N

N

PDP-ReqLite: A lightweight approach for the elicitation
of privacy and data protection requirements
Nicolas E. Diaz Ferreyra, Patrick Tessier, Gabriel Pedroza, Maritta Heisel

» To cite this version:

Nicolds E. Diaz Ferreyra, Patrick Tessier, Gabriel Pedroza, Maritta Heisel. PDP-ReqLite: A
lightweight approach for the elicitation of privacy and data protection requirements. Data Privacy
Management, Cryptocurrencies and Blockchain Technology. DPM 2020, CBT 2020., pp.161-177, 2020,
978-3-030-66172-4. 10.1007/978-3-030-66172-4_ 10 . cea-03264121

HAL 1d: cea-03264121
https://cea.hal.science/cea-03264121

Submitted on 17 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://cea.hal.science/cea-03264121
https://hal.archives-ouvertes.fr

PDP-ReqLite: A Lightweight Approach for the
Elicitation of Privacy and Data Protection
Requirements

Nicolas E. Diaz Ferreyra'®, Patrick Tessier2,

Gabriel Pedroza®c, and Maritta Heisel'd

! Department of Computer Science and Applied Cognitive Science,
University of Duisburg-Essen, Oststr. 99, Duisburg, 47057, Germany
{®nicolas.diaz-ferreyra, dmaritta.heisel}@uni-due .de
2 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
{°gabriel.pedroza, "patrick.tessier}@cea.fr

Abstract. With the introduction of the EU General Data Protection
Regulation (GDPR), concerns about compliance started to arise among
software companies inside and outside Europe. In order to achieve
high compliance, software developers must consider those privacy and
data protection goals defined across the different legal provisions in the
GDPR. Prior work has introduced methods to systematically extract
taxonomies of privacy requirements out of the GDPR’s legal provisions.
That is, a hierarchy of meta-requirements that can be instantiated for
each specific software project. Particularly, ProPAn is a requirements
elicitation method which leverages such taxonomies with the aim of
achieving high levels of compliance. However, despite of its benefits, the
method presents a high documentation overhead and redundancy across
the artifacts it generates. In this work, we introduce a lightweight method
named PDP-ReqLite initially inspired from ProPAn that introduces new
artifacts for the documentation of personal data and information flows in
a system-to-be. The purpose of PDP-ReqLite is to improve usability and
applicability by reducing documentation overhead and complexity, and
by introducing means to automate tasks, e.g., automated requirements
elicitation. In particular, this improved method provides additional fea-
tures for incorporating new meta-requirements thus enlarging existing
taxonomies.

Keywords: GDPR - privacy requirements engineering - data protection

1 Introduction

Nowadays, developing privacy-aware software systems has become a challenge
of public interest. Legal frameworks such as the EU General Data Protection
Regulation (GDPR) [17] have triggered major concerns about how information
systems should implement data-protection functionalities and safeguard the pri-
vacy rights of their users. Privacy engineering is a discipline that has taken care

2 N. E. Diaz Ferreyra et al.

of these challenges through methods, techniques and tools that allow software de-
velopers to build and incorporate privacy-related functionalities in their projects.
Particularly, there is a growing understanding that privacy must be considered
as a primary aspect in every system and software development process. That is,
it must be considered right from the early stages of a systems’ design process and
throughout its whole life cycle. Therefore, under this premise, an adequate elic-
itation of privacy requirements results critical for developing software systems
that guarantee the data protection rights of their end-users.

Privacy requirement engineering methods seeks to define, and document re-
quirements related to privacy and data protection for their later implementa-
tion. Overall, these methods define a set of privacy and data protection goals
like transparency or integrity which guide the elicitation process of such require-
ments. Furthermore, many of them introduce conceptual elements extracted from
current standards or legal provisions in order to achieve high levels of compli-
ance. Such is the case of ProPAn, a model-driven method for the elicitation of
privacy requirements that incorporates principles introduced by well-established
data protection frameworks and standards. Particularly, ProPAn comprises a
collection of meta models (or requirements taxonomies) that are systematically
extracted from the body of the EU GDPR and the ISO 29100. Such meta models
guide the elicitation process of privacy requirements taking as input a collection
of functional requirements that the system-to-be is expected to meet.

All in all, requirements engineering methods use different notations for the
specification of requirements (e.g. textual, UML, use-case diagrams), and mod-
elling languages for representing the system (or system-to-be) under consid-
eration (e.g. BPMN, data-flow diagrams). In the particular case of ProPAn,
functional requirements are specified using Jackson’s Problem Frames notation.
Such approach consists of describing the contextual elements with which the
system-to-be must interact. In principle, this approach is suitable for the sys-
tematic elicitation of functional requirements. Nevertheless, it does not provide
adequate means for a fine-grained documentation of the personal information
that the system under consideration is expected to process. Hence, the method
introduces a considerable amount of documentation overhead in order to doc-
ument and analyze the information flows of the system and, thereby, generate
the corresponding privacy and data protection requirements. Furthermore, even
when such requirements are successfully generated, a high level of compliance
cannot be ensured after their incorporation since the meta requirements used by
the method do not cover all the legal provisions stated in the GDPR.

