
HAL Id: cea-03264475
https://cea.hal.science/cea-03264475

Preprint submitted on 18 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A FPTAS for scheduling with memory constraints on
graphs with bounded tree-width

Eric Angel, Sébastien Morais, Damien Regnault

To cite this version:
Eric Angel, Sébastien Morais, Damien Regnault. A FPTAS for scheduling with memory constraints
on graphs with bounded tree-width. 2021. �cea-03264475�

https://cea.hal.science/cea-03264475
https://hal.archives-ouvertes.fr

A FPTAS for Scheduling with Memory Constraints on
Graphs with Bounded Tree-width

Eric Angel1, Sébastien Morais2,3, and Damien Regnault1

1 IBISC, Univ Evry, Universite Paris-Saclay, 91025, Evry, France
{Eric.Angel,Damien.Regnault}@univ-evry.fr,
2 CEA, DAM, DIF, F-91297 Arpajon, France

Sebastien.Morais@cea.fr
3 LIHPC - Laboratoire en Informatique Haute Performance pour le Calcul et la simulation - DAM

Île-de-France, University of Paris-Saclay

Abstract. In this paper we study the scheduling problem under memory constraints, noted
Pk|G,mem|Cmax, that arise from executing numerical simulations on HPC architectures.
We assume that the tree-width of the graph G is bounded by a constant, and we present
a fully polynomial time approximation scheme (FPTAS) based on a dynamic programming
algorithm. It allows to find a solution within a factor of 1+ε of the optimal makespan, where
the capacity of the machines may be exceeded by a factor at most 1 + ε. This result extends
somehow a previous fixed-parameter tractable algorithm with respect to the path-width of
the graphG, and rely on the use of a nice tree decomposition ofG and its traversal in a specific
way which may be useful on its own. The case of unrelated machines, i.e. Rk|G,mem|Cmax,
is also tractable with minor modifications.

1 Introduction

In this paper, we study the Pk|G,mem|Cmax scheduling problem previously introduced in
[1] in the context of distributed numerical simulations based on finite elements or volume
methods [5,12]. Such approaches require the geometric domain of study to be discretized
into basic elements, called cells, which form a mesh. Each cell has a computational cost, and
a memory weight depending on the amount of data (i.e. density, pressure, . . .) stored on
that cell. Moreover, performing the computation of a cell requires, in addition to its data,
data located in its neighborhood4. For a distributed simulation, the problem is to assign all
the computations to processing units with bounded memory capacities, while minimizing
the makespan. In practice, efficient partitioning tools such as Scotch [18], MeTiS [19],
Zoltan [20] or PaToH [17] are used. However, the solutions returned by these tools may not
respect the memory capacities of the processing units [21].

Formally, the Pk|G,mem|Cmax scheduling problem is defined as follows. We have a set of
n jobs J , and each job j ∈ J requires pj ∈ N units of time to be executed (computation
time) and an amount mj ∈ N of memory. Jobs have to be assigned among a fixed number
k of identical machines, each machine l having a memory capacity Ml ∈ N, for l = 1, . . . , k.
Additionally we have an undirected graph G(J,E), which we refer to as the neighborhood
graph. Two jobs j ∈ J and j′ ∈ J are said to be adjacent if there is an edge (j, j′) ∈ E
in G. Moreover, each job j requires data from its set of adjacent jobs, denoted by N (j) :=
{j′ ∈ J | (j, j′) ∈ E}. For a subset of jobs J ′ ⊆ J , we denote by N (J ′) := ∪j∈J′N (j)
its neighborhood. When a subset of jobs J ′ ⊆ J is scheduled on a machine, this machine
needs to allocate an amount of memory equal to

∑
j∈(J′∪N (J′)) mj , while its processing time

is
∑
j∈J′ pj . The objective is to assign each job of J onto exactly a machine, such that

the makespan (the maximum processing time over all machines) is minimized and ensuring
strong memory constraints: the amount of memory allocated by each machine is smaller than
or equal to its memory capacity.

In the following we assume that there exists at least one feasible solution, i.e. an assignment
of all the jobs such that the memory constraint on each machine is satisfied. Notice that
there are no precedence constraints among the jobs.

4 The neighborhood is most of the time topologically defined (cells sharing an edge or a face).

2 E. Angel et al.

1.1 Related problems

The problem Rk|G,mem|Cmax contains other well-known NP-hard scheduling problems.
When mj = 0 for each job j, the problem Rk|G,mem|Cmax becomes the scheduling prob-
lem Rk||Cmax for which several approximations algorithms exist [6,11,15]. When the neigh-
borhood graph has no edges, and the memory is bounded on each machine, and mj = 1
for each job j, we get the so-called Scheduling Machines with Capacity Constraints prob-
lem (SMCC). In this problem, each machine can process at most a fixed number of jobs.
Zhang et al. [4] gave a 3-approximation algorithm by using the iterative rounding method.
Saha and Srinivasan [14] gave a 2-approximation in a more general scheduling setting, i.e.
Scheduling Unrelated Machines with Capacity Constraints. Lately, Keller and Kotov [8] gave
a 1.5-approximation algorithm. Chen et al. established an EPTAS [3] for this problem and,
for the special case of two machines, Woeginger designed a FPTAS [16].

1.2 Main Contribution

As Pk|G,mem|Cmax is a generalization of those well-known scheduling problems, a reason-
able question is to know whether we can get approximation algorithms, which could depend
on some parameters of the neighborhood graph. We answered this question in a previous
paper [1] by providing a fixed-parameter tractable (FPT) algorithm with respect to the path-
width of the neighborhood graph, which returns a solution within a ratio of (1 + ε) for both
the optimum makespan and the memory capacity constraints (assuming that there exists at
least one feasible solution). In this paper we extend this result by providing a FPTAS for
graphs with tree-width bounded by a constant. Unlike the FPT algorithm which relies on
the numbering of the vertices of the neighbourhood graph, the FPTAS takes advantage of a
nice tree decomposition of the neighbourhood graph and of its traversal in a particular way
to bound the algorithm complexity.

