

Décomposition de domaine sur des formulations intégrales surfaciques en électromagnétisme

Justine Labat, Francis Collino, Agnès Pujols, Muriel Sesques

▶ To cite this version:

Justine Labat, Francis Collino, Agnès Pujols, Muriel Sesques. Décomposition de domaine sur des formulations intégrales surfaciques en électromagnétisme. SMAI 2021 - Dixième biennale des mathématiques appliquées et industrielles, SMAI; IMT (Institut de Mathématiques de Toulouse), Jun 2021, La Grande-Motte, France. cea-03274733

HAL Id: cea-03274733 https://cea.hal.science/cea-03274733

Submitted on 30 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Décomposition de domaine sur des formulations intégrales surfaciques en électromagnétisme

Francis Collino Jus

Justine Labat Agnès

Agnès Pujols N

Muriel Sesques | CEA-CESTA

SMAI 2021

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

- Context : Solution of electromagnetic wave scattering problem by a complex object using a boundary element method
- Motivation : Accurate evaluation of radar cross-sections
 - Large-scale objects (in comparison with the wavelength)
 - Multi-scale phenomena

Example : Monopole antenna in the presence of a dielectric object on a launcher (ISAE Workshop, 2016)

- Context : Solution of electromagnetic wave scattering problem by a complex object using a boundary element method
- Motivation : Accurate evaluation of radar cross-sections
 - Large-scale objects (in comparison with the wavelength)
 - Multi-scale phenomena

- Difficulties : High computational costs
 - Number of degrees of freedom : 1 650 875
 - → Approximately 100 000 000 in volume

Solver	Number of CPU	Factorization (in CPU·H)
LL ^t (prediction)	15 000	151 435
Block low-rank	800	2 541
H-matrix	200	1 043

Hackbush (1999), Bebendorf (2008), ...

Commissariat à l'énergie atomique et aux énergies alternatives

Justine Labat

Example : Monopole antenna in the presence of a dielectric object on a launcher (ISAE Workshop, 2016)

- Context : Solution of electromagnetic wave scattering problem by a complex object using a boundary element method
- Motivation : Accurate evaluation of radar cross-sections
 - Large-scale objects (in comparison with the wavelength)
 - Multi-scale phenomena
- Difficulties : High computational costs
- Objectives : Development of a domain decomposition method
 - Robust simulations for a wide range of frequencies
 Solve very large problems (more than 10 000 000 of unknowns)
 - ▶ Geometry-adaptative strategies to handle multi-scale structures → Allow non-conformal meshes
 - Simulation-based engineering using High Performance Computing

Example : Monopole antenna in the presence of a dielectric object on a launcher (ISAE Workshop, 2016)

Cea About surface discontinuous Galerkin methods

• Adaptation of volumical discontinuous Galerkin methods to surface problems

Peng, Hiptmair and Shao (2016), Messai and Pernet (2020)

	Volume	Surface	Comments
Locality	1	×	Iterative solution is inevitable
Restrictions	1	×	Restrictions of distributions are not easy to define
Traces	1	×	No trace theorem in $H_t^{-\frac{1}{2}}(\mathrm{div}_{\Gamma},\Gamma)$

C22 About surface discontinuous Galerkin methods

• Adaptation of volumical discontinuous Galerkin methods to surface problems

Peng, Hiptmair and Shao (2016), Messai and Pernet (2020)

	Volume	Surface	Comments
Locality	1	×	Iterative solution is inevitable
Restrictions	1	×	Restrictions of distributions are not easy to define
Traces	1	x	No trace theorem in $H_t^{-\frac{1}{2}}(\mathrm{div}_{\Gamma},\Gamma)$

- Why not to directly use an iterative solver on BEM?
 - Main motivation : non-conformal meshes
 - EFIE simulation preconditioned using domain partitioning on a low-frequency case

Steinbach and Wendland (1998), Christiansen and Nédélec (2000), Antoine, Bendali and Darbas (2005), Andriulli et al. (2008)

Commissariat à l'énergie atomique et aux énergies alternatives	Justine Labat	SMAI 2021	3 / 17
--	---------------	-----------	--------

- Model problem
- Discontinuous formulation

Outline

- Discrete formulation
- Iterative procedure
- 2 Numerical results
 - Accuracy of solutions
 - Convergence of the iterative solver
 - Computational costs
- 3 Conclusion and perspectives

- Model problem
- Discontinuous formulation

Outline

- Discrete formulation
- Iterative procedure
- 2 Numerical results
 - Accuracy of solutions
 - Convergence of the iterative solver
 - Computational costs