This paper introduces PDP-ReqLite, a lightweight method for the elicitation
of privacy and data protection requirements. Particularly, PDP-ReqLite seeks to
overcome the drawbacks identified in ProPAn regarding documentation overhead
and compliance through new elicitation artifacts and requirements meta models.
Such artifacts consist of data-flow and personal information diagrams that are
independent from the Problem Frame notation employed by ProPAn but allow
capturing the necessary information for the generation of privacy requirements.
On the other hand, PDP-ReqLite introduces the possibility of defining additional

A Lightweight Approach for Privacy Requirements Engineering 3

meta requirements and models for achieving a broader scope and compliance
with legal provisions and standards. Furthermore, a protocol for the systematic
elicitation of such meta requirements is also introduced and illustrated alongside
the different steps of PDP-ReqLite.

The rest of the paper is structured as follows. Section 2 gives the related work.
The Section 3 introduces the theoretical background necessary to understand the
proposed approach. The PDP-ReqLite method is presented in Section 4. The
method applicability is demonstrated relying upon a Smart Grid case study in
Section 5. The conclusions and perspectives finally come in Section 6

2 Related work

So far, several methods have been proposed for the generation of privacy and
data protection requirements in software projects, each employing different no-
tations and modelling languages [1, 8,4, 3, 5]. Generally speaking, these methods
consider privacy as a quality attribute or soft-goal that must be refined into a set
of functional requirements [12]. For example, Dennedy et al. [5] propose to model
a system-to-be through use cases and business activity diagrams enhanced with
metadata related to the actors and information being processed by such system.
In this approach, patterns (i.e. generic use cases) are used in combination with
interpretation guidelines of the OECD privacy principles to identify and instan-
tiate privacy use cases. Such instances guide the selection of Privacy Enhancing
Technologies (PETs) which are prescribed by the method for each OECD prin-
ciple. In line with this, Hoepman et al. [7] and Colesky et al. [3] elaborated a
set of privacy patterns for the development of software architectures considering
certain levels of privacy protection. Particularly, Colesky et al. [3] identified a set
of privacy protection needs from the body of the GDPR and other legal frame-
works like the Privacy Shield Agreement and refined them into a collection of
privacy design tactics. Such tactics are then linked to specific privacy patterns
(represented in natural language) and PETs for their later application in the
design of software architectures.

Privacy regulations and the obligation to comply with privacy laws are driv-
ing factors for considering privacy as a software quality [12]. Privacy principles
and goals are often introduced in requirement engineering methods to make these
obligations more accessible and comprehensible for practitioners in the computer
science domain. Furthermore, many of these approaches have been coined under
the principles and premises of model-driven software engineering [12]. This is
the case of ProPAn, a method for the systematic elicitation of privacy and data
protection requirements which is driven by legal provisions and privacy goals
related to transparency and intervenability, among others. Particularly, ProPAn
is grounded in the provisions and guidelines included in the EU GDPR [17] and
the ISO 29100 standard [9]. Nevertheless, the method exhibits extension points
that makes it adaptable to other privacy legislations and data protection stan-
dards. Regarding data representation, text-based approaches like PRIPARE [14]
are easier to adapt in the practice since users are not required to learn a spe-

4 N. E. Diaz Ferreyra et al.

cific modelling notation or formal language. Moreover, Meis et al. [12] show in
a literature review on requirement engineering methods for privacy, that a large
number of methods rely solely on textual documentation. However, informal no-
tations make automation and consistency checking harder to perform, hence, a
model-driven approach is preferable for these purposes.

3 Theoretical background

In this section, we describe the theoretical foundations upon which PDP-ReqLite
is elaborated. Particularly, a brief introduction to ProPAn and its most salient
software artifacts is given in the following subsections. Alongside, an analysis
of the benefits and drawbacks of this method is conducted in order to identify
potential areas of improvement.

3.1 The ProPAn Approach

ProPAn [1] is a systematic method that helps identifying the privacy needs of a
software system based on a set of functional requirements. Particularly, one of the
core characteristics of ProPAn is the elicitation of functional requirements using
problem diagrams. Such diagrams where introduced by Michael Jackson [10] as
an approach to describe the environment in which a system-to-be must oper-
ate and the problem it must solve. In Jacksons’ approach, software development
consists of building a Machine (i.e. the system-to-be) that must be integrated
in a certain environment represented by a collection of Domains (e.g. humans,
technical devices, data representations, etc.) connected by interfaces through
which they exchange certain Phenomena (i.e. events, actions, messages, and op-
erations). Overall, the ProPAn method consists of two phases: Identification of
Privacy-Relevant Information Flows and Generation of Privacy Requirements.
In the first phase, the functional requirements of the system-to-be are identified
and expressed through a collection of problem diagrams. In addition, the phe-
nomena specified in such diagrams is further analysed and described in terms
of personal information and data flows. For this, ProPAn introduces elicita-
tion instruments additional to the ones proposed by Jackson with the purpose
of documenting the personal information being processed by the system along
with their corresponding data subjects (or system stakeholders) and data flows.
These Functional Requirement Artifacts (FRAs) generated during the first stage
of ProPAn become the input for the method’s second stage.

In the second stage of the method, privacy requirement candidates are gen-
erated using a set of taxonomies that reflect privacy principles included in the
GDPR and the ISO 29100 [9]. Overall, requirement candidates are generated for
different privacy goals. Particularly, ProPAn follows the privacy protection goals
introduced by Hansen [6], namely confidentiality, integrity, availability, unlinka-
bility, transparency, and intervenability [1]. For each goal, the method provides a
taxonomy (i.e. a metamodel) of privacy requirements and a collection of semantic
templates with placeholders for their documentation. For example Fig 1 depicts

A Lightweight Approach for Privacy Requirements Engineering 5

the taxonomy corresponding to the privacy goal unlinkability and the semantic
template used to generate undetectability requirements. As it can be observed,
the information available in the taxonomy (i.e. the attribute values) is leveraged
by the semantic template to instantiate the corresponding requirement.

