A FPTAS for scheduling with memory constraints on graphs with bounded tree-width
Eric Angel, Sébastien Morais, Damien Regnault

To cite this version:
Eric Angel, Sébastien Morais, Damien Regnault. A FPTAS for scheduling with memory constraints on graphs with bounded tree-width. 2021. cea-03264475

HAL Id: cea-03264475
https://cea.hal.science/cea-03264475
Preprint submitted on 18 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A FPTAS for Scheduling with Memory Constraints on Graphs with Bounded Tree-width

Eric Angel1, Sébastien Morais2,3, and Damien Regnault1

1 IBISC, Univ Evry, Universite Paris-Saclay, 91025, Evry, France
{Eric.Angel.Damien.Regnault}@univ-evry.fr,
2 CEA, DAM, DIF, F-91297 Arpajon, France
Sebastien.Morais@cea.fr
3 LIHPC - Laboratoire en Informatique Haute Performance pour le Calcul et la simulation - DAM
Ile-de-France, University of Paris-Saclay

Abstract. In this paper we study the scheduling problem under memory constraints, noted $P_{k\mid G, \text{mem}}|C_{\text{max}}$, that arise from executing numerical simulations on HPC architectures. We assume that the tree-width of the graph G is bounded by a constant, and we present a fully polynomial time approximation scheme (FPTAS) based on a dynamic programming algorithm. It allows to find a solution within a factor of $1 + \epsilon$ of the optimal makespan, where the capacity of the machines may be exceeded by a factor at most $1 + \epsilon$. This result extends somehow a previous fixed-parameter tractable algorithm with respect to the path-width of the graph G, and rely on the use of a nice tree decomposition of G and its traversal in a specific way which may be useful on its own. The case of unrelated machines, i.e. $R_{k\mid G, \text{mem}}|C_{\text{max}}$, is also tractable with minor modifications.

1 Introduction

In this paper, we study the $P_{k\mid G, \text{mem}}|C_{\text{max}}$ scheduling problem previously introduced in \cite{1} in the context of distributed numerical simulations based on finite elements or volume methods \cite{3,14}. Such approaches require the geometric domain of study to be discretized into basic elements, called cells, which form a mesh. Each cell has a computational cost, and a memory weight depending on the amount of data (i.e. density, pressure, . . .) stored on that cell. Moreover, performing the computation of a cell requires, in addition to its data, data located in its neighborhood. For a distributed simulation, the problem is to assign all the computations to processing units with bounded memory capacities, while minimizing the makespan. In practice, efficient partitioning tools such as SCOTCH \cite{18}, MeDIS \cite{19}, Zoltan \cite{20} or PaToH \cite{17} are used. However, the solutions returned by these tools may not respect the memory capacities of the processing units \cite{21}.

Formally, the $P_{k\mid G, \text{mem}}|C_{\text{max}}$ scheduling problem is defined as follows. We have a set of n jobs J, and each job $j \in J$ requires $p_j \in \mathbb{N}$ units of time to be executed (computation time) and an amount $m_j \in \mathbb{N}$ of memory. Jobs have to be assigned among a fixed number k of identical machines, each machine l having a memory capacity $M_l \in \mathbb{N}$, for $l = 1, \ldots, k$. Additionally we have an undirected graph $G(J, E)$, which we refer to as the neighborhood graph. Two jobs $j, j' \in J$ are said to be adjacent if there is an edge $(j, j') \in E$ in G. Moreover, each job j requires data from its set of adjacent jobs, denoted by $\mathcal{N}(j) := \{j' \in J \mid (j, j') \in E\}$.

For a subset of jobs $J' \subseteq J$, we denote by $\mathcal{N}(J') := \cup_{j \in J'} \mathcal{N}(j)$ its neighborhood. When a subset of jobs $J' \subseteq J$ is scheduled on a machine, this machine needs to allocate an amount of memory equal to $\sum_{j \in J' \cup \mathcal{N}(J')} m_j$, while its processing time is $\sum_{j \in J'} p_j$. The objective is to assign each job of J onto exactly a machine, such that the makespan (the maximum processing time over all machines) is minimized and ensuring strong memory constraints: the amount of memory allocated by each machine is smaller than or equal to its memory capacity.

In the following we assume that there exists at least one feasible solution, i.e. an assignment of all the jobs such that the memory constraint on each machine is satisfied. Notice that there are no precedence constraints among the jobs.

4 The neighborhood is most of the time topologically defined (cells sharing an edge or a face).
1.1 Related problems

The problem $Rk|G,\text{mem}|C_{\text{max}}$ contains other well-known \textbf{NP}-hard scheduling problems. When $m_j = 0$ for each job j, the problem $Rk|G,\text{mem}|C_{\text{max}}$ becomes the scheduling problem $Rk|G|C_{\text{max}}$ for which several approximations algorithms exist \cite{11,14,15}. When the neighborhood graph has no edges, and the memory is bounded on each machine, and $m_j = 1$ for each job j, we get the so-called Scheduling Machines with Capacity Constraints problem (SMCC). In this problem, each machine can process at most a fixed number of jobs. Zhang et al. \cite{4} gave a 3-approximation algorithm by using the iterative rounding method. Saha and Srinivasan \cite{14} gave a 2-approximation in a more general scheduling setting, i.e. Scheduling Unrelated Machines with Capacity Constraints. Lately, Keller and Kotov \cite{8} gave a 1.5-approximation algorithm. Chen et al. established an EPTAS \cite{3} for this problem and, for the special case of two machines, Woeginger designed a FPTAS \cite{16}.