1.3 Outline of the Paper

We start by briefly recalling in Section 2 the definitions of different notions useful in the
sequel. We then provide in Section 3 an algorithm that computes all the solutions to this
problem. This algorithm consists of three steps: build a nice tree decomposition of G(J,E);
compute a layout L defining a bottom-up traversal of the nice tree decomposition; and use
a dynamic programming algorithm traversing the nice tree decomposition following L. Since
the time complexity of this algorithm is not polynomial in the input size, we apply the
Trimming-of-the-State-Space technique [7] in Section 4 obtaining a FPTAS for graphs with
tree-width bounded by a constant. Finally, we give some concluding remarks in Section 5.

2 Definitions

Throughout this paper we consider simple, finite undirected graphs. Let us start by defining
the notions of tree decomposition, tree-width and nice tree decomposition. The notions
of tree decomposition and tree-width were initially introduced in the framework of graph
minor theory [13]. For a graph G(J,E), let J(G) := J be its vertices and E(G) := E be its
edges. A tree decomposition for G is a pair (T,X), where T := (J(T), E(T)) is a tree, and
X := (Xu)u∈J(T) is a family of subsets of J satisfying the following conditions:
1. For each j ∈ J(G) there is at least one u ∈ J(T) such that j ∈ Xu.
2. For each {j, j′} ∈ E(G) there is at least one u ∈ J(T) such that j and j′ are in Xu.
3. For each j ∈ J(G), the set of vertices u ∈ J(T) such that j ∈ Xu induces a subtree of T .

To distinguish between vertices of G and T , the latter are called nodes. The width of a
tree decomposition is max(|Xu| − 1 : u ∈ J(T)) and the tree-width of G, noted tw(G), is
the minimum width over all tree decompositions of G. A graph G(J,E) is illustrated on
Figure 1(a) and a tree decomposition of this graph is illustrated on Figure 1(b).
Choosing an arbitrary node r ∈ J(T) as root, we can make a rooted tree decomposition out of
(T,X) with natural parent-child and ancestor-descendant relations. A node without children
is called a leaf.

A FPTAS Algorithm for Scheduling with Memory Constraints 3

j1 j2

j3 j4

j5

(a) A graph G(J,E).

j1

j4

j1 j2

j4

j1

j3 j4

X1

X2

X3

j2 j5X4

(b) A tree decomposition (T,X) of the graph G(J,E).

Fig. 1: Example of a graph G(J,E) in (a) and a tree decomposition (T,X) of this graph where X
is composed of the sets X1 = {j1, j4}, X2 = {j1, j2, j4}, X3 = {j1, j3, j4}, X4 = {j2, j5} in (b).

A rooted tree decomposition (T,X) with root r is called nice if every node u ∈ J(T) is of
one of the following types:

– Leaf: node u is a leaf of T and |Xu| = 1.

– Introduce: node u has only one child c and there is a vertex j ∈ J(G) such that
Xu = Xc ∪ {j}.

– Forget: node u has only one child c and there is a vertex j ∈ J(G) such that Xc =
Xu ∪ {j}.

– Join: node u has only two children l and r such that Xu = Xl = Xr.

In Figure 2 we present a nice tree decomposition of G(J,E) illustrated on Figure 1(a)

j1

j4

j2

j4

j1

j3 j4

j1

j4

j1

j4

j1 j2

j4

j3 j4 j4
X7X8X9X10

X4X5X6

X11X12

Leaf

j1

j2 j5
X2

j5
X1

Introduce

Leaf

j2
X3

Introduce

Introduce

Introduce

Introduce

Forget

Forget

Forget

Forget Join

Root

Fig. 2: Example of a nice tree decomposition of the graph G(J,E) with width tw(G) = 2 where
the node types are written in grey.

Note that a vertex of J(G) can be forgotten at most once in a node of J(T). Otherwise, it
would conflict with the third condition listed in the definition of a tree decomposition. We
leverage this property later in the article.

There is an alternative definition to the nice tree decomposition where the root r and all
leaves u of T are such that Xr = Xu = ∅. But one can switch from one of these decompositions
to the other in a trivial way.

When G is a graph with tw(G) = h, where h is any fixed constant, we can compute a tree
decomposition of G in linear time with tree-width at most h [2]. Given a tree decomposition
(T,X) of G(J,E) of constant width h ≥ 1, there is an algorithm that converts it into a
nice tree decomposition (T ′, X ′) with the same width h and with at most 4n nodes, where
n = |J(G)|, in O(n) times (Lemma 13.1.3 in [9]). In the rest of the article, we will consider
a nice tree decomposition obtained in this way.

Now, let us introduce the notion of layout of a nice tree decomposition (T,X), which is
simply a one-to-one mapping L : J(T) → {1, . . . , |J(T)|}. We say that a layout L defines a
bottom-up traversal of a nice tree decomposition (T,X) if for any edge {u, v} ∈ E(T) such
that v is a child of u one has L(v) < L(u). In that case, we say that L is a bottom-up layout.