«Stereotype»
PrivacyRequirement
+ counterstakeholder: BiddableDomain [*]
+ phenomena: Phenomenon [*]
+ stakeholder: BiddableDomain [1]

«Profile» ["
Unlinkability T 1 «En.umer.a.tlon»
Linkability
| single
«Stereotype» «Stereotype» «Stereotype» group
PseudonymityRequirement UnlinkabilityRequirement UndetectabilityRequirement anonymous
+ kind: PseudonymKind [1] + linkability: Linkability [1]
«Enumeration»
Ar PseudonymKind
[1 person
«Stereotype» «Stereotype» role
DataUnlinkabili 'quuirement AnonymityReinrement relationship
Toars: — " roleReIatlonshlp
pairs: PhenomenonPair [1..*] transaction

The <counterstakeholder>s shall not be able to sufficiently distinguish whether the personal
information <phenomena> of the <stakeholder> exists or not.

Fig. 1. Unlinkability Requirements Taxonomy (up) and Semantic Template for Unde-
tectability Requirements (down) [13]

The second stage of ProPAn consists of four steps which are Requirement
Information Deduction, Generation of Privacy Requirement Candidates, Adjust
Privacy Requirements, and Validate Privacy Requirements. In the first step, the
information necessary to instantiate the taxonomy of a particular privacy goal is
deduced from the FRAs of the first stage. For instance, to generate unlikability
requirements one must know which information from a stakeholder S should be
undetectable for a counter-stakeholder C. This can be deduced by analysing the
data flows and stakeholder information obtained during the first stage of ProPAn
[12]. Once this information is deduced, a set of requirement candidates can be
derived by instantiating the taxonomy and semantic templates of the privacy goal
under consideration (Step 2). Since requirement candidates may be incomplete or
result too strong/weak for the system-to-be under analysis, the user must review,
complete and adjust the generated requirement candidates manually (Step 3).
For instance, it may happen that an undetectability requirement must be relaxed
and replaced with a confidentiality one. Once these adjustments are done, privacy
requirement candidates are validated to check whether they remain consistent
with the flow and availability of personal data at the different domains of the
system-to-be (Step 4). Depending on the outcome of this validation activity,
some requirements will be accepted and others may need to be adjusted.

6 N. E. Diaz Ferreyra et al.

3.2 Requirements Elicitation Artifacts

As described in Section 3.1, the first phase of ProPAn offers a collection of
FRAs that allow software engineers to capture and document privacy-relevant
knowledge of a system-to-be. More precisely, the software artifacts generated
during this phase are:

— (1) Context Diagram: Describes the domains interacting with the machine,
their corresponding interfaces, and exchanged phenomena.

— (N) Domain Knowledge Diagrams: Documents facts and assumptions about
the context in which the machine will operate.

— (N) Problem Diagrams: Represent functional requirements that must be sat-
isfied by the contextual elements of the machine (i.e. domains and phenom-
ena).

— (1) Detailed Stakeholder Information Flow Diagram (DSIFD): Describes how
different phenomena flow across the domains of the system.

— (N) Personal Information Diagrams: Identifies which data of the stakehold-
ers will be processed by the system and the relations between these data.

— (N) Awailable Information Diagrams: These diagrams consist of two views.
The first one identifies the stakeholder data available at the different domains
of the system, and the second documents their linkability nature at such
domains (e.g. simple or anonymous).

from which only the DSIFD is generated automatically and the rest must be elab-
orated manually by engineers and privacy experts. To a certain extent, many of
these artifacts are introduced to refine the information captured by the problem
diagrams into data flows. This is because the phenomena represented in such di-
agrams describe mainly events and not the information that such events enclose.
Hence, this approach can result in large amounts of documentation, particularly
in software projects of middle and large size. Consequently, the integration of
ProPAn into an Agile development process may be difficult because of its doc-
umentation overhead. Moreover, the jargon adopted by the method (i.e. words
like “domains” and “phenomena’”) may alienate those who are not familiar with
it and, consequently, hinder the method’s usability.

4 PDP-ReqlLite: A lightweight method for privacy
requirements engineering

All in all, ProPAn counts on multiple artifacts for capturing and document-
ing privacy-relevant information flows in a system-to-be. Such artifacts provide
key input for conducting privacy analyses and, ultimately, for generating pri-
vacy requirements. However, their high syntactical correspondence with Jack-
son’s terminology can jeopardize their usability for average software developers.
Moreover, the overall documentation overhead in ProPAn can impact the de-
velopment process of the system-to-be under analysis and eventually delay its
commissioning. Hence, we introduce PDP-ReqLite, a lightweight method for

A Lightweight Approach for Privacy Requirements Engineering 7

the elicitation of privacy and data protection requirements which incorporates
new artifacts for the documentation and analysis of privacy-relevant information
flows. Alongside, we describe a protocol for the systematic elicitation of privacy
and data protection taxonomies for achieving a broader scope and compliance
with legal provisions and privacy standards to come.