1.2 Main Contribution

As $Pk|G,\text{mem}|C_{\text{max}}$ is a generalization of those well-known scheduling problems, a reasonable question is to know whether we can get approximation algorithms, which could depend on some parameters of the neighborhood graph. We answered this question in a previous paper \cite{1} by providing a fixed-parameter tractable (FPT) algorithm with respect to the path-width of the neighborhood graph, which returns a solution within a ratio of $(1 + \varepsilon)$ for both the optimum makespan and the memory capacity constraints (assuming that there exists at least one feasible solution). In this paper we extend this result by providing a FPTAS for graphs with tree-width bounded by a constant. Unlike the FPT algorithm which relies on the numbering of the vertices of the neighbourhoothat graph, the FPTAS takes advantage of a nice tree decomposition of the neighbourhood graph and of its traversal in a particular way to bound the algorithm complexity.

1.3 Outline of the Paper

We start by briefly recalling in Section 2 the definitions of different notions useful in the sequel. We then provide in Section 3 an algorithm that computes all the solutions to this problem. This algorithm consists of three steps: build a nice tree decomposition of (J, E); compute a layout L defining a bottom-up traversal of the nice tree decomposition; and use a dynamic programming algorithm traversing the nice tree decomposition following L. Since the time complexity of this algorithm is not polynomial in the input size, we apply the Trimming-of-the-State-Space technique in Section 4 obtaining a FPTAS for graphs with tree-width bounded by a constant. Finally, we give some concluding remarks in Section 5.

2 Definitions

Throughout this paper we consider simple, finite undirected graphs. Let us start by defining the notions of tree decomposition, tree-width and nice tree decomposition. The notions of tree decomposition and tree-width were initially introduced in the framework of graph minor theory \cite{13}. For a graph $G(J, E)$, let $J(G) := J$ be its vertices and $E(G) := E$ be its edges. A tree decomposition for G is a pair (T, X), where $T := (J(T), E(T))$ is a tree, and $X := (X_u)_u\in J(T)$ is a family of subsets of J satisfying the following conditions:

1. For each $j \in J(G)$ there is at least one $u \in J(T)$ such that $j \in X_u$.
2. For each $\{j, j'\} \in E(G)$ there is at least one $u \in J(T)$ such that j and j' are in X_u.
3. For each $j \in J(G)$, the set of vertices $u \in J(T)$ such that $j \in X_u$ induces a subtree of T.

To distinguish between vertices of G and T, the latter are called nodes. The width of a tree decomposition is $\max(|X_u| - 1 : u \in J(T))$ and the tree-width of G, noted $tw(G)$, is the minimum width over all tree decompositions of G. A graph $G(J, E)$ is illustrated on Figure 1(a) and a tree decomposition of this graph is illustrated on Figure 1(b).

Choosing an arbitrary node $r \in J(T)$ as root, we can make a rooted tree decomposition out of (T, X) with natural parent-child and ancestor-descendant relations. A node without children is called a leaf.
A rooted tree decomposition \((T, X)\) with root \(r\) is called nice if every node \(u \in J(T)\) is of one of the following types:

- **Leaf**: node \(u\) is a leaf of \(T\) and \(|X_u| = 1\).
- **Introduce**: node \(u\) has only one child \(c\) and there is a vertex \(j \in J(G)\) such that \(X_u = X_c \cup \{j\}\).
- **Forget**: node \(u\) has only one child \(c\) and there is a vertex \(j \in J(G)\) such that \(X_c = X_u \cup \{j\}\).
- **Join**: node \(u\) has only two children \(l\) and \(r\) such that \(X_u = X_l = X_r\).

In Figure 1, we present a nice tree decomposition of \(G(J, E)\) illustrated on Figure 1(a).

![Figure 1](image1.png)

Fig. 1: Example of a graph \(G(J, E)\) in (a) and a tree decomposition \((T, X)\) of the graph \(G(J, E)\).

A rooted tree decomposition \((T, X)\) with root \(r\) is called nice if every node \(u \in J(T)\) is of one of the following types:

- **Leaf**: node \(u\) is a leaf of \(T\) and \(|X_u| = 1\).
- **Introduce**: node \(u\) has only one child \(c\) and there is a vertex \(j \in J(G)\) such that \(X_u = X_c \cup \{j\}\).
- **Forget**: node \(u\) has only one child \(c\) and there is a vertex \(j \in J(G)\) such that \(X_c = X_u \cup \{j\}\).
- **Join**: node \(u\) has only two children \(l\) and \(r\) such that \(X_u = X_l = X_r\).

In Figure 2, we present a nice tree decomposition of \(G(J, E)\) with width \(tw(G) = 2\) where the node types are written in grey.

![Figure 2](image2.png)

Fig. 2: Example of a nice tree decomposition of the graph \(G(J, E)\) with width \(tw(G) = 2\) where the node types are written in grey.

Note that a vertex of \(J(G)\) can be forgotten at most once in a node of \(J(T)\). Otherwise, it would conflict with the third condition listed in the definition of a tree decomposition. We leverage this property later in the article.

There is an alternative definition to the nice tree decomposition where the root \(r\) and all leaves \(u\) of \(T\) are such that \(X_r = X_u = \emptyset\). But one can switch from one of these decompositions to the other in a trivial way.

When \(G\) is a graph with \(tw(G) = h\), where \(h\) is any fixed constant, we can compute a tree decomposition of \(G\) in linear time with tree-width at most \(h\) \cite{D溶解}. Given a tree decomposition \((T, X)\) of \(G(J, E)\) of constant width \(h \geq 1\), there is an algorithm that converts it into a nice tree decomposition \((T', X')\) with the same width \(h\) and with at most \(4n\) nodes, where \(n = |J(G)|\), in \(O(n)\) times (Lemma 13.1.3 in \cite{D溶解}). In the rest of the article, we will consider a nice tree decomposition obtained in this way.