4 E. Angel et al.

3 An Exact Algorithm Using Dynamic Programming

Briefly, our algorithm consists of three steps. First, we build a nice tree decomposition (T,X)
of the graph G(J,E) with bounded tree-width. Such a tree decomposition can be obtained in
polynomial time for graph G with tree-width bounded by a constant (see Section 2). Then,
we compute a specific layout L defining a bottom-up traversal of the nice tree decomposition.
Finally, a dynamic programming algorithm passes through the nodes following the previously
defined order L and computes a set SL(u) of states, which encodes partial solutions for
Gi = (Ji, Ei) a subgraph of G = (J,E), for each node u ∈ J(T). In Section 3.1, we start by
presenting the dynamic programming algorithm where we detail how the set of states SL(u) is
computed depending on the type of node u. Then, in Section 3.2, we give a proof of correctness
of our dynamic programming algorithm when the nodes of the nice tree decomposition
are traversed in a bottom-up way. Eventually, we compute the complexity of our dynamic
programming algorithm when the decomposition is traversed following the layout L. This
layout is used to bound the complexity of our algorithm and, being bottom-up, it is compliant
with the pre-requisite on proof of completeness.

3.1 The Dynamic Programming Algorithm

The presentation of the dynamic algorithm is done for two machines, but it can be generalized
to a constant number k of machines, with k > 2. The dynamic algorithm goes through |J(T)|
phases. Each phase i, with i = 1, . . . , |J(T)|, processes the node L−1(i) ∈ J(T) and produces
a set Si of states. In the sequel, for sake of readability, we use the notation Zi := XL−1(i).
Each state in the state space Si encodes a solution for the graph Gi = (Ji, Ei), where
Ji := ∪io=1Zo with J0 = ∅, and Ei := Ei−1 ∪ EZi with E0 = ∅ and EZi the set of all edges
in E which have both endpoints in Zi.
For each phase i, we denote by JL(i) the set of vertices of J(G) which have not been forgotten
when going through nodes L−1(1) to L−1(i). For convenience, we note JL(0) := ∅. Formally,
JL(i) := Ji \ VR(i), where VR(i) is the set of vertices that where removed in a Forget node
o such that L(o) ≤ i.
A state s ∈ Si is a vector [c1, c2, c3, c4, Ci] where:
– c1 (resp. c2) is the total processing time on the first (resp. second) machine in the

constructed schedule,
– c3 (resp. c4) is the total amount of memory required by the first (resp. second) machine

in the constructed schedule,
– Ci is an additional structure, called combinatorial frontier. For a given solution of
Gi(Ji, Ei), it is defined as Ci := (JL(i), σi, σ

′
i) where σi : JL(i) → {1, 2} and σ′i :

JL(i)→ {0, 1} such that σi(j) is the machine on which j ∈ JL(i) has been assigned, and
σ′i(j) := 1 if the machine on which j is not assigned, i.e. machine 3− σi(j), has already
memorised the data of j. Notice that JL(i) ⊆ Ji and keeping into memory the combi-
natorial frontier with respect to JL(i) rather than Ji is a key point in our algorithm in
order to bound its complexity.

In the following, we present how to compute Si from Si−1 depending on the type of node
L−1(i). For that, we present how states of Si are obtained from an arbitrary state s =
[c1, c2, c3, c4, Ci−1] ∈ Si−1. When L−1(i) is a Leaf node with Zi = {j} or an Introduce node
with j the vertex introduced, we note sa (a = 1, 2) the state of Si obtained from s and
resulting from the assignment of j to machine a, and Cai the combinatorial frontier obtained
from Ci−1 when j is assigned to machine a.

Leaf Let L−1(i) ∈ J(T) be a Leaf of T with Zi = {j}. For each state of Si−1 we add at most
two states in Si. If j ∈ JL(i − 1), it means that j has already been assigned to a machine.
Therefore, there is nothing to do and Si = Si−1. Now, let us assume that j /∈ JL(i − 1).
In this case, we must compute two new states taking into account the assignment of j to
machine one or two. We have

sa = [c1 + δa,1cj , c2 + δa,2cj , c3 + δa,1 mj , c4 + δa,2 mj , Cai]

where δ is the Kronecker function (δi,j = 1 if i = j, and δi,j = 0 otherwise). Since j /∈
JL(i − 1), the new combinatorial frontier is obtained by extending Ci−1 in adding new
information related to j, i.e. σi(j) = a and σ′i(j) = 0. Note that we have σ′i(j) = 0 because
j was not assigned before phase i and EZi = ∅.

A FPTAS Algorithm for Scheduling with Memory Constraints 5

Introduce Let L−1(i) ∈ J(T) be an Introduce node of T and j ∈ J(G) being the vertex
introduced. Again, for each state s of Si−1 we are going to add at most two states to
Si depending on j assignment. However, processing an Introduce node differs from a Leaf
because we may have to consider new edges. This happens when Ei\Ei−1 6= ∅. There are
two cases to consider. The first one is when j ∈ JL(i − 1). In that case, job j has already
been assigned on machine a = σi−1(j). We add a state in Si for every state s in Si−1. Let
Fa and F ′a be the set of edges such that

Fa = {{j, j′} ∈ EZi : a 6= σi−1(j′) and σ′i−1(j′) = 0}, (1)

F ′a = {{j, j′} ∈ EZi : a 6= σi−1(j′) and σ′i−1(j) = 0}. (2)

The set Fa represents the new edges in EZi inducing additional amount of data on machine
a. The set F ′a represents the new edges in EZi inducing that mj must be added on the
machine not processing j. Note that some edges in EZi may have already been considered
in a previous node and that they can’t be a part of Fa or F ′a. Thus, we have

sa = [c1, c2, c3 + δa,1α
1
i + δa,2β

1
i , c4 + δa,2α

2
i + δa,1β

2
i , Cai]

where αai =
∑
{j,j′}∈Fa

mj′ and βai = mj IJF ′a 6= ∅K where IJAK is the indicator function
which returns one if condition A is satisfied and zero otherwise. Finally, the combinatorial
frontier of the new state sa is obtained from that of s by updating, if necessary, the infor-
mation of j and vertices j′ such that {j, j′} ∈ Fa. If we have F ′a 6= ∅, it means that j was
not memorised by machine 3− a in state s. However, this is no longer the case for sa as new
edges have been taken into account leading us to σ′i(j) = 1 6= σ′i−1(j). If we have Fa 6= ∅,
then some vertices processed by machine 3 − a were not memorised by machine a in state
s. Again, this is no longer the case in sa following the inclusion of new edges leading us to
σ′i(j

