Y to X, the 

logarithm vanishes as the state of Y has no influence on the transition probabilities of X –another way of saying 

that Eq.(1) indeed quantifies a “transfer” of information. It also follows that TE is directional, i.e. TEYX  

TEXY, which allows to infer causality between processes X and Y. It is also to be noted that TE is quite generic 

and displays interesting properties: it is independent of the relative magnitudes of signals X and Y; it may apply 

to either linear and nonlinear regimes; it is easy to evaluate (directly in real space rather than in Fourier space) 

and typically less demanding in terms of statistics than bispectral techniques.  

 

Practically, TE is evaluated expressing the conditional probabilities as joint probabilities, eg. p(xn+1|xn-k, yn-k) = 

p(xn+1,xn-k,yn-k)/p(xn-k,yn-k) and computing the 4 multidimensional probability density functions (pdfs):  
 

 
 

as a function of time delay k and normalised such that 0  TE  1. The 4 pdfs in Eq.(2) result from a binning 

process of times series X and Y, such that Eq.(2) is estimated in practice as:  
 

 
 

where p3d, p2d
xx, p2d

xy and p1d are the discretised versions of respectively p(xn+1,xn-k,yn-k), p(xn+1,xn-k), p(xn-k,yn-k) 

and p(xn-k). In order to have sufficient statistics, the bin size “” is typically chosen as =2 or =3, depending on 

the available length of the time series (the longer the times series, the larger  can be). Eq.(3) now clarifies the 

way to perform the summation in Eqs.(1) and (2). 

 

Here we have also introduced the additional exponent   1, which effectively represents a nonlinear threshold: 

low probabilities will be further reduced and higher ones amplified. In the following, we take =1. In a complex 

setting, information may flow both ways, from Y to X and inversely. It is thus especially useful to define the net 

transfer entropy X,Y(TE)[k] = TEYX[k]  TEXY[k], which provides the net flow of information between 

processes X and Y, at timelag k. This is the quantity that we now discuss in further detail.  

3. MANUFACTURED SOLUTIONS AND PROOF OF CONCEPT 

TE is found to be weakly dependent on a few choices that the user must perform: in the following, we discretise 

the pdf in Eq.(2) using d=2d bins, with d the dimensionality of the pdf. The magnification exponent  is set to 

unity and X and Y are discretised at the same rate and chosen to enter the TE calculation with zero temporal 

mean. In order to provide a pedagogical introduction to the interpretation of transfer entropy graphs, let us detail 

the following manufactured solutions. In Fig.1 we show the example for a random time series X. Y is 
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constructed such that it exactly corresponds to X, with a forward in time delay of 9 units. As only past 

information may be shared between X and Y and as time lag k tests for similarities in shape of processes X and 

Y, TE(YX) should be vanishing for all time lags for a random time series and display a marked peak around 

time lag k=9 for the TE(XY). The net TE simply states that for all the 50 time lags considered here, the only 

meaningful flow of information can go from XY, with a time lag of 9. 

 

Figure 1. (Top left and right) Time traces of the two processes X and Y over which TE is computed. 

For visualisation purposes only, Y is offset by its maximum value. TE (YX) is represented (lower 

left) in purple and TE (XY) in black (lower right) as a function of time lag k. The net Transfer 

Entropy X,Y(TE) is displayed as well (dashed green). 

Similarly, in Fig.2, focussing on the left panel, the blue peak at time=31 from process Y may transfer 

information to the two peaks of process X at times=40 and 140, the former with a time lag=9, the latter with a 

time lag=109. Inversely, considering the reverse TE(XY), the peak at time=40 may only transfer information 

towards peaks at time=69, 131, and 169 and not to the previous in time=31 peak.  

 

Figure 2. Time traces of processes X and Y and associated TE calculations; colour coding and legends are as in Fig.1. 
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This illustrates causality in the flow of time and clarifies the reason of TE(XY) peaking at time lags = 29, 91, 

… (bottom right panel). It also shows that the TE technique does not require many occurrences of causal events 

to unambiguously extract relevant flows of information. 

 

Figure 3. TE applied to the Lotka-Volterra equations; colour coding and legends are as in Fig.1. 

Another typical situation, common in nonlinear dynamics is illustrated in Fig.3, simulating predator-prey 

behaviour from the Lotka-Volterra equations:  

 

with parameters a = 1, b = 0.1, c = 0.075 and d = 1.5. The typical cyclic behaviour between predator and prey is 

readily seen through the Lissajoux display (bottom right panel) of process X (the prey) as a function of the 

predator Y. Where correlation analysis would merely pick up the periodicity of the predator and prey 

oscillations, this example illustrates the usefulness of the net Transfer Entropy X,Y(TE) (dashed green, lower 

left panel) as it provides guidance regarding the flow of information, as the nonlinear system evolves. Individual 

TE curves provide knowledge on typical waiting times for the system to reach a given state. For instance, 

TE(XY) [black, lower panel] tells us that starting from a large number of preys (X1), the system will need 

about k~6 time steps to reach a state with a large number of predators (Y1). Inversely, from TE(YX) starting 

from a large predator state (Y1), the system will require k~25 time lags to be able to sustain again a large 

number of preys (X3). Of course, in a complex system information keeps flowing between preys and predators 

during the whole oscillation period. Net TE X,Y(TE) captures inflexion points relevant for the dynamics. Thus, 

peak A corresponds to the situation where an increase in prey numbers or a large abundance of preys triggers a 

large predator growth with time lag~6. In stage B, predators in large numbers now eat more preys than their 

birthrate manages to compensate and decimates their numbers. During stage C, preys in fewer numbers trigger a 

decline in predator numbers with a time lag ~18. The low predator population in stage D now triggers with a 

time lag ~25 the increase in prey growth and the system loops again.  