Now, let us introduce the notion of layout of a nice tree decomposition \((T, X)\), which is simply a one-to-one mapping \(L : J(T) \rightarrow \{1, \ldots, |J(T)|\}\). We say that a layout \(L\) defines a bottom-up traversal of a nice tree decomposition \((T, X)\) if for any edge \((u, v) \in E(T)\) such that \(v\) is a child of \(u\) one has \(L(v) < L(u)\). In that case, we say that \(L\) is a bottom-up layout.
3 An Exact Algorithm Using Dynamic Programming

Briefly, our algorithm consists of three steps. First, we build a nice tree decomposition \((T, X)\) of the graph \(G(J, E)\) with bounded tree-width. Such a tree decomposition can be obtained in polynomial time for graph \(G\) with tree-width bounded by a constant (see Section 2). Then, we compute a specific layout \(L\) defining a bottom-up traversal of the nice tree decomposition. Finally, a dynamic programming algorithm passes through the nodes following the previously defined order \(L\) and computes a set \(S_L(a)\) of states, which encodes partial solutions for \(G_i = (J_i, E_i)\) a subgraph of \(G = (J, E)\), for each node \(a \in J(T)\). In Section 3.1, we start by presenting the dynamic programming algorithm where we detail how the set of states \(S_L(a)\) is computed depending on the type of node \(a\). Then, in Section 3.2, we give a proof of correctness of our dynamic programming algorithm when the nodes of the nice tree decomposition are traversed in a bottom-up way. Eventually, we compute the complexity of our dynamic programming algorithm when the decomposition is traversed following the layout \(L\). This layout is used to bound the complexity of our algorithm and, being bottom-up, it is compliant with the pre-requisite on proof of completeness.

3.1 The Dynamic Programming Algorithm

The presentation of the dynamic algorithm is done for two machines, but it can be generalized to a constant number \(k\) of machines, with \(k > 2\). The dynamic algorithm goes through \(|J(T)|\) phases. Each phase \(i\), with \(i = 1, \ldots, |J(T)|\), processes the node \(L^{-1}(i) \in J(T)\) and produces a set \(S_i\) of states. In the sequel, for sake of readability, we use the notation \(S_i := X_{L^{-1}(i)}\).

Each state in the state space \(S_i\) encodes a solution for the graph \(G_i = (J_i, E_i)\), where \(J_i := \bigcup_{a \in L_i} Z_a\) with \(J_0 = \emptyset\), and \(E_i := E_{L_i-1} \cup E_{Z_i}\), with \(E_0 = \emptyset\) and \(E_{Z_i}\), the set of all edges in \(E\) which have both endpoints in \(Z_i\).

For each phase \(i\), we denote by \(J_L(i)\) the set of vertices of \(J(G)\) which have not been forgotten when going through nodes \(L^{-1}(1)\) to \(L^{-1}(i)\). For convenience, we note \(J_L(0) := \emptyset\). Formally, \(J_L(i) := J_i \setminus V_R(i)\), where \(V_R(i)\) is the set of vertices that where removed in a Forget node \(o\) such that \(L(o) \leq i\).

A state \(s \in S_i\) is a vector \([c_1, c_2, c_3, c_4, C_1]\) where:
- \(c_1\) (resp. \(c_2\)) is the total processing time on the first (resp. second) machine in the constructed schedule,
- \(c_3\) (resp. \(c_4\)) is the total amount of memory required by the first (resp. second) machine in the constructed schedule,
- \(C_1\) is an additional structure, called combinatorial frontier. For a given solution of \(G_i(J_i, E_i)\), it is defined as \(C_1 := \left(J_L(i), \sigma_i, \sigma_i'\right)\) where \(\sigma_i : J_L(i) \to \{1, 2\}\) and \(\sigma_i' : J_L(i) \to \{0, 1\}\) such that \(\sigma_i(j)\) is the machine on which \(j \in J_L(i)\) has been assigned, and \(\sigma_i'(j) := 1\) if the machine on which \(j\) is not assigned, i.e. machine \(3 - \sigma_i(j)\), has already memorised the data of \(j\). Notice that \(J_L(i) \subseteq J_i\) and keeping into memory the combinatorial frontier with respect to \(J_L(i)\) rather than \(J_i\) is a key point in our algorithm in order to bound its complexity.

In the following, we present how to compute \(S_i\) from \(S_{i-1}\) depending on the type of node \(L^{-1}(i)\). For that, we present how states of \(S_i\) are obtained from an arbitrary state \(s = [c_1, c_2, c_3, c_4, C_{i-1}] \in S_{i-1}\). When \(L^{-1}(i)\) is a Leaf node with \(Z_i = \{j\}\) or an Introduce node with \(j\) the vertex introduced, we note \(s_a\) \((a = 1, 2)\) the state of \(S_i\) obtained from \(s\) and resulting from the assignment of \(j\) to machine \(a\), and \(C^a_{i-1}\) the combinatorial frontier obtained from \(C_{i-1}\) when \(j\) is assigned to machine \(a\).

Leaf Let \(L^{-1}(i) \in J(T)\) be a Leaf of \(T\) with \(Z_i = \{j\}\). For each state of \(S_{i-1}\) we add at most two states in \(S_i\). If \(j \in J_L(i-1)\), it means that \(j\) has already been assigned to a machine. Therefore, there is nothing to do and \(S_i = S_{i-1}\). Now, let us assume that \(j \notin J_L(i-1)\). In this case, we must compute two new states taking into account the assignment of \(j\) to machine one or two. We have

\[
s_a = \left[c_1 + \delta_a c_j, c_2 + \delta_a 2c_j, c_3 + \delta_a 1 m_j, c_4 + \delta_a 2 m_j, C^a_{i-1}\right]
\]