3 Conclusion and perspectives

C22 The exterior time-harmonic Maxwell problem

• Using a time-harmonic dependence in $\exp(+i\omega t)$

$ abla imes oldsymbol{E}^{ ext{s}} + ext{i} \kappa Z_0^{-1} oldsymbol{H}^{ ext{s}} = 0$	in Ω^{ext}
$\nabla\times\boldsymbol{\textit{H}}^{s}-\mathtt{i}\kappa Z_{0}\boldsymbol{\textit{E}}^{s}=0$	in Ω^{ext}
$\mathbf{n} \times \mathbf{E}^{s} = -\mathbf{n} \times \mathbf{E}^{i}$	on Г
$\lim_{ \mathbf{x} \to\infty} \mathbf{x} \left(Z_0 \; \boldsymbol{H}^{s} \times \hat{x} - \boldsymbol{E}^{s} \right) = 0$	unif. in $\hat{x} = \frac{x}{ x }$

 κ : wave-number, Z₀ : impedance coefficient in vacuum

- Ω^{ext} : Exterior domain
- F : Scattering surface
- Eⁱ, Hⁱ : Incident fields
- E^s, H^s : Scattered fields
- E, H : Total fields
 - $\boldsymbol{E} = \boldsymbol{E}^{i} + \boldsymbol{E}^{s}$ $\boldsymbol{H} = \boldsymbol{H}^{i} + \boldsymbol{H}^{s}$

Cea The exterior time-harmonic Maxwell problem

- Ω^{ext} : Exterior domain
- F : Scattering surface
- $\boldsymbol{E}^{i}, \boldsymbol{H}^{i}$: Incident fields
- $\boldsymbol{E}^{s}, \boldsymbol{H}^{s}$: Scattered fields
- **E**, **H** : Total fields
 - $\boldsymbol{E} = \boldsymbol{E}^{i} + \boldsymbol{E}^{s}$ $\boldsymbol{H} = \boldsymbol{H}^{i} + \boldsymbol{H}^{s}$

• Using a time-harmonic dependence in $\exp(+i\omega t)$

$ abla imes oldsymbol{E}^{ ext{s}} + \mathtt{i}\kappa Z_0^{-1}oldsymbol{H}^{ ext{s}} = 0$	in Ω^{ext}
$\nabla\times\boldsymbol{\textit{H}}^{s}-\mathtt{i}\kappa Z_{0}\boldsymbol{\textit{E}}^{s}=0$	in Ω^{ext}
$\mathbf{n} imes \mathbf{E}^{s} = -\mathbf{n} imes \mathbf{E}^{i}$	on F
$\lim_{ \mathbf{x} \to\infty} \mathbf{x} \left(Z_0 \; \mathbf{H}^{s} \times \hat{\mathbf{x}} - \mathbf{E}^{s} \right) = 0$	unif. in $\hat{x} = \frac{x}{ x }$

 κ : wave-number, Z_0 : impedance coefficient in vacuum

• Using the Stratton-Chu formulas for $\pmb{x} \in \Omega^{\mathsf{ext}}$

$$E^{s}(x) = -i\kappa T J(x)$$
 and $H^{s}(x) = \frac{1}{Z_{0}} \mathcal{K} J(x)$

 $\textbf{J} = Z_0(\textbf{\textit{n}} \times \textbf{\textit{H}})$: total surface electric current

$$\mathcal{T} \mathbf{J} = \frac{1}{\kappa^2} \nabla \left(\mathcal{S} \operatorname{div}_{\Gamma} \mathbf{J} \right) + \mathcal{S} \mathbf{J}$$
$$\mathcal{K} \mathbf{J} = \nabla \times \mathcal{S} \mathbf{J} \qquad \qquad \widetilde{\mathcal{S}} \lambda(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \lambda(\mathbf{y}) \, \mathrm{d} s_{\mathbf{y}}$$

G : out-going Green function of the Helmholtz equation

Justine Labat

Cea The exterior time-harmonic Maxwell problem

- Ω^{ext} : Exterior domain
- F : Scattering surface
- $\boldsymbol{E}^{i}, \boldsymbol{H}^{i}$: Incident fields
- $\boldsymbol{E}^{s}, \boldsymbol{H}^{s}$: Scattered fields
- **E**, **H** : Total fields

 $\boldsymbol{E} = \boldsymbol{E}^{i} + \boldsymbol{E}^{s}$ $\boldsymbol{H} = \boldsymbol{H}^{i} + \boldsymbol{H}^{s}$