′) = 1 6= σ′i−1(j′) for every vertex j′ such that {j, j′} ∈ Fa.
Now, if j /∈ JL(i− 1) then we add two states in Si for every state s ∈ Si−1. For a = 1, 2, we
have

sa = [c1 + δa,1 pj , c2 + δa,2 pj ,

c3 + δa,1(mj +α1
i) + δa,2β

1
i , c4 + δa,2(mj +α2

i) + δa,1β
2
i , Cai].

The way to obtain the first four coordinates of each new state in Si is similar to the case
where j ∈ JL(i − 1) except that we have to add pj and mj on the machine processing j.
In the case of the combinatorial frontier, updates defined for j ∈ JL(i − 1) also apply and
we have to add information related to j since it was unknown so far. The added data is
σi(j) = a and σ′i(j) = IJ∃j′ ∈ Zi : {j, j′} ∈ EZi and σi−1(j′) 6= aK.
Forget Let L−1(i) ∈ J(T) be a Forget node of T and j ∈ J(G) being the vertex forgotten.
This type of node is easier to handle than previous ones since we don’t have to deal with
new vertex or edges. The only thing to do is to withdraw j from the combination frontier.
Thus, for each state s ∈ Si−1 we add a state s′ ∈ Si where the combinatorial frontier of s′

is equal to that of s from which information on j was removed.

Join Let L−1(i) ∈ J(T) be a Join node of T . This type of node is even simpler to deal with
than the previous one. Once again, there are no new vertex or edges to handle. Moreover, we
don’t forget any vertex. For each state s ∈ Si−1 we add s to Si. Thus, we have Si = Si−1.

Our algorithm ends up by returning the state s = [c1, c2, c3, c4, C|J(T)|] ∈ S|J(T)| with c3 ≤
M1, c4 ≤M2 and such that max{c1, c2} is minimum.

3.2 Algorithm Correctness

Now, let us present the proof of correctness of our dynamic programming algorithm when
the nodes of the nice tree decomposition are traversed in bottom-up. We will prove our
algorithm correctness by maintaining the following invariant: the states in Si encode all the
solutions for the graph Gi = (Ji, Ei), defined at Section 3.1.

Initialization Let us start with the first node encountered. Let G0 = (J0, E0) be an
empty graph and S0 be the set composed of the single state [0, 0, 0, 0, C0] where C0 does
not store information. The nodes being traversed in bottom-up, the first node encountered
is a Leaf. Let j ∈ J(G) be the vertex such that Z1 = {j}. Since j /∈ JL(0) we have S1 =

6 E. Angel et al.

[(pj , 0,mj , 0, C11), (0, pj , 0,mj , C21)] where, for a = 1, 2, Ca1 is such that σ1(j) = a and σ′1(j) =
0. These two states encode the assignment of j on machines one and two when considering
the graph G1 = (J1, E1). Moreover, the combinatorial frontier obtained allows us to keep in
memory potentially necessary knowledge for graphs of which G1 = (J1, E1) is a sub-graph.
Thus the invariant is correct for the first node.

Maintenance Now let us assume that the invariant holds for L−1(i − 1) ∈ J(T) and let
us prove that it is still correct for L−1(i) ∈ J(T).

Leaf Let L−1(i) ∈ J(T) being a Leaf with Zi = {j}. If j ∈ JL(i − 1) then our algorithm
states that Si = Si−1. In that case, the invariant holds because Gi = (Ji, Ei) is equal to
Gi−1 = (Ji−1, Ei−1). Now, if j /∈ JL(i) then our algorithm adds two new states in Si for
every state in s ∈ Si−1 to take into account the assignment of j to machine one and two.
Each new state is obtained by adding pj and mj according to the assignment of j and the
associated combinatorial frontier is obtained by extending the combinatorial frontier of s
with information on j assignment, i.e. σi(j) = a and σ′i(j) = 0. Since we are dealing with a
Leaf and j /∈ JL(i) we have Gi = (Vi−1 ∪ {j}, Ei−1). Therefore, the invariant holds.

Introduce Let L−1(i) ∈ J(T) being an Introduce node with j ∈ J(G) being the vertex
introduced. If j ∈ JL(i − 1) then our algorithm adds one new state in Si for every state in
Si−1. A new state in Si is obtained from a state in Si−1 by adding, if needed, some amount
of data on machine one and two. Let a = σi−1(j) and Fa and F ′a be the sets defined in (1)
and (2). We note F ′′a the set such that F ′′a = EZi\(Fa ∪ F ′a).

Lemma 1. Let s be a state encoding a solution of a graph G′ = (J ′, E′). Then, if we add
an edge e = {j, j′} such that j ∈ J ′, j′ ∈ J ′ and e ∈ F ′′a then s also encodes a solution of the
graph G′ = (J ′, E′ ∪ e).