where \(\delta\) is the Kronecker function \((\delta_{i,j} = 1\) if \(i = j\), and \(\delta_{i,j} = 0\) otherwise). Since \(j \notin J_L(i-1)\), the new combinatorial frontier is obtained by extending \(C_{i-1}\) in adding new information related to \(j\), i.e. \(\sigma_i(j) = a\) and \(\sigma_i'(j) = 0\). Note that we have \(\sigma_i'(j) = 0\) because \(j\) was not assigned before phase \(i\) and \(E_{Z_i} = \emptyset\).
Introduce Let $L^{-1}(i) \in J(T)$ be an Introduce node of T and $j \in J(G)$ being the vertex introduced. Again, for each state s of S_{i-1} we are going to add at most two states to S_i depending on j assignment. However, processing an Introduce node differs from a Leaf because we may have to consider new edges. This happens when $E_i \setminus E_{i-1} \neq \emptyset$. There are two cases to consider. The first one is when $j \in J_L(i - 1)$. In that case, job j has already been assigned on machine $a = \sigma_{i-1}(j)$. We add a state in S_i for every state s in S_{i-1}. Let F_a and F_a' be the set of edges such that

$$F_a = \{(j, j') \in E_{Z_i} : a \neq \sigma_{i-1}(j') \text{ and } \sigma_{i-1}(j') = 0\},$$ \hfill (1)

$$F_a' = \{(j, j') \in E_{Z_i} : a \neq \sigma_{i-1}(j') \text{ and } \sigma_{i-1}(j) = 0\}. \hfill (2)$$

The set F_a represents the new edges in E_{Z_i} inducing additional amount of data on machine a. The set F_a' represents the new edges in E_{Z_i} inducing that m_j must be added on the machine not processing j. Note that some edges in E_{Z_i} may have already been considered in a previous node and that they can’t be a part of F_a or F_a'. Thus, we have

$$s_a = [c_1, c_2, c_3 + \delta_h \alpha^1, c_4 + \delta_h \alpha^2, C_h^1, C_h^2]$$

where $\alpha^0 = \sum_{(j, j') \in F_a} m_{j'}$ and $\beta^0 = m_j \sum_{F_a' \neq \emptyset}$ where $I[A]$ is the indicator function which returns one if condition A is satisfied and zero otherwise. Finally, the combinatorial frontier of the new state s_a is obtained from that of s by updating, if necessary, the information of j and vertices j' such that $(j, j') \in F_a$. If we have $F_a' \neq \emptyset$, it means that j was not memorised by machine $3 - a$ in state s. However, this is no longer the case for s_a, as new edges have been taken into account leading us to $\sigma'(j) = 1 \neq \sigma_{i-1}(j)$. If we have $F_a' \neq \emptyset$, then some vertices processed by machine $3 - a$ were not memorised by machine a in state s. Again, this is no longer the case in s_a, following the inclusion of new edges leading us to $\sigma'(j') = 1 \neq \sigma_{i-1}(j')$ for every vertex j' such that $(j, j') \in F_a'$.

Now, if $j \notin J_L(i - 1)$ then we add two states in S_i for every state $s \in S_{i-1}$. For $a = 1, 2$, we have

$$s_a = [c_1 + \delta_{a,1} p_1, c_2 + \delta_{a,2} p_1, c_3 + \delta_{a,1} (m_j + \alpha^1) + \delta_{a,2} (m_j + \alpha^2) + \delta_h \alpha^2, C_h].$$

The way to obtain the first four coordinates of each new state in S_i is similar to the case where $j \in J_L(i - 1)$ except that we have to add p_1 and m_j on the machine processing j. In the case of the combinatorial frontier, updates defined for $j \in J_L(i - 1)$ also apply and we have to add information related to j since it was unknown so far. The added data is $\sigma(j) = a$ and $\sigma'(j) = m_j \sum_{Z_i} : (j, j') \in E_{Z_i}$ and $\sigma_{i-1}(j') \neq a$.

Forget Let $L^{-1}(i) \in J(T)$ be a Forget node of T and $j \in J(G)$ being the vertex forgotten. This type of node is easier to handle than previous ones since we don’t have to deal with new vertex or edges. The only thing to do is to withdraw j from the combination frontier. Thus, for each state $s \in S_{i-1}$ we add a state $s' \in S_i$ where the combinatorial frontier of s' is equal to that of s from which information on j was removed.

Join Let $L^{-1}(i) \in J(T)$ be a Join node of T. This type of node is even simpler to deal with than the previous one. Once again, there are no new vertex or edges to handle. Moreover, we don’t forget any vertex. For each state $s \in S_{i-1}$ we add s to S_i. Thus, we have $S_i = S_{i-1}$. Our algorithm ends up by returning the state $s = [c_1, c_2, c_3, c_4, C_{J(T)}] \in S_{J(T)}$ with $c_4 \leq M_1$, $c_2 \leq M_2$ and such that max$\{c_1, c_2\}$ is minimum.

3.2 Algorithm Correctness

Now, let us present the proof of correctness of our dynamic programming algorithm when the nodes of the nice tree decomposition are traversed in bottom-up. We will prove our algorithm correctness by maintaining the following invariant: the states in S_i encode all the solutions for the graph $G_i = (J_i, E_i)$, defined at Section 3.1.

Initialization Let us start with the first node encountered. Let $G_0 = (J_0, E_0)$ be an empty graph and S_0 be the set composed of the single state $[0, 0, 0, 0, C_0]$ where C_0 does not store information. The nodes being traversed in bottom-up, the first node encountered is a Leaf. Let $j \in J(G)$ be the vertex such that $Z_1 = \{j\}$. Since $j \notin J_L(0)$ we have $S_1 = \emptyset$. However, processing an Introduce node differs from a Leaf assignment. Again, processing an Introduce node differs from a Leaf
Let us now assume that the invariant holds for \(L^{-1}(i - 1) \in J(T) \) and let us prove that it is still correct for \(L^{-1}(i) \in J(T) \).