• Using a time-harmonic dependence in $\exp(+i\omega t)$

$ abla imes oldsymbol{E}^{ extsf{s}} + extsf{i} \kappa Z_0^{-1} oldsymbol{H}^{ extsf{s}} = 0$	in Ω^{ext}
$\nabla\times\boldsymbol{\textit{H}}^{s}-\mathtt{i}\kappa Z_{0}\boldsymbol{\textit{E}}^{s}=0$	in Ω^{ext}
$\mathbf{n} \times \mathbf{E}^{s} = -\mathbf{n} \times \mathbf{E}^{i}$	on Г
$\lim_{ \mathbf{x} \to\infty} \mathbf{x} \left(Z_0 \mathbf{H}^{s} \times \hat{x} - \mathbf{E}^{s} \right) = 0$	unif. in $\hat{x} = \frac{x}{ x }$

 κ : wave-number, Z_0 : impedance coefficient in vacuum

• Using the Stratton-Chu formulas for $\pmb{x} \in \Omega^{\mathsf{ext}}$

$$E^{s}(x) = -i\kappa T J(x)$$
 and $H^{s}(x) = \frac{1}{Z_{0}} \mathcal{K} J(x)$

 ${m J}=Z_0({m n} imes {m H})$: total surface electric current

• Jump relations give boundary integral equations

(EFIE)	$i\kappa T J =$	$n \times (E^{i})$	× n)	on Г
()			,	

(MFIE)
$$\frac{1}{2}\mathbf{J} - \mathbf{K}\mathbf{J} = Z_0(\mathbf{n} \times \mathbf{H}^i)$$
 on Γ

Discontinuous boundary integral equations : general principle

$$(EFIE) \quad i\kappa T J = \mathbf{n} \times (\mathbf{E}^{i} \times \mathbf{n}) \quad \text{on } \Gamma \qquad (MFIE) \quad \frac{1}{2}J - KJ = Z_{0}(\mathbf{n} \times \mathbf{H}^{i}) \quad \text{on } \Gamma$$

$$T : H_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \longrightarrow H_{t}^{-\frac{1}{2}}(\operatorname{curl}_{\Gamma}, \Gamma) \qquad K : H_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \longrightarrow H_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$

$$TJ = \frac{1}{\kappa^{2}} \nabla_{\Gamma}(S \operatorname{div}_{\Gamma}J) + SJ \qquad KJ = \operatorname{p.v.} [\mathbf{n} \times (\nabla_{\Gamma} \times SJ)]$$

622

Discontinuous boundary integral equations : general principle

$$(\mathbf{EFIE}) \qquad \mathbf{i}\kappa T \boldsymbol{J} = \boldsymbol{n} \times (\boldsymbol{E}^{\mathbf{i}} \times \boldsymbol{n}) \quad \text{on } \Gamma$$

$$\begin{split} \mathcal{T} &: \mathsf{H}_{\mathsf{t}}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \longrightarrow \mathsf{H}_{\mathsf{t}}^{-\frac{1}{2}}(\operatorname{curl}_{\Gamma}, \Gamma) \\ \mathcal{T}\boldsymbol{J} &= \frac{1}{\kappa^{2}} \nabla_{\Gamma} \left(\boldsymbol{S} \operatorname{div}_{\Gamma} \boldsymbol{J} \right) + \boldsymbol{S} \boldsymbol{J} \end{split}$$

(MFIE)
$$\frac{1}{2}\boldsymbol{J} - \boldsymbol{K}\boldsymbol{J} = Z_0(\boldsymbol{n} \times \boldsymbol{H}^{\mathrm{i}})$$
 on Γ

$$\begin{split} & \mathcal{K}: \mathsf{H}_{\mathsf{t}}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \longrightarrow \mathsf{H}_{\mathsf{t}}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \\ & \mathcal{K}\boldsymbol{J} = \operatorname{p.v.}\left[\boldsymbol{n} \times (\nabla_{\Gamma} \times \boldsymbol{S}\boldsymbol{J})\right] \end{split}$$

• N : number of subdomains

- au_{nm} : exterior normal vector to γ_{nm}
- τ_n : exterior normal vector to γ_n

Cea

$$\mathrm{i}\kappa\sum_{m=1}^{N}T_{nm}\boldsymbol{J}_{m}=\boldsymbol{n} imes(\boldsymbol{E}^{\mathrm{i}} imes \boldsymbol{n}) \quad \mathrm{on}\ \Gamma_{n}$$

$$\begin{split} & T_{nm}: \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m}) \longrightarrow \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{curl}_{\Gamma_{n}},\Gamma_{n}) \\ & T_{nm}\boldsymbol{J}_{m} = \frac{1}{\kappa^{2}} \nabla_{\Gamma_{n}}\left(S_{nm}\operatorname{div}_{\Gamma_{m}}\boldsymbol{J}_{m}\right) + S_{nm}\boldsymbol{J}_{m} \end{split}$$