Proof. The proof of this lemma is based on the fact that introducing such edge does not
make s inconsistent with graph G′ = (J ′, E′ ∪ e). Let us begin by noting that adding an
edge e = {j, j′} ∈ F ′′a does not require to modify the processing times in s to make it a state
encoding a solution of G′ = (J ′, E′ ∪ e). Indeed, since s encodes a solution for G′ = (J ′, E′),
the processing time induced by the assignment of j and j′ has already been encoded. Now,
suppose that e ∈ F ′′a . Then, we have either j and j′ that are assigned to the same machine,
or j and j′ that are memorised by both machines. In either case, adding such an edge does
not require to modify the amount of memory or combinatorial frontier in s to make it a state
encoding a solution of G′ = (J ′, E′ ∪ e). �

Let us now go back to our algorithm. On the machine processing j, our algorithm adds mj′

for every vertex j′ ∈ Ji such that {j, j′} ∈ Fa. Indeed, since j′ is on a different machine than
j and that this machine does not memorise j′, it is necessary to add mj′ on machine σi−1(j)
to take into account the edge {j, j′}. On the machine not processing j, our algorithm adds
mj if there is an edge {j, j′} ∈ F ′a. Indeed, as j′ is on a different machine than j′ and j is not
memorised by this machine, it is necessary to add mj on machine σi−1(j′) to take into account
the existence of such an edge. Finally, we update the combinatorial frontier information on
vertex j if F ′a 6= ∅ and on vertices j′ such that {j, j′} ∈ Fa. Therefore, the states returned
by our algorithm encode solutions for the graph G′ = (Ji, Ei−1 ∪ Fa ∪ F ′a ∪ F ′′a) and the
combinatorial frontier is consistent with the addition of new vertices or edges. According to
Lemma 1, our algorithm encodes solutions for the graph Gi = (Ji, Ei) since Ei = Ei−1∪EZi

and EZi = Fa ∪ F ′a ∪ F ′′a . Thus, the invariant holds.
Now, if j /∈ JL(i − 1) the proof of the invariant enforcement is similar to the case where
j ∈ JL(i − 1). The difference lies in the fact that j is not yet assigned. Thus, one must
generate two new states in Si for each state in Si−1 and the processing time, and amount
of memory, of j must be added on the machine processing j.

Forget Let L−1(i) ∈ J(T) be a Forget node of T and j ∈ J(G) being the vertex forgotten.
Here, our algorithm generates the states of Si by taking those of Si−1 from which it removes
information on vertex j from the combinatorial frontier. First, let us note that Gi = (Ji, Ei)
is equal to Gi−1 = (Ji−1, Ei−1) and the invariant holds. Notice that since we traverse T in
bottom-up, we know that removing a vertex j implies that all edges linked to it have been
explored. Otherwise, it would lead to the violation of a property of the tree decomposition

A FPTAS Algorithm for Scheduling with Memory Constraints 7

(the third listed in Section 2). Therefore, we can stop memorising the information related to
vertex j.

Join Let L−1(i) ∈ J(T) be a Join node of T . In that case, our algorithm computes Si by
retrieving the states of Si−1 without modifying them. Since we have Gi = (Ji, Ei) equal
to Gi−1 = (Ji−1, Ei−1) and no modification on the combinatorial frontier is performed, the
invariant holds.

Termination Finally, from the first and second conditions listed in the definition of the tree
decomposition, we know that the graph G|J(T)| = (J|J(T)|, E|J(T)|) is equal to G = (J,E).
Since our invariant is valid for the first node and during the transition from nodes L−1(i−1) to
L−1(i), our algorithm returns an optimal solution for the scheduling problem under memory
constraints.

3.3 Algorithm Complexity

Let us now evaluate the time complexity of our dynamic programming algorithm. Let
JmaxL := max1≤i≤|J(T)| |JL(i)|. Let psum :=

∑
j∈J(G) pj and msum :=

∑
j∈J(G) mj , then

for each state s = [c1, c2, c3, c4, Ci] ∈ Si, c1 and c2 are integers between 0 and psum, c3
and c4 are integers between 0 and msum. The number of distinct combinatorial frontiers is
4J

max
L . Therefore, the number of states is | Si | = O(p2

sum×m2
sum×4J

max
L). The dynamic

programming algorithm processes all |J(T)| = O(n) nodes of the nice tree decomposition.
Each state in a phase can give at most two states in the next phase with a processing time
of O(JmaxL) to compute these states. Recall also that in the algorithm, if two states s and
s′ have the same components, including the same combinatorial frontier, then only one of
them is kept in the state space. The time complexity to test whether two states s and s′ are
the same is thus proportional to the length of the combinatorial frontier, and is therefore
O(JmaxL). We obtain that the overall complexity of the dynamic programming algorithm is
O(n× |Si | × (JmaxL + | Si |JmaxL)) = O(n× JmaxL × (p2

sum×m2
sum×4J

max
L)2).

Notice that JmaxL depends on the chosen layout L, and to minimize this complexity it is
therefore important to find a layout L with a small JmaxL .

Lemma 2. There exists a bottum-up layout L of the nice tree decomposition such that
JmaxL ≤ tw(G) dlog 4ne.

Proof. To prove that such a layout exists we present an algorithm which, when applied to
the root of the nice tree decomposition, computes a bottom-up layout L such that JmaxL ≤
tw(G) dlog 4ne. To ease the understanding of certain parts of the proof, these parts will be
illustrated on Figure 3 where a tree with 174 nodes is depicted.
The algorithm works as follows. We perform a depth-first search starting from the root
node, and when we have a Join node we first go to the subtree having the greatest number of
nodes. With this depth-first search we get a discovery and finishing times for each node. The
labeling is obtained by sorting the nodes in increasing order of their finishing time. As an
example, the nodes of the nice tree decomposition in Figure 2 have been labelled according
to this procedure if we consider in this example that L−1(i) = i for 1 ≤ i ≤ 12.
Now, let us analyze JmaxL on the layout returned by our algorithm. Recall that we use the
notation Zi := XL−1(i) and let us define the operator t such that Zi t Zi+1 := Zi \ {j}
if L−1(i + 1) is a Forget node, with j the vertex forgotten, and Zi t Zi+1 := Zi ∪ Zi+1