Lemma 1. Let \(s \) be a state encoding a solution of a graph \(G' = (J', E') \). Then, if we add an edge \(e = (j, j') \) such that \(j \in J', j' \in J' \) and \(e \in F''_{u} \) then \(s \) also encodes a solution of the graph \(G'' = (J'', E'' \cup e) \).

Proof. The proof of this lemma is based on the fact that introducing such an edge does not make \(s \) inconsistent with graph \(G'' = (J'', E'' \cup e) \). Let us begin by noting that adding an edge \(e = (j, j') \in F''_{u} \) does not require to modify the processing times in \(s \) to make it a state encoding a solution of \(G'' = (J'', E'' \cup e) \). Indeed, since \(s \) encodes a solution for \(G'' = (J', E') \), the processing time induced by the assignment of \(j \) and \(j' \) has already been encoded. Now, suppose that \(e \in F''_{u} \). Then, we have either \(j \) and \(j' \) that are assigned to the same machine, or \(j \) and \(j' \) that are memorised by both machines. In either case, adding such an edge does not require to modify the amount of memory or combinatorial frontier in \(s \) to make it a state encoding a solution of \(G'' = (J'', E'' \cup e) \).

Let us now go back to our algorithm. On the machine processing \(j \), our algorithm adds \(m_{j} \) for every vertex \(j' \in J \) such that \(\{j, j'\} \in F_{u} \). Indeed, since \(j' \) is on a different machine than \(j \) and that this machine does not memorise \(j' \), it is necessary to add \(m_{j} \) on machine \(\sigma_{1}(j) \) to take into account the edge \(\{j, j'\} \). On the machine not processing \(j \), our algorithm adds \(m_{j} \) if there is an edge \(\{j, j'\} \in F_{u} \). Indeed, as \(j' \) is on a different machine than \(j \) and \(j \) is not memorised by this machine, it is necessary to add \(m_{j} \) on machine \(\sigma_{1}(j) \) to take into account the existence of such an edge. Finally, we update the combinatorial frontier information on vertex \(j \) if \(F''_{u} \neq \emptyset \) and on vertices \(j' \) such that \(\{j, j'\} \in F''_{u} \). Therefore, the states returned by our algorithm encode solutions for the graph \(G'' = (J, E_{i-1} \cup F_{u} \cup F_{v} \cup F''_{u}) \) and the combinatorial frontier is consistent with the addition of new vertices or edges. According to Lemma 1, our algorithm encodes solutions for the graph \(G_{i} = (J, E_{i}) \) since \(E_{i} = E_{i-1} \cup E_{Z_{i}} \) and \(E_{Z_{i}} = F_{u} \cup F_{v} \cup F''_{u} \). Thus, the invariant holds.

Now, if \(j \notin J_{L}(i - 1) \) the proof of the invariant enforcement is similar to the case where \(j \notin J_{L}(i - 1) \). The difference lies in the fact that \(j \) is not yet assigned. Thus, one must generate two new states in \(S_{i} \) for each state in \(S_{i-1} \) and the processing time, and amount of memory, of \(j \) must be added on the machine processing \(j \).

Forget Let \(L^{-1}(i) \in J(T) \) be a Forget node of \(T \) and \(j \in J(G) \) being the vertex forgotten. Here, our algorithm generates the states of \(S_{i} \) by taking those of \(S_{i-1} \) from which it removes information on vertex \(j \) from the combinatorial frontier. First, let us note that \(G_{i} = (J, E_{i}) \) is equal to \(G_{i-1} = (J_{i-1}, E_{i-1}) \) and the invariant holds. Notice that since we traverse \(T \) in bottom-up, we know that removing a vertex \(j \) implies that all edges linked to it have been explored. Otherwise, it would lead to the violation of a property of the tree decomposition
(the third listed in Section 2). Therefore, we can stop memorising the information related to vertex j.

Join Let $L^{-1}(i) \in J(T)$ be a Join node of T. In that case, our algorithm computes S_i by retrieving the states of S_{i-1} without modifying them. Since we have $G_i = (J_i, E_i)$ equal to $G_{i-1} = (J_{i-1}, E_{i-1})$ and no modification on the combinatorial frontier is performed, the invariant holds.

Termination Finally, from the first and second conditions listed in the definition of the tree decomposition, we know that the graph $G_{J(T)} = (J_{J(T)}, E_{J(T)})$ is equal to $G = (J, E)$. Since our invariant is valid for the first node and during the transition from nodes $L^{-1}(i-1)$ to $L^{-1}(i)$, our algorithm returns an optimal solution for the scheduling problem under memory constraints.

3.3 Algorithm Complexity

Let us now evaluate the time complexity of our dynamic programming algorithm. Let $J_L^{\text{max}} := \max_{1 \leq i \leq |J(T)|} |J_L(i)|$. Let $p_{\text{sum}} := \sum_{j \in J(G)} p_j$ and $m_{\text{sum}} := \sum_{j \in J(G)} m_j$, then for each state $s = [c_1, c_2, c_3, c_4, \tilde{c}_4] \in S_i$, c_1 and c_2 are integers between 0 and $p_{\text{sum}} + c_3$ and c_4 are integers between 0 and m_{sum}. The number of distinct combinatorial frontiers is $4^{T_L^{\text{max}}}$. Therefore, the number of states is $|S_i| = O(p^2_{\text{sum}} \times m^2_{\text{sum}} \times 4^{T_L^{\text{max}}})$. The dynamic programming algorithm processes all $|J(T)| = O(n)$ nodes of the nice tree decomposition. Each state in a phase can give at most two states in the next phase with a processing time of $O(L_L^{\text{max}})$ to compute these states. Recall also that in the algorithm, if two states s and s' have the same components, including the same combinatorial frontier, then only one of them is kept in the state space. The time complexity to test whether two states s and s' are the same is thus proportional to the length of the combinatorial frontier, and is therefore $O(L_L^{\text{max}})$. We obtain that the overall complexity of the dynamic programming algorithm is $O(n \times |S_i| \times (J_L^{\text{max}} + |S_i| \cdot |J_L^{\text{max}}|)) = O(n \times J_L^{\text{max}} \times (p^2_{\text{sum}} \times m^2_{\text{sum}} \times 4^{T_L^{\text{max}}})^2)$.