1 Restriction to each subdomain

$$\boldsymbol{J}_m = \boldsymbol{J}_{|\Gamma_m} \in \widetilde{\boldsymbol{H}}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_m}, \Gamma_m)$$

$$\frac{1}{2}\boldsymbol{J}_n - \sum_{m=1}^N \boldsymbol{K}_{nm} \boldsymbol{J}_m = Z_0(\boldsymbol{n} \times \boldsymbol{H}^i) \quad \text{on } \boldsymbol{\Gamma}_n$$

$$\begin{split} & \mathcal{K}_{nm} : \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m}) \longrightarrow \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}},\Gamma_{n}) \\ & \mathcal{K}_{nm}\boldsymbol{J}_{m} = \operatorname{p.v.}\left[\boldsymbol{n} \times (\nabla_{\Gamma_{n}} \times \boldsymbol{S}_{nm}\boldsymbol{J}_{m})\right] \end{split}$$

• N : number of subdomains

m

•
$$\Gamma = \bigcup_{n=1}^{N} \Gamma_n$$

• $\gamma_{nm} = \Gamma_n \cap \Gamma$
• $\gamma_n = \partial \Gamma_n$

- au_{nm} : exterior normal vector to γ_{nm}
- *τ_n* : exterior normal vector to *γ_n*

Cea

$$\mathrm{i}\kappa\sum_{m=1}^{N}T_{nm}\boldsymbol{J}_{m}=\boldsymbol{n} imes(\boldsymbol{E}^{\mathrm{i}} imes \boldsymbol{n}) \quad \mathrm{on}\ \Gamma_{n}$$

$$\begin{split} \mathcal{T}_{nm} &: \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m}) \longrightarrow \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{curl}_{\Gamma_{n}}, \Gamma_{n}) \\ \mathcal{T}_{nm}J_{m} &= \frac{1}{\kappa^{2}} \nabla_{\Gamma_{n}} \left(S_{nm} \operatorname{div}_{\Gamma_{m}} J_{m} \right) + S_{nm}J_{m} \end{split}$$

1 Restriction to each subdomain

$$\boldsymbol{J}_{m} = \boldsymbol{J}_{|\Gamma_{m}} \in \widetilde{\boldsymbol{H}}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$

- 2 Obtention of variational formulations
 - Multiplication by a test-function
 - Integration on partial surfaces
 - Integration by parts (EFIE only)

$$\frac{1}{2}\boldsymbol{J}_n - \sum_{m=1}^N \boldsymbol{K}_{nm} \boldsymbol{J}_m = Z_0(\boldsymbol{n} \times \boldsymbol{H}^i) \quad \text{on } \boldsymbol{\Gamma}_n$$

$$\begin{split} & \mathcal{K}_{nm} : \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m}) \longrightarrow \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}},\Gamma_{n}) \\ & \mathcal{K}_{nm}\boldsymbol{J}_{m} = \operatorname{p.v.}\left[\boldsymbol{n} \times (\nabla_{\Gamma_{n}} \times \boldsymbol{S}_{nm}\boldsymbol{J}_{m})\right] \end{split}$$

- N : number of subdomains
- $\Gamma = \bigcup_{n=1}^{N} \Gamma_n$
- $\gamma_{nm} = \Gamma_n \cap \Gamma_m$ • $\gamma_n = \partial \Gamma_n$

- au_{nm} : exterior normal vector to γ_{nm}
- au_n : exterior normal vector to γ_n

Cea

$$\mathrm{i}\kappa\sum_{m=1}^{N}T_{nm}\boldsymbol{J}_{m}=\boldsymbol{n} imes(\boldsymbol{E}^{\mathrm{i}} imes \boldsymbol{n}) \quad \mathrm{on}\ \Gamma_{n}$$

$$\begin{split} & \mathcal{T}_{nm}: \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m}) \longrightarrow \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{curl}_{\Gamma_{n}},\Gamma_{n}) \\ & \mathcal{T}_{nm}\boldsymbol{J}_{m} = \frac{1}{\kappa^{2}} \nabla_{\Gamma_{n}}\left(\boldsymbol{S}_{nm}\operatorname{div}_{\Gamma_{m}}\boldsymbol{J}_{m}\right) + \boldsymbol{S}_{nm}\boldsymbol{J}_{m} \end{split}$$