4.1 Method Overview

Fig.2 illustrates the proposed requirement elicitation method named PDP-
ReqLite. As it can be observed, this method keeps similarities with the second
phase of ProPAn. Hence, to keep compatibility, PDP-ReqLite can receive as in-
put either a set of software artifacts like the ones generated in the first phase of
ProPAn (i.e. problem diagrams, domain knowledge, DSIFD, etc.), or alternative
ones containing the same information. Particularly, our new lightweight method
introduces two software artifacts as an alternative to the ones from ProPAn. The
first one is a Requirements Data-Flow Diagram (RDFD) that describes require-
ments related to data processing and storage and the information flows between
such requirements. Such a diagram resembles many aspects of ProPAn’s DSIFD
and AID but remains independent from the Problem Frames notation (i.e. it is
not specified in terms of phenomena or domains). The other artifact introduced
in this new approach is a Personal Information Diagram (PID). As described in
Section 3.2, such a diagram is already present in ProPAn and, like the DSIFD,
it its expressed through the jargon of Problem Frames. Conversely, this new
PID is expressed in terms of stakeholders, data, and the linkability relations
between them. Thereby, we look to overcome the issues related to usability and
documentation overhead of the original method.

Data Protection
Principle

’ Hansen ‘

PDP Goal

Requirement
Metamodel

Semantic Template |-~

Requirement Information [.
Deduction

H Requirement Information
I Generation of Privacy
Requirement Candidates

ProPAn
Taxonomy

PDP Metamodel

-------- +f Privacy Requirement Candidates |

Adjust Privacy
Requirements

H
| Adjusted Privacy Requirements |

[0 Extemal Input (new)

[0 Extemal Input — Validate Privacy _—_
Requirements

Il Method Step H
[Internal Input/output | Validated Privacy Requirements

Fig. 2. PDP4E Requirement Elicitation Method

Another element introduced by the PDP-ReqLite corresponds to the meta-
models used to generate privacy and data protection requirements. As we de-

8 N. E. Diaz Ferreyra et al.

scribed in Section 3.1, privacy requirements in ProPAn are derived using re-
quirement taxonomies and semantic templates. Such taxonomies and templates
are created by conducting an analysis of the GDPR and the ISO 29100. Such
analysis is performed through the lens of the Hansen’s privacy goals. That is,
both law and standard are parsed into a set of taxonomies and semantic tem-
plates that represent each of the Hansen’s goals. Nevertheless, expressing GDPR
requirements only in terms of a limited set of principles (e.g., intervenability, un-
likability and transparency) introduces a risk of methodological bias related to
the choice of such principles. For this reason, we introduce two conceptual ar-
tifacts to achieve coverage and correctness during requirements elicitation. The
first one is a protocol for extracting legal notions from the GDPR to capture in
a structured vocabulary those concepts that can help us modelling Data Protec-
tion Principles (such protocol is described in Section 4.2). The second one is the
possibility of adding new taxonomies or meta-requirements to the ones already
introduced by ProPAn in order to achieve full coverage and avoid any potential
bias. This is done by adding the extension point “Privacy and Data Protection
Goal” (PDP Goal) in the requirement elicitation method of Fig. 2, which con-
siders the incorporation of new data protection principles complementary to the
goals of Hansen. Therefore, we consider the new PDP-ReqLite taxonomies as Re-
quirement Meta-models and propose representing new data protection principles
through PDP Meta-models. Such PDP Meta-models follow the same principle
of the taxonomies introduced by ProPAn but instead of being associated with
a privacy goal, they are associated to a privacy principle and defined using the
vocabulary of legal notions.

Requirements Data-Flow Diagram (RDFD) Fig. 3 (left) describes the
meta-model of a Requirements Data-Flow Diagram (RDFD) which was intro-
duced to replace mainly ProPAn’s Detailed Stakeholder Information Flow Di-
agram (DSIFD), but it also contains information originally specified inside an
Available Information Diagram (AID). This allow to generate only one global
RDFD instead of one DISFD and multiple AIDs for each component inside the
DISFD. Following, we detail the most salient components of the RDFD meta-
model:

— RDFD_Element: Abstract Class. The main elements of the RDFD inherit
from this class.

— Data: A piece of data is an individual unit of information. All data in a
system-to-be has an origin which is the RDFD element in which it was
originated (i.e. created for the very first time).

— Record: A record is a piece of information which has associated a certain
retention_time in a data storage. Records are composed by data.

— Data Record Requirement (DRR): It represents a requirement related to data
storage. Particularly, it represents information structures that are imple-
mented later on in a data base. A DRR is composed by a list of data records
(records_list) which are pieces of information which have associated a cer-

A Lightweight Approach for Privacy Requirements Engineering 9

tain retention time. The attribute traceability is a list of the functional
requirements that the DRR contributes to.

— Data Process Requirement (DPR): Represents activities that are performed
over data records. Similar to a DRR, a DPR is also contains a list of the
data (data_list) it is required to process. However, unlike DRRs, such data
does not have a specific retention time associated. That is, it will be re-
tained in memory during the processing time. In addition, a DPR has a
requestor_list of the stakeholders that are allowed to execute it.

— Data Flow Requirement (DFR): This element represents the exchange of
information between RDFD elements. The attribute data_list represents
the data flowing from one element to another.