otherwise. Notice that JL(i) = to≤iZo and that if we have a set of consecutive nodes L−1(l),
L−1(l + 1), . . . , L−1(u) such that L−1(i + 1) is a parent node for L−1(i) (l ≤ i ≤ u − 1),
then tui=lZi = Zu. Moreover if this chain is maximal, i.e. L−1(u + 1) is not a parent node
of L−1(u), then it means that the parent of L−1(u) is a Join node. For any node L−1(i), we
have JL(i) = to≤iZo = ∪l∈AXl, with A a set of nodes, of minimum size, that we call critical.
This set of critical nodes A can be obtained by taking the last node in each maximal chain
over nodes L−1(1) to L−1(o). Thus, A is composed of the current node L−1(i) along with
other nodes whose parents are Join nodes. Such set A is illustrated in Figure 3(a) where we
consider i = 166 and where the nodes composing A are yellow colored.
For a Join node L−1(i) having two childrens L−1(l) and L−1(r), let denote by Tl(i) and Tr(i)
the corresponding subtrees. We will assume that |Tl(i)| ≥ |Tr(i)| and therefore during the
depth-first search we use, node L−1(l) will be examined before node L−1(r). We say that

8 E. Angel et al.

L−1(l) (resp. L−1(r)) is the left (resp. right) children of L−1(i). By the way the depth-first
search is performed, all nodes in A, excepted the current node L−1(i), are left children of
Join nodes, and these Join nodes are on the path P between the root node and the current
node L−1(i). In Figure 3(a), such path P contains the Join nodes red colored.
Now, let us bound the number of Join nodes on the path P . First, we construct a reduced
graph by removing the nodes of R where R is the set of nodes of P that are not Join nodes.
Such a reduced graph is illustrated in Figure 3(b). By doing this set of deletions, we get a
tree with fewer than 4n nodes (recall that the nice tree decomposition we started from has
at most 4n nodes). The number of Join nodes is equal to the length of the reduced path
P \R which is dlog 4ne. Indeed, starting from the root, each time we go on a node along this
path the number of remaining nodes is divided by at least 2.
Thus, we have proved that |A| ≤ dlog 4ne for any node L−1(i) labelled with our algorithm.
Recall that JL(i) = ∪l∈AXl, and moreover from the definition of tree-width, we have |Xl| ≤
tw(G). Thus, we have |JL(i)| ≤ tw(G) dlog 4ne and the proof is complete.

174

100 173

172

140 171

160 170

169

168

165 167

166

size 5

size 20

size 40

size 100

Root

L−1(i)

174

100 172

140 171

160 168

165 166

size 100

size 40

size 20

size 5

Root

L−1(i)

(a) (b)

Fig. 3: Illustration of the proof of Lemma 2 on a possible tree with 174 nodes. The tree is la-
belled with a bottum-up layout L, and for notational convenience we consider that L−1(i) = i
for 1 ≤ i ≤ 174. Some subtrees are represented by triangles. On Figure (a) is depicted the tree.
When considering node 166, the set of critical nodes A = {166, 165, 160, 140, 100}. All nodes in
A, excepted the node 166, are left children of Join nodes, and these Join nodes are on the path
P = {174, 173, 172, 171, 170, 169, 168, 167, 166} between the root node 174 and the node 166. On
Figure (b) is depicted the reduced tree obtained by removing all nodes in P which are not Join
nodes, namely R. In each figure, the set of critical nodes A associated to node 166 is yellow colored
and the Join nodes in P are red colored.

�

Using the previous defined layout, we obtain an overall complexity of our dynamic program-
ming algorithm of O(p4

sum×m4
sum×tw(G)×log(n)×n2tw(G)+1×16tw(G)). Using appropriate

data structures, i.e. hash tables, it is possible to decrease the exponents. The time complex-
ity of this dynamic programming algorithm being pseudo-polynomial (because of psum and
msum), we are going to transform it into a FPTAS when the neighborhood graph has a
tree-width bounded by a constant.

A FPTAS Algorithm for Scheduling with Memory Constraints 9

4 Application of a trimming technique

In this Section, we propose an approximated algorithm with a polynomial time complex-
ity, derived from the algorithm presented in Section 3. To transform the dynamic program-
ming algorithm, we apply an approach for transforming a dynamic programming formulation
into a Fully Polynomial Time Approximation Scheme (FPTAS). This approach, called the
trimming-the-state-space technique is due to Ibarra & Kim [7] and consists in iteratively thin
out the state space of the dynamic program by collapsing states that are close to each other.
In the approximation algorithm, we are going to trim the state space by discarding states
that are close to each other. While carrying these states deletions, we must ensure that the
resulting errors cannot propagate in an uncotrolled way. To this end, we characterize a notion
of proximity between states. We define ∆ := 1+ε/8n, with ε > 0 a fixed constant. Let us first
consider the first two coordinates of a state s = [c1, c2, c3, c4, Ci]. We have 0 ≤ c1 ≤ psum and
0 ≤ c2 ≤ psum. We divide each of those intervals into intervals of the form [0] and [∆l,∆l+1],
with l an integer value getting from 0 to L1 := dlog∆(psum)e = dln(psum)/ln(∆)e ≤ d(1 +
8n
ε

)ln(psum)e. In the same way, we divide the next two coordinates into intervals of the

form [0] and [∆l,∆l+1], with l an integer value getting from 0 to L2 := dlog∆(msum)e. The
union of those intervals defines a set of non-overlapping boxes. If two states have the same
combinatorial frontier and have their first four coordinates falling into the same box, then
they encode similar solutions and we consider them to be close to each other.
The approximation algorithm proceeds in the same way as the exact algorithm, except that
we add a trimming step to thin out each state space Si. The trimming step consists in keeping
only one solution per box and per combinatorial frontier. Thus, the worst time complexity
of this approximation algorithm is O(L4

1 × L4
2 × tw(G)× log(n)× n2tw(G)+1 × 16tw(G)). We

therefore get a FPTAS when the tree-width tw(G) is bounded by a constant.