1 Restriction to each subdomain

$$\boldsymbol{J}_{m} = \boldsymbol{J}_{|\Gamma_{m}} \in \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$

- 2 Obtention of variational formulations
 - Multiplication by a test-function
 - Integration on partial surfaces
 - Integration by parts (EFIE only)
- 3 Summation over all the subdomains $\sum_{n=1}^{N} \langle S_{nm} \operatorname{div}_{\Gamma} J_m, \mathbf{v}_n \cdot \boldsymbol{\tau}_n \rangle_{\gamma_n} = \sum_{\gamma_{nm}} \langle S_{nm} \operatorname{div}_{\Gamma} J_m, [\mathbf{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}}$ $[\mathbf{v}]_{\gamma_{nm}} = \boldsymbol{\tau}_{nm} \cdot \mathbf{v}_m + \boldsymbol{\tau}_{mn} \cdot \mathbf{v}_n : \text{jump across } \gamma_{nm}$

$$\frac{1}{2}\boldsymbol{J}_n - \sum_{m=1}^N \boldsymbol{K}_{nm} \boldsymbol{J}_m = \boldsymbol{Z}_0(\boldsymbol{n} \times \boldsymbol{H}^i) \quad \text{on } \boldsymbol{\Gamma}_n$$

$$\begin{split} & \mathcal{K}_{nm} : \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m}) \longrightarrow \widetilde{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}},\Gamma_{n}) \\ & \mathcal{K}_{nm}\boldsymbol{J}_{m} = \operatorname{p.v.}\left[\boldsymbol{n} \times (\nabla_{\Gamma_{n}} \times \boldsymbol{S}_{nm}\boldsymbol{J}_{m})\right] \end{split}$$

- N : number of subdomains
- $\Gamma = \bigcup_{n=1}^{N} \Gamma_n$ • $\gamma_{nm} = \Gamma_n \cap \Gamma_m$

• $\gamma_n = \partial \Gamma_n$

- au_{nm} : exterior normal vector to γ_{nm}
- τ_n : exterior normal vector to γ_n

Discontinuous boundary integral equations : EFIE formulation

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} H_{t}^{-\frac{1}{2}+\varepsilon}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m})$$
 with $\varepsilon > 0$ such that
 $a_{\Gamma}(\boldsymbol{J},\boldsymbol{v}) + a_{\gamma}^{\pm}(\boldsymbol{J},\boldsymbol{v}) + p_{\gamma}^{*}(\boldsymbol{J},\boldsymbol{v}) = \ell(\boldsymbol{v})$ for any $\boldsymbol{v} \in \bigoplus_{n=1}^{N} H_{t}^{\frac{1}{2}-\varepsilon}(\operatorname{div}_{\Gamma_{n}},\Gamma_{n})$

$$a_{\Gamma}(\boldsymbol{J},\boldsymbol{v}) = \sum_{n=1}^{N} \sum_{m=1}^{N} \left\{ \frac{1}{i\kappa} \left\langle S_{nm} \operatorname{div}_{\Gamma_{m}} \boldsymbol{J}_{m}, \operatorname{div}_{\Gamma_{n}} \boldsymbol{v}_{n} \right\rangle_{\Gamma_{n}} + i\kappa \left\langle S_{nm} \boldsymbol{J}_{m}, \boldsymbol{v}_{n} \right\rangle_{\Gamma_{n}} \right\}$$
(continuous EFIE)
$$a_{\gamma}^{\pm}(\boldsymbol{J},\boldsymbol{v}) = -\frac{1}{i\kappa} \sum_{m=1}^{N} \sum_{\gamma_{nm}} \left\langle S_{nm} \operatorname{div}_{\Gamma_{m}} \boldsymbol{J}_{m}, [\boldsymbol{v}]_{\gamma_{nm}} \right\rangle_{\gamma_{nm}} + \tilde{a}_{\gamma}^{\pm}(\boldsymbol{J},\boldsymbol{v})$$
(symmetrization)

 $p_{\gamma}^*(m{J},m{
u})$ is function of $[m{J}]_{\gamma_{nm}}$ and $[m{
u}]_{\gamma_{nm}}$

(penalization)