«enumeration» | [RDFD_Element | «DFR» «enumeration» «enumeration»
RetentionTime “id: Long “data_list: List<Data> CollType LinkType
-untillDeleted: 1 -source: RDFD_Element ~direct: 1 -single: 1
funlim‘ited: 2 2.2 -sink: RDFD_Element derivedFrom findire(vt: 2 -subgroup: 2
-other: 3 0. | #getSource(): RDFD_Element -reused: 3 -anonymous: 3
#getSink(: RDFD_Element 0.n |-external: 4
0 «Data»

«DRR» «DPR» -n -id: Long _
~tracebility: List<FuncReq> ~tracebility: List<FuncReq> L.l |-name: String «Stakeholder»
-records_list: List<Record> -data_list: List<Data> -linkability: LinkType Jid- Long
#getRecords(): List <Record l _list: List<Stakeholder> o ;Loltlactlon(; CS‘:"_TWe -name: String

#getData(): List<Data> - getName(): String St
#getRequestors(): List<Stakeholder> #getLinkability(): LinkType #getName(): String
(0.~ #getCollection: CollType
1.n o 1.1
0.n contains -
i iong Records Data» 1.1 0.n
-retTime: RetentionTime ’id:. Long corresponds to b
L.n - -origin: RDFD_Element
#getData(): Data v0.n L1 FoetOrioinD: ROFD_EI
#getRetTime(): RetentionTime| getOrigin{: _Element

Fig. 3. RDFD Metamodel (left) and PID Metamodel (right).

Personal Information Diagram (PID) As it can be observed, the RDFD
merges into one documentation artifact the information which was originally
spread across ProPAn’s DSIFD and AIDs. This improves the overall documen-
tation navigability and interpretability. Fig.3 (right) introduces the meta-model
of a Personal Information Diagram (PID) which is a simplified version of the
one from ProPAn. The purpose of this new PID is also the documentation of
the stakeholders’ personal data that the system must process. The most salient
components of the PID meta-model are:

— Stakeholder: An individual whose data is processed by the system-to-be.

— Data: An individual unit of information that has a name, 1inkability and
collection type. Both, linkability and collection type have the same
semantic as in ProPAn. A piece of data can be derived_from or contain
other pieces of data.

The attribute linkability can adopt the values single, subgroup, or anony-
mous. The value single indicates that the data can only identify the individual it

10 N. E. Diaz Ferreyra et al.

belongs to, subgroup when it identifies a potential subgroup of individuals, and
anonymous when it does not provide any link to the data subject. On the other
hand, collection can be direct, indirect, reused, or external. The value direct
indicates that the stakeholder provides the information herself, the value indi-
rect when the information is collected by observing the stakeholder’s behaviour,
reused when the data has been previously collected for another purpose (e.g.
another project), and external in cases where the data is gathered through third
parties.

4.2 Elicitation of Requirement Candidates

The automated elicitation of requirements is composed by two fundamental
blocks: a protocol for covering GDPR directives and an algorithm for require-
ment candidates generation.

Protocol for covering GDPR directives. The protocol leverages several
MDE techniques. First, a meta-model capturing fundamental GDPR notions
and privacy principles was developed. The GDPR meta-model defines a language
and syntax which is a basis to define so named meta-requirement categories. A
meta-requirement is a pattern that results from translation of plain-text GDPR
directives into predicates of the form Pre-conditions = Post-conditions. Pre
and Post-conditions define the pattern that can be instantiated according to a
given system model. As shown in the example bellow, the meta-requirements
include placeholders to be filled according to the information included in the
RDFD and PID model instance.

IF process <self.processPD.size() greater than 0> processes personal
Data of <self.processPD> THEN the Process <self> shall be lawful
<self.principles<LawFul> (self.processPD. DataSubject) = .value=true>

The protocol followed to create the set of meta-requirements and the respec-
tive categories is as follows. First, a GDPR paragraph is taken as input and
the goal is to translate it as a meta-requirement relying upon (1) the GDPR
meta-model structure and contents and (2) the Pre and Post-conditions syntax.
If the meta-model is not sufficient to do so, then it is extended by integrating the
missing GDPR terms, notions and relationships. Once extended and the respec-
tive meta-requirement created, a new GDPR paragraph or principle is targeted.
This iterative process is repeated till the coverage of GDPR articles and princi-
ples is ensured. This protocol ensures the introduction of new privacy principles
coming, for instance, from updates or new regulations. Not having any depen-
dency with existing privacy principles, the protocol prevents any bias whereas
still achieves a good balance between legal and technical jargon.

Generation of privacy requirements candidates. The generation is done
by leveraging the information inside the RDFD and the PIDs. To illustrate how

A Lightweight Approach for Privacy Requirements Engineering 11

List<UndetectReq> computeUndetectReq(Stakeholder S, Stakeholder C)

{
List<UndetectReq> reqList = new List<UndetectReq>();
List<Data> personalData = new List<Data>();

List<Data> stakeholderData = getStakeholderData(PID,S);
List<DPR> processList= getProcesses(RDFD,C);

foreach(p in processList)

personalData.add(getProcessData(p));
}

List<Data> undetectableData = stakeholderData - personalData;
foreach(u in undetectableData)
{
regList = new UndetectReq(S,C,u);
}

return reglList;

The <C> shall not be able to sufficiently distinguish whether the
personal information <u> of the <S> exist or not.