Theorem 1. There exists a FPTAS for the problem Pk|G,mem|Cmax when the tree-width
of G is bounded by a constant, which returns a solution within a ratio of (1 + ε) for the
optimum makespan, where the memory capacity Mi, 1 ≤ i ≤ k, of each machine may be
exceeded by at most a factor (1 + ε).

For sake of readability, the proof is presented when k = 2 and the general case is mentioned
later. We denote by U i (resp. T i) the state space obtained before (resp. after) performing
the trimming step at the i-th phase of the algorithm. The proof of this theorem relies on the
following lemma.

Lemma 3. For each state s = [c1, c2, c3, c4, Ci] ∈ Si, there exists a state [c#1 , c
#
2 , c

#
3 , c

#
4 , Ci] ∈

T i such that

c#1 ≤ ∆
ic1 and c#2 ≤ ∆

ic2 and c#3 ≤ ∆
ic3 and c#4 ≤ ∆

ic4. (3)

Proof. The proof of this lemma is by induction on i. The first node we consider is a Leaf of
the nice tree decomposition and we have T 1 = S1. Therefore, the statement is correct for
i = 1. Now, let us suppose that inequality (3) is correct for any index i− 1 and consider an
arbitrary state s = [c1, c2, c3, c4, Ci] ∈ Si. Due to a lack of space, proof of the validity of the
Lemma when passing from phase i − 1 to i is only presented for a node of type Introduce.
Note that the proof for other types of nodes can be derived from that of an Introduce node.
Let L−1(i) be an Introduce node with j ∈ J(G) being the vertex introduced. We must
distinguish between cases where j belongs to JL(i− 1) and where he does not.
First, let us assume that j ∈ JL(i− 1). Then s was obtained from a state [w, x, y, z, Ci−1] ∈
Si−1 and s = [w, x, y+ δa,1α

1
i + δa,2β

1
i , z + δa,2α

2
i + δa,1β

2
i , Cai] with a = σi(j). According to

the induction hypothesis, there is a state [w#, x#, y#, z#, Ci−1] ∈ T i−1 such that

w# ≤ ∆i−1w , x# ≤ ∆i−1x , y# ≤ ∆i−1y , z# ≤ ∆i−1z. (4)

The trimmed algorithm generates the state [w#, x#, y# + δa,1α
1
i + δa,2β

1
i , z

+ δa,2α
2
i +

δa,1β
2
i , Cai] ∈ Ui and may remove it during the trimming phase, but it must leave some state

t = [c#1 , c
#
2 , c

#
3 , c

#
4 , Cai] ∈ Ti that is in the same box as [w#, x#, y# + δa,1α

1
i + δa,2β

1
i , z

+
δa,2α

2
i + δa,1β

2
i , Cai] ∈ Ui. This state t is an approximation of s in the sense of (4).

10 E. Angel et al.

Indeed, its first coordinate c#1 satisfies

c#1 ≤ ∆(w#) ≤ ∆(∆i−1w) ≤ ∆iw = ∆ic1, (5)

its third coordinate c#3 satisfies

c#3 ≤ ∆(y# + δa,1α
1
i + δa,2β

1
i) ≤ ∆(∆i−1y + δa,1α

1
i + δa,2β

1
i)

≤ ∆iy +∆(δa,1α
1
i + δa,2β

1
i) ≤ ∆ic3

(6)

and its last coordinate is the same as s. By similar arguments, we can show that c#2 ≤ ∆ic2
and c#4 ≤ ∆ic4.
Now, let us assume that j /∈ JL(i − 1). In that case, the state s was obtained from a
state [w, x, y, z, Ci−1] ∈ Si−1 and either s = [w + pj , x, y + mj +α1

i , z + β2
i , C1i] or s =

[w, x+ pj , y+β1
i , z+ mj +α2

i , C2i]. We assume that s = [w+ pj , x, y+ mj +α1
i , z+β2

i , C1i] as,
with similar arguments, the rest of the proof is also valid for the other case. By the inductive
assumption, there exists a state [w#, x#, y#, z#, Ci−1] ∈ T i−1 that respects (4). The trimmed
algorithm generates the state [w# + pj , x

#, y# + mj +α1
i , z + β2

i , C1i] ∈ Ui and may remove

it during the trimming phase. However, it must leave some state t = [c#1 , c
#
2 , c

#
3 , c

#
4 , C1i] ∈ Ti

that is in the same box as[w# + pj , x
#, y# + mj +α1

i , z + β2
i , C1i] ∈ Ui. This state t is an

approximation of s in the sense of (4). Indeed, its last coordinate C1i is equal to Ci and, by
arguments similar to those presented for j ∈ JL(i − 1), we can show that c#o ≤ ∆ico, for
o ∈ J1, 4K. Thus, our assumption is valid during the transition from phase i− 1 to i when i
is an Introduce node.
Since the proof for the other type of nodes can be derived from the proof of an Introduce
node, the inductive proof is completed.