Notice that J_L^{max} depends on the chosen layout L, and to minimize this complexity it is therefore important to find a layout L with a small J_L^{max}.

Lemma 2. There exists a bottom-up layout L of the nice tree decomposition such that $J_L^{\text{max}} \leq tw(G) \cdot \log 4n$.

Proof. To prove that such a layout exists we present an algorithm which, when applied to the root of the nice tree decomposition, computes a bottom-up layout L such that $J_L^{\text{max}} \leq tw(G) \cdot \log 4n$. To ease the understanding of certain parts of the proof, these parts will be illustrated on Figure 3 where a tree with 174 nodes is depicted.

The algorithm works as follows. We perform a depth-first search starting from the root node, and when we have a Join node we first go to the subtree having the greatest number of nodes. With this depth-first search we get a discovery and finishing times for each node. The labeling is obtained by sorting the nodes in increasing order of their finishing time. As an example, the nodes of the nice tree decomposition in Figure 2 have been labelled according to this procedure if we consider in this example that $L^{-1}(i) = i$ for $1 \leq i \leq 12$.

Now, let us analyze J_L^{max} on the layout returned by our algorithm. Recall that we use the notation $Z_i := X_{L^{-1}(i)}$ and let us define the operator \cup such that $Z_i \cup Z_{i+1} := Z_i \setminus \{j\}$ if $L^{-1}(i+1)$ is a Forget node, with j the vertex forgotten, and $Z_i \cup Z_{i+1} := Z_i \cup Z_{i+1}$ otherwise. Notice that $J_L(i) = \bigcup_{a \subseteq Z_i} Z_a$ and that if we have a set of consecutive nodes $L^{-1}(l)$, $L^{-1}(l+1)$, ..., $L^{-1}(u)$ such that $L^{-1}(i+1)$ is a parent node for $L^{-1}(i)$ ($l \leq i \leq u - 1$), then $\bigcup_{a \subseteq Z_i} Z_a = Z_i$. Moreover if this chain is maximal, i.e. $L^{-1}(u+1)$ is not a parent node of $L^{-1}(u)$, then it means that the parent of $L^{-1}(u)$ is a Join node. For any node $L^{-1}(i)$, we have $J_L(i) = \bigcup_{a \subseteq Z_i} Z_a = \bigcup_{a \subseteq A} X_i$, with A a set of nodes, of minimum size, that we call critical. This set of critical nodes A can be obtained by taking the last node in each maximal chain over nodes $L^{-1}(1)$ to $L^{-1}(o)$. Thus, A is composed of the current node $L^{-1}(i)$ along with other nodes whose parents are Join nodes. Such set A is illustrated in Figure 3(a) where we consider $i = 166$ and where the nodes composing A are yellow colored.

For a Join node $L^{-1}(i)$ having two children $L^{-1}(l)$ and $L^{-1}(r)$, let denote by $T_l(i)$ and $T_r(i)$ the corresponding subtrees. We will assume that $|T_l(i)| \geq |T_r(i)|$ and therefore during the depth-first search we use, node $L^{-1}(l)$ will be examined before node $L^{-1}(r)$. We say that
$L^{-1}(l)$ (resp. $L^{-1}(r)$) is the left (resp. right) children of $L^{-1}(i)$. By the way the depth-first search is performed, all nodes in A, excepted the current node $L^{-1}(i)$, are left children of Join nodes, and these Join nodes are on the path P between the root node and the current node $L^{-1}(i)$. In Figure 3(a), such path P contains the Join nodes red colored.

Now, let us bound the number of Join nodes on the path P. First, we construct a reduced graph by removing the nodes of R where R is the set of nodes of P that are not Join nodes. Such a reduced graph is illustrated in Figure 3(b). By doing this set of deletions, we get a tree with fewer than $4n$ nodes (recall that the nice tree decomposition we started from has at most $4n$ nodes). The number of Join nodes is equal to the length of the reduced path $P \setminus R$ which is $\lceil \log 4n \rceil$. Indeed, starting from the root, each time we go on a node along this path the number of remaining nodes is divided by at least 2.

Thus, we have proved that $|A| \leq \lceil \log 4n \rceil$ for any node $L^{-1}(i)$ labelled with our algorithm. Recall that $J_L(i) = \cup_{L \in A} X_i$, and moreover from the definition of tree-width, we have $|X_i| \leq tw(G)$. Thus, we have $|J_L(i)| \leq tw(G) \lceil \log 4n \rceil$ and the proof is complete.