Fig. 4. Snippet for computing undetectability requirements (up) and the corresponding
textual template (down)

this can be achieved, we analyse the generation of undetectability requirements.
Basically, Pfitzmann et al. [16] define the undetectability of an information item
as an attacker’s inability to identify if such item exists or not. In other words,
if some personal information PI of a stakeholder S is not accessible to another
stakeholder C (and PI does not contain any other personal information accessible
to C), then we assume that PI is undetectable to C. Note that we consider C as a
stakeholder but also as a potential attacker. That is, as a “counter-stakeholder”.
Such analysis is described in the snippet of Fig. 4 and starts with the genera-
tion of an empty list of requirements (reqlList) and another of personal data
(personalData). Additionally, it creates a list of all the personal data of S
which is kept inside the system-to-be. Such list is computed by the function
getStakeHolderData with the help of the information inside the PID. Follow-
ing, a list of all the processes in the RDFD for which C appears as requester is
computed by the function getProcesses and stored inside processList. Next,
algorithm iterates over the elements of this list, gathers all personal data involved
in each process and adds it to personalData. Then, it proceeds to compute a
list of undetectable data for C (undetectableData) by subtracting the elements
inside personalData from stakeholderData. Finally, for each element inside
undetectableData it generates a new undetectability requirement using and
adds it to reqList and returns it afterwards. The text template of Fig. 4 is used
for instantiating undetectability requirements. As one can observe, the gener-
ation of privacy requirements becomes smooth thanks to the privacy-relevant
information captured across PDP-ReqLite’s software artifacts.

12

N. E. Diaz Ferreyra et al.

4.3 Implemented method

The PDP-ReqLite method is implemented as summarized in the following items:

S1.

S2.

S3.

S4.

Specify functional requirements. In this phase, the engineer should
specify the requirements associated to the functions to be covered by the
system (functional requirements). To do so, the engineer can rely on well-
known methods as suggested by the International Council of Systems Engi-
neering (INCOSE), e.g., consider [18]. The specification is written in natural
language, following good practices like for instance “one single sentence per
system function”. This step is a mean to simplify the next phase in the elicita-
tion process. In particular, the encapsulation of functional requirements via
minimal statements eases their correct transformation into a RDFD model.
Transform functional requirements into a RDFD. In this phase,
each functional requirement is transformed into a Requirement Process in
the model which includes input/output data and the respective function
tasks (i.e., the RDFD). Modelling the involved data types is an activity
conducted in parallel. The data are required not only for completing the
specification of the Requirement Process elements but also for identifying
and labelling Personal Data (i.e., the PID). This phase of the elicitation
process should be conducted manually since the expert should examine the
form and contents of the functional requirements, and refine/adapt them,
prior to transform them into the RDFD.

Validation of the RDFD model and improvement. The validation
phase yields outcomes regarding the model completeness and correctness.
Model completeness is validated considering the language and syntax defined
at meta-model level and determined by mandatory/optional attributes,
their multiplicity and the associations types. Model correctness is validated
by crosschecking the contents within and between RDFD and PID and the
consistency between their attributes. Pre-defined rules are implemented
to help the engineer to conduct an assessment validation and infer the
solutions in case of conflicts. Indeed, the validation results essentially come
as warnings and errors including a description of the issue. Then, the
engineer can fix and improve the model so as to make it acceptable for the
next phase. Since the process is iterative, going back to previous phases
may be necessary.

Privacy and GDPR requirements generation. Once the RDFD and
PID model has been validated and accepted, according to the engineer eval-
uation, the specific privacy and GDPR requirements can be automatically
generated: the generation is performed at the push of a button. All the
GDPR and privacy principles instantiated either as meta-requirements or as
meta-privacy patterns are considered during the generation. The respective
algorithms are already implemented as built-in features of the PDP-ReqLite
tool. They allow to obtain one requirement per meta-pattern including a
full description. The requirements candidates should be validated by the
engineer prior to follow other phases of the development cycle.

A Lightweight Approach for Privacy Requirements Engineering 13

5 Automated support for PDP-ReqLite application

A tool support has been developed in the scope of the PDP4E project [15]. The
PDP-ReqLite tool is developed on top of Papyrus [2] and covers the different
modeling and analysis phases of the method as specified in Section 4.3. The tool
addresses different aspects regarding the need for automation during require-
ments generation, usability and re-usability of industry-size models. The main
features of the tool are demonstrated in the analysis of a Smart Grid case study.

5.1 Application to a Smart Grid case study

To illustrate the PDP-ReqLite implementation described in Section 4.3, we ap-
ply it to analyze a Smart Grid case study. As shown in Figure 5, the Smart Grid
design is described by a model composed by seven functions. The GDPR, and
privacy requirements analysis mainly targets the Billing function. The result-
ing functional path includes the following dependencies. The Measurement of
Consumption function samples and provides electricity measures which are later
gathered by the Grid Management including the meter ID and client ID. Overall
electricity consumption over time per client are then computed and stored by the
Consumption Data Processing function. The information are finally accessed by
the Billing function to generate and submit an invoice relying upon personal data
of consumers. Further details of the Smart Grid architecture are provided in this
paper [11]. The model in Figure 5 is used to specify the functional requirements

1. MEASUREMENT OF 3. ELECTRICITY
CONSUMPTION > 2. GRID MANAGEMENT GENERATION
4. CONSUMPTION 5. CONSUMPTION
6. BILLING
MONITORING DATA PROCESSING

7. VALUE-ADDED SERVICES

Fig. 5. Reference functions of the Smart Grid System

the system should satisfy (Step 1, Section 4.3). The PDP-ReqLite modeling fea-
tures support the engineer to map the functional requirements into a RDFD as
shown in Figure 6 (Step 2, Section 4.3). The model covers the functional path
in the Smart Grid system going from consumption measuring up to generation
of the customer bill. The rounded rectangles represent ProcessRequirements
whereas the normal rectangles represent the DataStores. These elements are
connected by directed edges representing data flows. The ports attached to the
ProcessRequirements are typed with conveyed data. Referred types are mod-
elled and structured in a dedicated PID view. The Figure 7 shows an overview

