
HAL Id: cea-03256511
https://cea.hal.science/cea-03256511

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating process algebra models to represent
structured requirements for time-sensitive CPS

Mathilde Arnaud, Boutheina Bannour, Arnault Lapitre, Guillaume Giraud

To cite this version:
Mathilde Arnaud, Boutheina Bannour, Arnault Lapitre, Guillaume Giraud. Investigating process al-
gebra models to represent structured requirements for time-sensitive CPS. SEKE 2021 - THe 33rd
International Conference Software Engineering & Knowledge Engineering, Jul 2021, Pittsburgh (Vir-
tual conference), United States. �10.18293/SEKE2021-147�. �cea-03256511�

https://cea.hal.science/cea-03256511
https://hal.archives-ouvertes.fr

Investigating Process Algebra Models to Represent Structured Requirements
for Time-sensitive CPS

Mathilde Arnaud H Boutheina Bannour H Arnault Lapitre H Guillaume Giraud I

H Université Paris-Saclay, CEA, List I PES R&D Department, RTE

Abstract

Cyber-Physical Systems (CPS) contain complex compu-
tational components that control physical entities. The de-
sign of these components must take into account the real-
time and concurrent nature of these systems. Formulating
requirements that describe CPS behaviors precisely, ruling
out misunderstandings, is a crucial yet difficult endeavor.
To increase trust in the requirements, formal methods can
be used to check relevant properties of the requirements. We
investigate a process algebra to capture real-time behaviors
and concurrency in CPS requirements in order to automate
their analysis. We use a structured natural language to first
express CPS requirements: this takes into account current
practice, indeed requirements should be easily writable as
well as graspable by stakeholders with various points of
view and ease communication among them. At the same
time, requirements analysis using simulation or formal val-
idation is possible by taking advantage of the requirements
structure. We discuss translation from the structured re-
quirements into the process algebra to automate the overall
process. Our approach is implemented and is illustrated by
an example issued from CPS4EU project 1.

1 Introduction
Early validation of Cyber-Physical Systems (CPS) requires
the consolidation of requirements, a tedious task due to
the nature of CPS behavior. Indeed, physical devices have
to be reactive, available and resilient within acceptable
time frames, and their control logic can be quite complex.
Cross-checking CPS industrial requirements, still mostly
expressed in natural language, presents a major challenge,
as missing or contradictory requirements can create a costly
misunderstanding in the CPS development process. Formal
methods can help meet this challenge by validating CPS re-

1This work was financially supported by European commission through
CPS4EU project that has received funding from the ECSEL Joint Under-
taking (JU) under grant agreement No 826276. The JU receives support
from the European Union’s Horizon 2020 research and innovation pro-
gramme and France, Spain, Hungary, Italy, Germany.

DOI reference number:10.18293/SEKE2021-147

quirements. In order to apply automated formal analyses,
requirements need to be specified in a precise and formal
way, through the use of patterns for instance. Fill-in tem-
plates facilitate clearer specification of event-driven, state-
driven system behaviors. The approach described in this pa-
per specifies CPS requirements following EARS [13] tem-
plates, in accordance with recommendations from the Inter-
national Council on Systems Engineering. Real-time details
are introduced to refine event-driven, state-driven system
behaviors. An transformation of such requirements into a
Process Algebra (PA) is proposed. This process algebra has
been implemented in the model-based symbolic execution
tool DIVERSITY[10]. Comparatively to other PA available
tools2, we support real-time behavior modeling. Likewise,
we go a step further by considering real-time aspects com-
pared to related works on formalizing requirement using PA
until recently [6, 1, 14]. The implementation of PA benefits
from existing sat-based techniques integrated in DIVER-
SITY to support models of timed symbolic automata [3].
Via the transformation, behaviors of CPS systems specified
by the requirements can be explored in the tool. Edition
and transformation of the requirements are prototyped as a
web application using Jupyter Notebook environment. A
simplified version of a CPS4EU case study illustrates the
proposed approach throughout the paper.