Discontinuous boundary integral equations : EFIE formulation

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} \operatorname{H}_{t}^{-\frac{1}{2}+\varepsilon}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m})$$
 with $\varepsilon > 0$ such that
 $a_{\Gamma}(\boldsymbol{J}, \boldsymbol{v}) + a_{\gamma}^{\pm}(\boldsymbol{J}, \boldsymbol{v}) + p_{\gamma}^{*}(\boldsymbol{J}, \boldsymbol{v}) = \ell(\boldsymbol{v})$ for any $\boldsymbol{v} \in \bigoplus_{n=1}^{N} \operatorname{H}_{t}^{\frac{1}{2}-\varepsilon}(\operatorname{div}_{\Gamma_{n}},\Gamma_{n})$

$$a_{\Gamma}(\boldsymbol{J},\boldsymbol{v}) = \sum_{n=1}^{N} \sum_{m=1}^{N} \left\{ \frac{1}{i\kappa} \left\langle S_{nm} \operatorname{div}_{\Gamma_{m}} \boldsymbol{J}_{m}, \operatorname{div}_{\Gamma_{n}} \boldsymbol{v}_{n} \right\rangle_{\Gamma_{n}} + i\kappa \left\langle S_{nm} \boldsymbol{J}_{m}, \boldsymbol{v}_{n} \right\rangle_{\Gamma_{n}} \right\}$$
(continuous EFIE)

$$a_{\gamma}^{\pm}(\boldsymbol{J},\boldsymbol{v}) = -\frac{1}{i\kappa} \sum_{m=1}^{N} \sum_{\gamma_{nm}} \langle S_{nm} \operatorname{div}_{\Gamma_{m}} \boldsymbol{J}_{m}, [\boldsymbol{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}} + \widetilde{a}_{\gamma}^{\pm}(\boldsymbol{J},\boldsymbol{v})$$
(symmetrization)

 $p^*_{\gamma}(\pmb{J},\pmb{v})$ is function of $[\pmb{J}]_{\gamma_{nm}}$ and $[\pmb{v}]_{\gamma_{nm}}$

(S

)
$$\widetilde{a}_{\gamma}^{-}(\boldsymbol{J}, \boldsymbol{v}) = -\frac{1}{\mathrm{i}\kappa} \sum_{n=1}^{N} \sum_{\gamma_{mn}} \langle S_{mn} \mathrm{div}_{\Gamma_{n}} \boldsymbol{v}_{n}, [\boldsymbol{J}]_{\gamma_{mn}} \rangle_{\gamma_{mn}}$$

(AS)
$$\widetilde{a}_{\gamma}^{+}(\boldsymbol{J}, \boldsymbol{v}) = +\frac{1}{i\kappa} \sum_{n=1}^{N} \sum_{\gamma_{mn}} \langle S_{mn} \operatorname{div}_{\Gamma_{n}} \boldsymbol{v}_{n}, [\boldsymbol{J}]_{\gamma_{mn}} \rangle_{\gamma_{mn}}$$

Commissariat à l'énergie atomique et aux énergies alternatives

Justine Labat

 $\boldsymbol{J} \text{ and } \boldsymbol{v} \in \bigoplus_{n=1}^{N} L^2_t(\operatorname{div}_{\Gamma_n}, \Gamma_n)$

• Requires more regularity : $\varepsilon = \frac{1}{2}$

(penalization)

Discontinuous boundary integral equations : penalty term

Find
$$J \in \bigoplus_{m=1}^{N} L^2_t(\operatorname{div}_{\Gamma_m}, \Gamma_m)$$
 such that

$$a_{\Gamma}(\boldsymbol{J}, \boldsymbol{v}) + a_{\gamma}^{*}(\boldsymbol{J}, \boldsymbol{v}) + p_{\gamma}^{*}(\boldsymbol{J}, \boldsymbol{v}) = \ell(\boldsymbol{v})$$
 for any $\boldsymbol{v} \in \bigoplus_{n=1}^{N} L_{t}^{2}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$

• Empirical choice coming from Peng, Hiptmair and Shao (2016) : $L^2(\gamma)$ -inner product

$$(\mathsf{L}^{2}) \qquad \boldsymbol{p}_{\gamma}^{0}(\boldsymbol{J},\boldsymbol{v}) = \frac{\beta}{\kappa} \sum_{\gamma_{nm}} \langle [\boldsymbol{J}]_{\gamma_{nm}}, [\boldsymbol{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}}$$

where β have to be without dimension

► requires more regularity (one more time !) to make sense : **J** and $\mathbf{v} \in \bigoplus_{n=1}^{N} H_{t}^{\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$