![Fig. 3: Illustration of the proof of Lemma 2 on a possible tree with 174 nodes. The tree is labelled with a bottom-up layout L, and for notational convenience we consider that $L^{-1}(i) = i$ for $1 \leq i \leq 174$. Some subtrees are represented by triangles. On Figure (a) is depicted the tree. When considering node 166, the set of critical nodes $A = \{166, 165, 160, 140, 100\}$. All nodes in A, except the node 166, are left children of Join nodes, and these Join nodes are on the path $P = \{174, 173, 172, 171, 170, 169, 168, 167, 166\}$ between the root node 174 and the node 166. On Figure (b) is depicted the reduced tree obtained by removing all nodes in P which are not Join nodes, namely R. In each figure, the set of critical nodes A associated to node 166 is yellow colored and the Join nodes in P are red colored.](image)

Using the previous defined layout, we obtain an overall complexity of our dynamic programming algorithm of $O(p_{sum}^4 \times m_{sum}^4 \times tw(G) \times \log(n) \times n^{tw(G)+1} \times 16^{tw(G)})$. Using appropriate data structures, i.e. hash tables, it is possible to decrease the exponents. The time complexity of this dynamic programming algorithm being pseudo-polynomial (because of p_{sum} and m_{sum}), we are going to transform it into a FPTAS when the neighborhood graph has a tree-width bounded by a constant.
4 Application of a trimming technique

In this Section, we propose an algorithm with a polynomial time complexity, derived from the algorithm presented in Section 3. To transform the dynamic programming algorithm, we apply an approach for transforming a dynamic programming formulation into a Fully Polynomial Time Approximation Scheme (FPTAS). This approach, called the trimming-the-state-space technique is due to Ibarra & Kim [7] and consists in iteratively thin out the state space of the dynamic program by collapsing states that are close to each other. In the approximation algorithm, we are going to trim the state space by discarding states that are close to each other. While carrying these states deletions, we must ensure that the resulting errors cannot propagate in an uncontrolled way. To this end, we characterize a notion of proximity between states. We define $\Delta := 1 + \varepsilon / 8n$, with $\varepsilon > 0$ a fixed constant. Let us first consider the first two coordinates of a state $s = [c_1, c_2, c_3, c_4, c_i]$. We have $0 \leq c_1 \leq p_{sum}$ and $0 \leq c_2 \leq p_{sum}$. We divide each of those intervals into intervals of the form $[0] \text{ and } [\Delta^i, \Delta^{i+1}]$, with l an integer value getting from 0 to $L_1 := \lceil \log_\Delta(p_{sum}) \rceil = \lceil \ln(p_{sum}) / \ln(\Delta) \rceil \leq \lceil (1 + \frac{an}{\pi}) \ln(p_{sum}) \rceil$. In the same way, we divide the next two coordinates into intervals of the form $[0] \text{ and } [\Delta^i, \Delta^{i+1}]$, with l an integer value getting from 0 to $L_2 := \lceil \log_\Delta(p_{sum}) \rceil$. The trimming of the state space consists in defining a set of non-overlapping boxes. If two states have the same combinatorial frontier and have their first four coordinates falling into the same box, then they encode similar solutions and we consider them to be close to each other.

The approximation algorithm proceeds in the same way as the exact algorithm, except that the trimming step consists in keeping only one solution per box and per combinatorial frontier. Thus, the worst time complexity of this approximation algorithm is $O(L_1^2 \times L_2^2 \times tw(G) \times \ln(n) \times n^{2tw(G)+1} \times 16^{tw(G)})$. We therefore get a FPTAS when the tree-width $tw(G)$ is bounded by a constant.

Theorem 1. There exists a FPTAS for the problem $P \langle G, \text{mem} \rangle | C_{\text{max}}$ when the tree-width of G is bounded by a constant, which returns a solution within a ratio of $(1 + \varepsilon)$ for the optimum makespan, where the memory capacity C_i, $1 \leq i \leq k$, of each machine may be exceeded by at most a factor $(1 + \varepsilon)$.

For sake of readability, the proof is presented when $k = 2$ and the general case is mentioned later. We denote by U_i (resp. T_i) the state space obtained before (resp. after) performing the trimming step at the i-th phase of the algorithm. The proof of this theorem relies on the following lemma.

Lemma 3. For each state $s = [c_1, c_2, c_3, c_4, c_i] \in S_i$, there exists a state $[c_{1}^#, c_{2}^#, c_{3}^#, c_{4}^#, c_i] \in T_i$ such that

\begin{equation}
\begin{aligned}
c_{1}^# \leq \Delta^i c_1 & \quad \text{and} \quad c_{2}^# \leq \Delta^i c_2 \quad \text{and} \quad c_{3}^# \leq \Delta^i c_3 \quad \text{and} \quad c_{4}^# \leq \Delta^i c_4.
\end{aligned}
\end{equation}

Proof. The proof of this lemma is by induction on i. The first node we consider is a Leaf of the nice tree decomposition and we have $T_1 = S_1$. Therefore, the statement is correct for $i = 1$. Now, let us suppose that inequality (3) is correct for any index $i - 1$ and consider an arbitrary state $s = [c_1, c_2, c_3, c_4, c_i] \in S_i$. Due to a lack of space, proof of the validity of the Lemma when passing from phase $i - 1$ to i is only presented for a node of type Introduce. Note that the proof for other types of nodes can be derived from that of an Introduce node. Let $L^{-1}(i)$ be an Introduce node with $j \in J(G)$ being the vertex introduced. We must distinguish between cases where j belongs to $L_2(i - 1)$ and where he does not.

First, let us assume that $j \in L_2(i - 1)$. Then s was obtained from a state $[w, x, y, z, C_{i-1}] \in S_{i-1}$ and $s = [w, x, y + \delta_{a,1}\alpha_i^1 + \delta_{a,2}\beta_i^1, z + \delta_{a,2}\alpha_i^2 + \delta_{a,1}\beta_i^2, C_i]$ with $a = \sigma_j(j)$. According to the induction hypothesis, there is a state $[w^#, x^#, y^#, z^#, C_{i-1}] \in T_{i-1}$ such that

\begin{equation}
\begin{aligned}
w^# \leq \Delta^{-1}w, \quad x^# \leq \Delta^{-1}x, \quad y^# \leq \Delta^{-1}y, \quad z^# \leq \Delta^{-1}z.
\end{aligned}
\end{equation}