14 N. E. Diaz Ferreyra et al.

wdatastoren
adatastoren ProcessR aDataRecordRequirements
uDataRecordRequirements Store Customerld | Gr ustomerldStore
SmartMerterDataConsumptionStorage Customerld

Customerld

aProcessRequirementn
Measurmentinfo Ea

[] Cdata
aPr Requil
Store Data Consumption,

w«ProcessRequirementn
Send Cdata and Mid to Grid Management

Cdata

Cdata Measurementinfo

Measurementinfo

gata wProcessRequirementn L]
aPracessRequirements Store Measurementinfo CustomerPersonal
Collect Data consumption Measurementinfo

wdatastoren

adatastoren
kDataRecordRequirements
Billing storage

adatastoren
«DataRecordRequirements aDataRecordRequirementn
Customer Personal information Storage

Fig. 6. RDFD model of the Billing process within the Smart Grid system

of the PID used to model the data involved in the Billing processing. The PID
includes composite structures that contain information about the electricity mea-
surements (meter ID, consumption), the computed price per customer, and the
final bill. More importantly, the PDP-ReqLite tool comes with dedicated types

«PersonalDataRequirements «DataRequirements «PersonalDataRequirements
Measurementinfo E computedprice 0.1 +bill Bill

+ {)easurementinfo

;| measurementinfo B # computedprice +lcohputedprice T
+ dataconsumption
+meter|d 0.1 0.1 0. dataconsumption + customerpersonglinformation
+ customyyid. 1 0
i i i PersonalDataRequirementn
£l Meterld E DataConsumption E customend | | E DataConsumption E customerPersonalInfor mation

Fig. 7. Model view showing the PID of the Smart Grid System

that can be used to identify personal information what is crucial to correctly
elicit GDPR and privacy requirements. Once a first version of the RDFD and
PID model was achieved, a round of validation and debugging was conducted
(Step 3, Section 4.3). The resulting warnings and errors contain plain text mes-
sages that rely upon the syntax and rules defined in the GDPR meta-model. They
indicate model discrepancies thus pointing out concerned elements by name and
details on the specific issue. So, the completeness and correctness of the model
were thus accordingly ensured. The final step in the method application gen-
erates the set of GDPR and privacy requirements (Step 4, Section 4.3). The
requirements are automatically generated since the GDPR meta-requirement

A Lightweight Approach for Privacy Requirements Engineering 15

categories and the generation algorithm introduced in Section 4.2 have been
implemented as built-in features of the PDP-ReqLite tool. As shown in Figure

. Model Explorer 82 EREEES = O
o D D ~
vB
v eq-1: IF process "Store processes of "Customer the Process "Store Measurementinfo" shall be lawfull.
GDPRReq-1: IF "5 F i " of 'C " THEN the P “Store M fo" shall be lawfull

GDPRReq-1.1: Processing "Store Measurementinfo” shall be lawful if the data subject “Customer* has given consent "ConsentForStoreMeasurementinfo” to the processing of his or her personal

DPRReq-2: IF process "Store " processes " " of "Customer” THEN the Process "Store Measurementinfo” shall be fairly.

GDPRReg-3: IF process "Store " processes | " of "Customer” THEN the Process "Store Measurementinfo” shall be transparent.
~ [®] GDPRReq-4: IF process "produce billing” processes "Bill CustomerPersonalinformation * of “Customer” THEN the Process “produce billing” shall be lawfull.

GDPRReq-4.1: Processing "produce billing” shall be lawful i the data subject "Customer” has given consent *ConsentForBilling” to the processing of his or her personal data "Bill CustomerPerse
[GDPRReq-3: IF process "produce billing” processes 'Bill CustomerPersonalinformation " of "Customer” THEN the Process "produce billing” shall be fairly.
[GDPRReq-6: IF process "produce billing” processes *Bill CustomerPersonalinformation " of "Customer” THEM the Process "produce billing” shall be t
(] GDPRReg-7: The purpose "R-02" of the PersonalData "Measurementinfo" shall be specified, explicit, legimate, and compatible.
[®] GDPRReq-8: The purpose "R-04" of the PersonalData "CustomerPersonalinformation” shall be specified, explicit, legimate, and compatible.
GDPRReq-%: The purpose '

7N cnnnn - 1R

SmartGridReguirementModel: GeneratedR

04" of the PersonalData "Bill" shall be specified, explicit, legimate, and compatible.

Fig. 8. Overview of the GDPR generated requirements

8, the generated requirements become part of the model and can be reused in
other phases of the system development cycle. For instance, during the design
phase, requirements are supposed to be satisfied by elements within the design
model and validated through tests or similar validation instances. Last yet note
the least, since there is no hard link between generated requirements and the
RDFD and PID model, an update of the later may demand an iteration in order
to obtain an updated version of requirements.