2 Requirement specification
Illustrative example. We illustrate our approach by show-
ing how it can be applied on a real-world use case coming
from CPS4EU : electrical networks involving intermittent
energy sources. To avoid overload without raising the over-
all network capacity, it is necessary to manage dynamically
the flow of electricity through levers such as batteries or
production modulation. Which mechanisms to trigger must
be determined very quickly and this role must therefore be
entrusted to a software component called NAZA.
We used our approach to analyze NAZA functional require-
ments. For the purpose of illustration, we choose a subset
of requirements : R1 to R6A in Tab.1, written in Structured

2Some references and tooled process algebra are CADP/LOTOS
(https://cadp.inria.fr/) and FDR/CSP (https://cocotec.io/fdr/).

R1 every 5 seconds, the NAZA Core shall calculate levers setpoints
R2 when new levers setpoints have been determined upon levers setpoints calculation (R1),

the NAZA Core shall determine common levers by using consensus
R3 every 5 seconds when consensus upon common levers determination (R2), the NAZA Core shall send batteries setpoints
R4 every 5 seconds when consensus upon common levers determination (R2), the NAZA Core shall send topological orders
R5 every 5 seconds when consensus upon common levers determination (R2), the NAZA Core shall send modulation orders
R6A if no result upon levers setpoints calculation (R1), the NAZA Core shall execute backup algorithm within [10,60] seconds
R6B if no result upon levers setpoints calculation (R1), while in nominal mode,

then the NAZA Supervisor shall enter in backup mode
R7 when entering in backup mode,

the NAZA Supervisor shall execute backup algorithm within [10,60], and return in nominal mode
R8 when new setpoints upon levers setpoints calculation (R1), while in backup mode,

the NAZA Supervisor shall enter in nominal mode.

Table 1: Excerpt requirements on levers setpoints calculation in NAZA (Nouveaux Automates de Zones Adaptatifs)

Natural Language as presented below. The NAZA automa-
ton is in charge of computing levers setpoints (cf R1). When
the computation is successful, it then uses consensus (cf R2)
and sends the results to middleware (cf R3, R4, R5). When
the computation fails, it must launch a backup logigram al-
gorithm (cf R6A). Our analysis revealed possible deadlocks
and we proposed to replace requirement R6A by require-
ments R6B, R7 and R8, using two modes (nominal and
backup) to express the behavior more precisely.
Structured Natural Language. We have structured
requirement statements by using a grammar based on
EARS [13]. A user-defined glossary, tailored to the needs
of the requirement engineer, defines systems, triggers, and
also equivalence for ease of use (e.g. ”calculate levers set-
points”/”levers setpoints calculations”). To prevent ambi-
guity arising from the use of synonyms, we favor the use of
repetitions of expressions in the glossary (e.g. R3, R4, R5).
This makes requirements as simple as possible and thus pre-
serves readability and unity. Each requirement statement is
expressed by a -possibly complex- precondition, followed
by a realization, which specifies the action of the system.
Preconditions. Nominal and unwanted behavior require-
ments are initiated when a triggering event occurs. They
are built respectively with keywords when (e.g. R7) and
if (e.g. R6B). State-driven requirements are active while
the system is in a defined state and are built with keyword
while (e.g. R6B). We introduce details to enhance the se-
quencing of system behaviors: they can be triggered peri-
odically, subsequently to other behaviors, or within some
time slot. Periodic behaviors are expressed through pattern
“every ⟨ period ⟩” (e.g. R1, R3, R4, R5). Context execution
can be detailed through two constructs : “within ⟨ timing
interval ⟩”, and “upon ⟨ system response ⟩”, specifying that
the behavior happens subsequently to some other behavior.
R6B is an example of a combined use of these constructs,
demonstrating that requirements can be complex and use
several of these constructs at the same time.