• A new penalization : $H^{-rac{1}{2}}(\gamma)$ -inner product (positive definite bilinear form)

$$(\mathsf{H}^{-\frac{1}{2}}) \qquad p_{\gamma}^{-\frac{1}{2}}(\boldsymbol{J},\boldsymbol{v}) = \beta \sum_{\gamma_{nm}} \langle S_{\gamma_{nm}}[\boldsymbol{J}]_{\gamma_{nm}}, [\boldsymbol{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}}$$

where $\widetilde{S}_{\gamma}\lambda(\mathbf{x}) = \frac{1}{2\pi} \int_{\gamma} K_0(\kappa |\mathbf{x} - \mathbf{y}|)\lambda(\mathbf{y}) \, d\sigma_{\mathbf{y}}$ and β have to be without dimension

Commissariat à l'énergie atomique et aux énergies alternatives

C22 Discontinuous boundary integral equations : discretization

• Discretization space : Restrictions of Raviart-Thomas boundary elements of smallest degree

$$\boldsymbol{J} pprox \boldsymbol{J}^h \in \mathcal{V}^h \qquad \iff \qquad \boldsymbol{J}^h = \sum_{m=1}^N \boldsymbol{J}^h_m \qquad \quad \boldsymbol{J}^h_m \in \mathcal{V}^h_m \subset L^2_t(\operatorname{div}_{\Gamma_m}, \Gamma_m)$$

where
$$\mathbf{J}_{m}^{h}(\mathbf{x}) = \sum_{K \in \Gamma_{m}^{h}} J_{K,1}^{h,m} \varphi_{K}^{1}(\mathbf{x}) + J_{K,2}^{h,m} \varphi_{K}^{2}(\mathbf{x}) + J_{K,3}^{h,m} \varphi_{K}^{3}(\mathbf{x})$$
 $\mathbf{x} \in \Gamma_{m}^{h}$ (triangulation of Γ_{m})
 $\begin{array}{c} \mathbf{x}_{K}^{2} \\ \mathbf{x}_{K}^{2} \\ \mathbf{x}_{K}^{2} \\ \mathbf{x}_{K}^{2} \end{array}$ with $\begin{array}{c} \varphi_{K}^{i}(\mathbf{x}) = \frac{1}{2|K|} \left(\mathbf{x} - \mathbf{x}_{K}^{i}\right) \text{ and } J_{K,i}^{h,m} = \int_{e_{K}^{i}} J_{m}^{h} \cdot \mathbf{n}_{K}^{i} \, \mathrm{d}\sigma \quad e_{K}^{2} \\ \mathbf{x}_{K}^{1} \\ \mathbf{y}_{K}^{2} \\ \mathbf{y}_{K}^{3} \end{array}$

C22 Discontinuous boundary integral equations : discretization

• Discretization space : Restrictions of Raviart-Thomas boundary elements of smallest degree

$$oldsymbol{J} pprox oldsymbol{J}^h \in \mathcal{V}^h \qquad \iff \qquad oldsymbol{J}^h = \sum_{m=1}^N oldsymbol{J}_m^h \qquad oldsymbol{J}_m^h \in \mathcal{V}_m^h \subset \mathsf{L}^2_t(\operatorname{div}_{\Gamma_m}, \Gamma_m)$$

where
$$J_m^h(\mathbf{x}) = \sum_{K \in \Gamma_m^h} J_{K,1}^{h,m} \varphi_K^1(\mathbf{x}) + J_{K,2}^{h,m} \varphi_K^2(\mathbf{x}) + J_{K,3}^{h,m} \varphi_K^3(\mathbf{x})$$
 $\mathbf{x} \in \Gamma_m^h$ (triangulation of Γ_m)
 $\mathbf{y}_{K+1}^{2} \varphi_K^{2}$ with $\varphi_K^i(\mathbf{x}) = \frac{1}{2|K|} (\mathbf{x} - \mathbf{x}_K^i)$ and $J_{K,i}^{h,m} = \int_{e_K^i} J_m^h \cdot \mathbf{n}_K^i \, \mathrm{d}\sigma \underbrace{e_K^2}_{\mathbf{x}_K^i} \underbrace{e_K^{n}}_{\mathbf{x}_K^i} \underbrace{e_K^{n}}_{\mathbf{x}_K^$

C22 Discontinuous boundary integral equations : iterative solution

- Use of GMRes solver (from CERFACS) with block-diagonal Jacobi preconditioning
 - > Diagonal blocks correspond to matrices for individual subdomain
 - \longrightarrow Flexibility in choosing subdomain solvers (LL^t, LU, Block low-rank, H-matrix, . . .)
 - > Off-diagonal blocks correspond to interactions between subdomains
 - \longrightarrow Could be sped-up by compression techniques