4. T.E. APPLIED TO THE FAR-EDGE REGION WHERE A TRANSPORT BARRIER DEVELOPS 

We now systematically compute the TE algorithm to actual time series from large-scale GYSELA flux-driven 

computations with limiter boundary conditions in the last 5% inside the last closed flux surface (LCFS) where 

the spontaneous onset of a persistent transport barrier is observed. A vorticity equation [9] can be inferred from 
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the primitive gyrokinetic equations including ExB drift and finite Larmor radius effects and can be recast at 

leading order as follows:  

 

with r and  respectively the minor radius and poloidal angle and  denoting an average over toroidal angle . 

We have applied the TE algorithm to many of the possible permutations of quantities in Eq.(6) and especially to 

the following set:  

 

We focus here on the example where `X’ is the vorticity and `Y’ a “field advection” [first and fourth terms in 

the bracket of Eq.(11)]. This latter term is somewhat uncommon; physically it corresponds to a poloidal 

advection by diamagnetic currents of poloidal anisotropies of the radial electric field Er. Each field is radially 

and poloidally averaged respectively over the last 5% of the plasma volume and /3 region symmetric about the 

limiter. The net transfer entropy X,Y(TE) between vorticity and poloidal tilt is displayed in Fig.4. For two 

periodic fields, the investigated time lag should have an upper bound which, as can be intuitively understood 

from Figs.2 and 3 is the shortest of the two fields’ periods. Here, none of X or Y are strictly periodic; the upper 

bound kmax for time lag k is chosen as the shortest “period” that is inferred from the dominant Fourier mode in 

each field. Upper bound kmax could also be inferred [6] from a time-delayed self-mutual information; both 

methods render comparable estimations: kmax ~ 4000 Ωci, with Ωci denoting the ion cyclotron frequency. Let us 

also introduce 𝐴>0 = ∫ max[0, ∆𝑋,𝑌(𝑇𝐸)]𝑑𝑘
𝑘𝑚𝑎𝑥

0
 and 𝐴<0 = ∫ min[0, ∆𝑋,𝑌(𝑇𝐸)]𝑑𝑘

𝑘𝑚𝑎𝑥

0
 the areas of 

respectively positive (yellow area, Fig.4, centre) and negative net TE (purple area, same figure). 

 

Figure 4. Causality, as inferred from the application of the TE algorithm to the actual time series of 

vorticity and poloidal tilt (left panel), from flux-driven gyrokinetic computations near the LCFS, at 

inception of an edge transport barrier. The net TE is show in the central panel, the net flow of information 

reversing between positive and negative areas. The arrows on the right panel are a convenient way to 

synthetise this data, their direction indicating the flow of information and their width (resp. 100 vs 11) the 

amount of information actually transferred between both quantities.  

As detailed above, net TE X,Y(TE) provides a quantitative measure of the direction and intensity of information 

flow. These facts are conveniently summarised diagrammatically (right panel of Fig.4): (i) the direction of 

information flow (direction of the arrow) is given by X,Y(TE), either positive or negative whilst (ii) 𝐴>0 [resp. 

𝐴<0] is a proxy for the amount of information transferred from YX [resp. XY] during one “period”. In the 
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example displayed in Fig.4, 𝐴>0 𝐴<0⁄ ≈ 100 11⁄ ; the thickness of each arrow relative to the next in the 

diagrammatic representation is set to follow the same ratio so that respective thickness and direction of 

connecting arrows provide a visual representation of causality and amount of information actually transferred 

between considered fields.  

This analysis has been systematically performed, for all combination of terms in Eqs.(6)-(10). Unexpectedly, the 

diamagnetic advection of vorticity [2nd term in the bracket of Eq.(6)] also appears as a key contributor to 

vorticity build-up in the early onset of the edge transport barrier. These facts certainty point towards an 

important role for diamagnetic currents, i.e. poloidal distribution of pressure fluctuations that stem from 

spontaneous symmetry breaking induced through plasma—boundary interplay. These results are discussed in a 

forthcoming paper. 

5. CONCLUSIONS AND OUTLOOK 

The present manuscript has focused on laying out useful basics to assess causality in time series analysis, 

through the use of the so-called ``Transfer Entropy” method, a nonlinear extension of the Granger causality. 

Practical use of this method, applied to the nonlinear onset of an edge transport barrier in advanced gyrokinetic 

computations of tokamak turbulence will be reported shortly elsewhere [1]. 
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