�

Now, let us go back to the proof of Theorem 1. After at most 4n phases, the untrimmed
algorithm outputs the state s = [c1, c2, c3, c4, C] that minimizes the value max{c1, c2} such
that c3 ≤M1 and c4 ≤M2. By Lemma 3, there exists a state [c#1 , c

#
2 , c

#
3 , c

#
4 , C] ∈ Tn whose

coordinates are at most a factor of ∆4n above the corresponding coordinates of s. Thus, we
conclude that our trimmed algorithm returns a solution where the makespan is at most ∆4n

times the optimal solution and the amount of memory for each machine is at most ∆4n its
capacity. Moreover, since ∆ := 1 + ε/8n, we have ∆4n ≤ 1 + ε for ε ≤ 2.
We have presented an algorithm that returns a solution such that the makespan is at most
(1 + ε) times the optimal solution and the amount of memory for each machine is at most
(1 + ε) its capacity. It ends the proof of Theorem 1.

5 Conclusion

Given 2 machines and a neighborhood graph of jobs with bounded tree-width, we have
presented an algorithm that returns a solution, where the capacity of the machines may
be exceeded by a factor at most 1 + ε, if at least one solution exists for the scheduling
problem under memory constraints. This algorithm consists of three steps: construct a nice
tree decomposition of the neighborhood graph; compute a specific bottom-up layout L of the
nice tree decomposition; and use a transformed dynamic programming algorithm traversing
the nice tree decomposition following L. The specific bottom-up layout L is designed to
bound the complexity of our algorithm but it is not optimal. It would be interesting to lower
this complexity by taking into account the number of vertices associated to each node (see
for example [10]) and avoiding counting duplicate vertices. However, using layout L, the
output of our algorithm is generated in polynomial time and is such that the makespan is at
most (1 + ε) times the optimal solution and the amount of memory for each machine is at
most (1 + ε) its capacity. Although the algorithm is presented for 2 machines, it can easily
be extended to a constant number k of homogeneous machines. Moreover, it can also be
adapted to the problem with unrelated machines by making minor modifications.
Now that we have provided a FPTAS for graphs of bounded tree-width, it would be inter-
esting to look at graphs bounded by more generic graph parameters like the clique-width
and local tree-width. The latter is all the more interesting as we know that planar graphs
have locally bounded tree-width and can be used to model numerical simulations on HPC
architectures.

A FPTAS Algorithm for Scheduling with Memory Constraints 11

References

1. Angel, E., Chevalier, C., Ledoux, F., Morais, S., Regnault, D.: FPT approximation algo-
rithm for scheduling with memory constraints. In: Dutot, P.F., Trystram, D. (eds.) Euro-
Par 2016: Parallel Processing. pp. 196–208. Springer International Publishing, Cham
(2016)

2. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput., 25(6), 1305–1317(1996)

3. Chen, L., Jansen, K., Luo, W., Zhang, G.: An efficient PTAS for parallel machine schedul-
ing with capacity constraints. In: Chan, T.H., Li, M., Wang, L. (eds.) Combinatorial
Optimization and Applications - 10th International Conference, COCOA 2016, Hong
Kong, China, December 16-18, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 10043, pp. 608–623. Springer (2016)

4. Chi, Z., Gang, W., Xiaoguang, L., Jing, L.: Approximating scheduling machines with
capacity constraints. In: Proceedings of the 3D International Workshop on Frontiers in
Algorithmics. pp. 283–292. FAW ’09, Springer-Verlag (2009)

5. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Appl. Math. Sci. 159,
Springer-Verlag, New York (2004)

6. Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algorithm
for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1-2), 87–99 (Jul
2007)

7. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of
subset problems. J. ACM 22(4), 463–468 (1975)

8. Kellerer, H., Kotov, V.: A 3/2-approximation algorithm for 3/2-partitioning. Oper. Res.
Lett. 39(5), 359–362 (2011)

9. Kloks, T.: Treewidth, computations and approximations. In: Lecture Notes in Computer
Science (1994)

10. Lam, C.C., Rauber, T., Baumgartner, G., Cociorva, D., Sadayappan, P.: Memory-
optimal evaluation of expression trees involving large objects. Computer Languages,
Systems and Structures 37(2), 63–75 (2011)

11. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling un-
related parallel machines. Math. Program. 46(3), 259–271 (1990)

12. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems (Cambridge Texts in
Applied Mathematics). Cambridge University Press (2002)

13. Robertson, N., Seymour, P.: Graph minors. i. excluding a forst. Journal of Combinatorial
Theory, Series B 35(1), 39–61 (1983)

14. Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation prob-
lems. In: Proc. Innovations in Computer Science (ICS), 342–357 (2010)

15. Woeginger, G.J.: When does a dynamic programming formulation guarantee the exis-
tence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal
on Computing 12(1), 57–74 (2000)

16. Woeginger, G.J.: A comment on scheduling two parallel machines with capacity con-
straints. Discret. Optim. 2(3), 269–272 (Sep 2005)

17. Ü. V. Çatalyürek and C. Aykanat: (2011) PaToH (Partitioning Tool for Hypergraphs).
In: Padua D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA

18. F. Pellegrini and J. Roman: Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs, International Conference
and Exhibition on High-Performance Computing and Networking, 493-498, (1996)

19. G. Karypis and V. Kumar: Metis A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matri-
ces, University of Minnesota, Department of Computer Science and Engineering, Army
HPC Research Center, 1998.

20. K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek and C. Chevalier: Getting
Started with Zoltan: A Short Tutorial, 2009 Dagstuhl Seminar on Combinatorial Scien-
tific Computing, 2009.

21. C. Chevalier, F. Ledoux and S. Morais: A Multilevel Mesh Partitioning Algorithm Driven
by Memory Constraints, Proceedings of the SIAM Workshop on Combinatorial Scientific
Computing, 85–95 (2020)

	A FPTAS for Scheduling with Memory Constraints on Graphs with Bounded Tree-width