6 Conclusions and perspectives

In this paper we have introduced a lightweight method named PDP-ReqLite to
guide and support engineers during the elicitation of GDPR and privacy require-
ments in systems and software projects. The method has been proposed given
that existing approaches impose certain restrictions mainly regarding the cov-
erage of the GDPR regulation and certain biases potentially introduced during
requirements elicitation. In this context, we have considered ProPAn as a refer-
ence method. By doing so, its main salient features and limitations have been
assessed. So far, it has been concluded that ProPAn presents a high documen-
tation overhead, complexity and redundancy across the artifacts it generates.
It has been also identified a potential risk of bias since the method relies upon
a limited set of principles (e.g., intervenability, unlikability and transparency)
what reduces the choices the engineer has during the interpretation of GDPR
directives. Overall, certain key ProPAn features, like the usage of privacy tax-
onomies and a generation algorithm, have been considered to develop exten-
sion points in the new method. As novelties of PDP-ReqLite, we can mention
the following. The method only requires two modeling artifacts as inputs, the
RDFD and PID, what significantly reduces overhead and complexity. The PDP-
ReqLite method also introduces and implements a protocol that ensures full
coverage of GDPR directives whereas still avoids the need for mapping them

16 N. E. Diaz Ferreyra et al.

into existing privacy principles. The protocol produces GDPR taxonomies com-
posed by meta-requirements which are predicate patterns defined in terms of
GDPR directives and principles. The meta-requirements are instantiated during
the requirements elicitation process. These feature also facilitates the integra-
tion of updates or even forthcoming privacy regulations. A tool support for the
PDP-ReqLite method has been also implemented. The tool leverages several
model-driven engineering techniques thus supporting RDFD and PID modelling
and also automatic generation of candidate requirements. The method an tool
features were finally demonstrated by analyzing a Smart Grid case study.

As work perspectives, we need to improve the automation of GDPR texts
processing during the creation of meta-requirements since this task is for now
human-based and highly time consuming. Since a high number of requirements
can be obtained, even for simple system models, we should consider methods to
structure, prioritize and treat them. To consolidate the approach, other privacy
regulations can be targeted. Since the PDP-ReqLite method is positioned within
a development life cycle, the interfaces with other cycle phases, like design, still
need to be developed and consolidated.

Acknowledgments. This work has been conducted in the scope of the project
PDP4E - Methods and tools for GDPR compliance through Privacy and Data
Protection Engineering. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement

No 787034.

References

1. Beckers, K., Faflbender, S., Heisel, M., Meis, R.: A problem-based approach for
computer-aided privacy threat identification. In: Annual Privacy Forum. pp. 1-16.
Springer (2012)

2. CEA-LIST: The Eclipse Papyrus project. https://www.eclipse.org/papyrus/
(2020)

3. Colesky, M., Hoepman, J.H., Hillen, C.: A critical analysis of privacy design strate-
gies. In: 2016 TEEE Security and Privacy Workshops (SPW). pp. 33-40. IEEE
(2016)

4. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. Requirements Engineering 16(1), 3-32 (2011)

5. Dennedy, M., Fox, J., Finneran, T.: The privacy engineer’s manifesto: getting from
policy to code to QA to value. Apress (2014)

6. Hansen, M., Jensen, M., Rost, M.: Protection goals for privacy engineering. In:
2015 IEEE Security and Privacy Workshops. pp. 159-166. IEEE (2015)

7. Hoepman, J.H.: Privacy design strategies. In: IFIP International Information Se-
curity Conference. pp. 446-459. Springer (2014)

8. Howard, M., Lipner, S.: The security development lifecycle, vol. 8. Redmond: Mi-
crosoft Press. Google Scholar Google Scholar Digital Library Digital Library (2006)

10.

11.

12.

13.

14.

15.
16.

17.

18.

A Lightweight Approach for Privacy Requirements Engineering 17

Information Technology-Security Techniques-Privacy Framework. Standard
ISO/IEC 29100:2011, International Organization for Standardization, Geneva, CH
(December 2011), https://www.iso.org/standard/45123.html

Jackson, M.: Problem frames: analysing and structuring software development
problems. Addison-Wesley (2001)

Laakkonen, J., Annala, S., Jappinen, P.: Abstracted architecture for smart grid
privacy analysis. In: 2013 International Conference on Social Computing. pp. 637—
646 (2013)

Meis, R.: Problem-Based Privacy Analysis (ProPAn): A Computer-aided Privacy
Requirements Engineering Method. Ph.D. thesis, DuEPublico: Duisburg-Essen
Publications [online], University of Duisburg-Essen, Germany (October 2018).
https://doi.org/10.17185/duepublico/47797

Meis, R., Heisel, M.: Computer-aided identification and validation of privacy re-
quirements. Information 7(2), 28 (2016)

Notario, N., Crespo, A., Martin, Y.S., Del Alamo, J.M., Le Métayer, D., Antignac,
T., Kung, A., Kroener, I., Wright, D.: Pripare: integrating privacy best practices
into a privacy engineering methodology. In: 2015 IEEE Security and Privacy Work-
shops. pp. 151-158. IEEE (2015)

PDP4E: The PDP4E Project. https://www.pdp4e-project.eu/ (2020)

Pfitzmann, A., Hansen, M.: A Terminology for Talking about Privacy by
Data Minimization: Anonymity, Unlinkability, Undetectability, Unobservabil-
ity, Pseudonymity, and Identity Management (Aug 2010), http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf, v0.34

Regulation, G.D.P.: Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46. Official Journal of the European Union (OJ) 59(1-88), 294 (2016)
Ryan, M., Wheatcraft, L., Zinni, R., Dick, J., Baksa, K.: Guide for writing require-
ments. INCOSE, California, USA (2017)