The trimmed algorithm generates the state $[w^#, x^#, y^# + \delta_{a,1}\alpha_1^1 + \delta_{a,2}\beta_1^1, z^# + \delta_{a,2}\alpha_2^2 + \delta_{a,1}\beta_2^2, C_i] \in U_i$ and may remove it during the trimming phase, but it must leave some state $t = [c_{1}^#, c_{2}^#, c_{3}^#, c_{4}^#, c_i] \in T_i$ that is in the same box as $[w^#, x^#, y^# + \delta_{a,1}\alpha_1^1 + \delta_{a,2}\beta_1^1, z^# + \delta_{a,2}\alpha_2^2 + \delta_{a,1}\beta_2^2, C_i] \in U_i$. This state t is an approximation of s in the sense of (3).
Indeed, its first coordinate $c_1^δ$ satisfies
\[c_1^δ \leq \Delta(w^\#) \leq \Delta(\Delta^{-1} w) \leq \Delta' w = \Delta' c_1, \] (5)
its third coordinate $c_3^δ$ satisfies
\[c_3^δ \leq \Delta(y^\# + \delta_{a,i} \alpha_1^1 + \delta_{a,j} \alpha_1^2) \leq \Delta(\Delta^{-1} y + \delta_{a,i} \alpha_1^1 + \delta_{a,j} \alpha_1^2) \]
\[\leq \Delta' y + \Delta(\delta_{a,i} \alpha_1^1 + \delta_{a,j} \alpha_1^2) \leq \Delta' c_3 \]
and its last coordinate is the same as s. By similar arguments, we can show that $c_2^δ \leq \Delta' c_2$ and $c_4^δ \leq \Delta' c_4$.

Now, let us assume that $j \notin J_L(i - 1)$. In that case, the state s was obtained from a state $[w, x, y, z, C_{i-1}] \in S_{i-1}$ and either $s = [w + p_j, x, y + m_j + \alpha_1^1, z + \beta_2^1, C_i^1]$ or $s = [w, x + p_j, y + \beta_2^1, z + m_j + \alpha_1^2, C_i^2]$. We assume that $s = [w + p_j, x, y + m_j + \alpha_1^1, z + \beta_2^1, C_i^1]$ as, with similar arguments, the rest of the proof is also valid for the other case. By the inductive assumption, there exists a state $[w^#, x^#, y^#, z^#, C_{i-1}] \in T_{i-1}$ that respects (4). The trimmed algorithm generates the state $[w^# + p_j, x^#, y^#, z^# + m_j + \alpha_1^1, z + \beta_2^1, C_i^1] \in U_i$ and may remove it during the trimming phase. However, it must leave some state $t = [c_1^1, c_2^1, c_3^1, c_4^1, c_1^2] \in T_i$ that is in the same box as $[w^# + p_j, x^#, y^#, z^# + m_j + \alpha_1^1, z + \beta_2^1, C_i^1] \in U_i$. This state t is an approximation of s in the sense of (4). Indeed, its last coordinate c_4^1 is equal to C_4 and, by arguments similar to those presented for $j \in J_L(i - 1)$, we can show that $c_4^1 \leq \Delta' c_4$, for $o \in [1, 4]$. Thus, our assumption is valid during the transition from phase $i - 1$ to i when i is an Introduce node.

Since the proof for the other type of nodes can be derived from the proof of an Introduce node, the inductive proof is completed.

\[\square \]

Now, let us go back to the proof of Theorem 1. After at most $4n$ phases, the untrimmed algorithm outputs the state $s = [c_1, c_2, c_3, c_4, C]$ that minimizes the value $\max\{c_1, c_2\}$ such that $c_3 \leq M_1$ and $c_4 \leq M_2$. By Lemma 3 there exists a state $[c_1^1, c_2^1, c_3^1, c_4^1, C] \in T_n$ whose coordinates are at most a factor of Δ^{4n} above the corresponding coordinates of s. Thus, we conclude that our trimmed algorithm returns a solution where the makespan is at most Δ^{4n} times the optimal solution and the amount of memory for each machine is at most Δ^{4n} its capacity. Moreover, since $\Delta := 1 + \epsilon/8n$, we have $\Delta^{4n} \leq 1 + \epsilon$ for $\epsilon \leq 2$.

We have presented an algorithm that returns a solution such that the makespan is at most $(1 + \epsilon)$ times the optimal solution and the amount of memory for each machine is at most $(1 + \epsilon)$ its capacity. It ends the proof of Theorem 1.

5 Conclusion

Given 2 machines and a neighborhood graph of jobs with bounded tree-width, we have presented an algorithm that returns a solution, where the capacity of the machines may be exceeded by a factor at most $1 + \epsilon$, if at least one solution exists for the scheduling problem under memory constraints. This algorithm consists of three steps: construct a nice tree decomposition of the neighborhood graph; compute a specific bottom-up layout L of the nice tree decomposition; and use a transformed dynamic programming algorithm traversing the nice tree decomposition following L. The specific bottom-up layout L is designed to bound the complexity of our algorithm but it is not optimal. It would be interesting to lower this complexity by taking into account the number of vertices associated to each node (see for example [11]) and avoiding counting duplicate vertices. However, using layout L, the output of our algorithm is generated in polynomial time and is such that the makespan is at most $(1 + \epsilon)$ times the optimal solution and the amount of memory for each machine is at most $(1 + \epsilon)$ its capacity. Although the algorithm is presented for 2 machines, it can easily be extended to a constant number k of homogeneous machines. Moreover, it can also be adapted to the problem with unrelated machines by making minor modifications.

Now that we have provided a FPTAS for graphs of bounded tree-width, it would be interesting to look at graphs bounded by more generic graph parameters like the clique-width and local tree-width. The latter is all the more interesting as we know that planar graphs have locally bounded tree-width and can be used to model numerical simulations on HPC architectures.
References