Cea Discontinuous boundary integral equations : iterative solution

- Use of GMRes solver (from CERFACS) with block-diagonal Jacobi preconditioning
 - > Diagonal blocks correspond to matrices for individual subdomain
 - \longrightarrow Flexibility in choosing subdomain solvers (LL^t, LU, Block low-rank, H-matrix, . . .)
 - > Off-diagonal blocks correspond to interactions between subdomains
 - ----> Could be sped-up by compression techniques

• Eingenvalue distribution : (DG-CFIE) simulation at 95 MHz with CFIE parameter $\alpha = 0.5$

1 Discontinuous Galerkin-based surface domain decomposition method

- Model problem
- Discontinuous formulation
- Discrete formulation
- Iterative procedure

2 Numerical results

- Accuracy of solutions
- Convergence of the iterative solver
- Computational costs

3 Conclusion and perspectives

Accuracy : convergence with respect to the mesh size

• Difference modulus between electric currents : (DG-CFIE) at 1.52 GHz - $h = \frac{\lambda}{15}$

• Comparison of associated radar cross-sections and convergence (95 MHz - 2 subdomains)

Convergence of the iterative solver (relative residual $\varepsilon = 10^{-6}$)

Cea

Computational costs (using dense assembling)

- Dimensions : $2\lambda \times 2\lambda \times 6\lambda$
- Number of degrees of freedom : 273 312
- Number of subdomains : 24
- (DG-CFIE) simulation with $\alpha = 0.9$

• Comparison between CFIE+LU, CFIE+GMRes and DG-CFIE+GMRes

Formulation	Solver	Number of CPU	Factorization (in CPU·H)	Memory (in GB/MPI process)
CFIE	LU	3 328	5 018	11.43
DG-CFIE	GMRes	2 560	45	18.81

Formulation	Solver	Relative residual	Number of iterations	Convergence (in CPU·H)	
CFIE	GMRes	10 ⁻³	202	5 697	
DG-CFIE	GMRes	10 ⁻³	49	1 382	
DG-CFIE	GMRes	10 ⁻⁶	149	4 203	
Commissariat à l'éner	gie atomique et	aux énergies alternatives	Justine Labat	SMAI 2021	15 / 17

1 Discontinuous Galerkin-based surface domain decomposition method

- Model problem
- Discontinuous formulation
- Discrete formulation
- Iterative procedure

2 Numerical results

- Accuracy of solutions
- Convergence of the iterative solver
- Computational costs

3 Conclusion and perspectives

Conclusion

- Development and numerical analysis of a discontinuous Galerkin surface domain decomposition method for electromagnetic scattering by non-penetrable objects
 - Comparison of symmetric and anti-symmetric formulations

 - \longrightarrow Anti-symmetric formulation involves better conditioning number in CFIE formulation
 - Comparison of L^2 and $H^{-\frac{1}{2}}$ interior penalty terms
 - \longrightarrow L^2 penalization is robust with respect to the frequency but parameter β have to be calibrated
 - $\longrightarrow H^{-\frac{1}{2}}$ penalization is more robust with respect to the discretization size
- Comparison with a boundary element method
 - Computational costs
 - → Using a direct solver : large gain in factorization time
 - \longrightarrow Using a preconditioned iterative solver : faster convergence for EFIE formulation
 - Accuracy : Jump does not pollute radar cross-sections

Perspectives

- Integration of *hp*-refinement
 - Non-conformal meshes
 - High-order boundary elements
- Integration of H-matrix formalism
- Extension to dielectric scatterers

Cea Conclusion and Perspectives

Conclusion

- Development and numerical analysis of a discontinuous Galerkin surface domain decomposition method for electromagnetic scattering by non-penetrable objects
 - Comparison of symmetric and anti-symmetric formulations
 - ----- Symmetric formulation involves better accuracy on currents and preserves symmetry in EFIE
 - $\longrightarrow\,$ Anti-symmetric formulation involves better conditioning number in CFIE formulation
 - Comparison of L^2 and $H^{-\frac{1}{2}}$ interior penalty terms
 - \longrightarrow L^2 penalization is robust with respect to the frequency but parameter β have to be calibrated
 - $\longrightarrow H^{-\frac{1}{2}}$ penalization is more robust with respect to the discretization size
- Comparison with a boundary element method
 - Computational costs
 - \longrightarrow Using a direct solver : large gain in factorization time
 - $\longrightarrow\,$ Using a preconditioned iterative solver : faster convergence for EFIE formulation
 - Accuracy : Jump does not pollute radar cross-sections

Perspectives

- Integration of *hp*-refinement
 - Non-conformal meshes
 - High-order boundary elements
- Integration of H-matrix formalism
- Extension to dielectric scatterers

Thank you for your attention !