3 Target process algebra
Time datatype, actions and modes. Clocks are typed in
a dense time domain T isomorphic to the set of positive
rational numbers Q+. Given a set of clocks Clk, a clock
valuation v is a mapping v ∶ Clk → T . The set F(Clk) of
clock formulas is built up recursively out of logical con-
junction and atomic formulas of the form True, False,
clk & d, where d is a constant duration (typed in T) and
& ∈ {<,≤,>,≥}. The set of clock invariants I(Clk) is de-
fined by conjunctions of formulas of the form clk&d, where
& ∈ {<,≤}. Let Act be a set of actions which contains the
silent action τ ∈ Act, andA ⊆ Act∖{τ} be a partition I∪O.
Elements a of I (resp. of O) are called inputs and denoted
by ?a (resp. called outputs and denoted by !a). In a parallel
composition, inputs and outputs can synchronize resulting
in τ . We denote ?a =!a (and vice versa). Let M be a set of
modes with initial mode m0 ∈M .
Processes. A process is defined by the following syntax:

P ∶∶= ∑i∈I αi.Pi ∣ inv(ψ).P ∣ nil ∣ P1∣P2 ∣ K
α ∶∶= (m,φ, a,R,m′) are the basic building blocks of the
syntax. They are described by an enabling modem ∈M , an
enabling clock formula φ∈F(Clk), an action a ∈ Act, a set
of clocks R⊆Clk to be reset, and a target mode m′ ∈M to
evolve into. Some of these elements can be dropped. For in-
stance (φ, a,R) denotes that enabling mode can match any
arbitrary mode and that no mode change is to be made. The
construct inv(ψ).P defines a clock invariant ψ ∈ I(Clk)
that has to be satisfied on time passing for the execution of
the process P . This notion is borrowed from timed (and
hybrid) automata and requires some technical handling at
the evaluation of the process. All other constructs are clas-
sic [5]: the empty process nil, action prefixing αi.Pi, non-
deterministic choice∑i∈I αi.Pi, parallel composition P1∣P2

with possible synchronization of input / output actions, the
process constant K def= P for recursive definition.
Process execution. The key idea is to ensure that time

progress cannot invalidate either of the local invariants of
parallel processes. We introduce a construct of global in-
variants at evaluation that will be updated upon the evalua-
tion of the left or right processes in a parallel composition.
A global invariant or g-invariant is defined by the syntax:
Ψ ∶∶= ψ ∣ Ψ . Ψ ∣ Ψ .L Ψ ∣ Ψ .R Ψ, with ψ ∈ I(Clk).
We define functions L, R and f on g-invariants that re-
turn respectively the left side of the g-invariant, the right
side, and the formula denoting conditions at the time of
evaluation. If Ψ is in a decomposed form Ψ1 .X Ψ2 with
X ∈ { , L,R} then L(Ψ), R(Ψ) and f(Ψ) denote Ψ1, Ψ2

and f(Ψ1) ∧ f(Ψ2) respectively, otherwise L(ψ), R(ψ)
and f(ψ) are ψ. The process execution is defined up to an
execution context ec = (m,v,Ψ) which represents the nec-
essary information to perform an execution step, namely the
current mode m, the current valuation v of clocks and the
current g-invariant Ψ to be applied. Operational rules of the
execution are defined as follows:
Rule ATOM
⊢ (m,φ, a,R,m′).P (m,v,Ψ) a→ P (m′, v′,Ψ)

with v0 = v[clk → clk + d, clk ∈ Clk], d∈T , v0 ⊧ φ ∧ f(Ψ)
and v′ = v0[clk → 0, clk ∈R].
Rule INV
⊢ inv(ψ).P (m,v,Ψ) τ→ P (m,v,Ψ′)

with v ⊧ f(Ψ), and Ψ′ = ginv upd(Ψ, ψ).
Rule SUM

αi.Pi ec
a→ P ′

i ec′ ⊢ ∑i∈I αi.Pi ec
a→ P ′

i ec′

Rule CONST
P ec

a→ P ′ ec′ ⊢ K ec
a→ P ′ ec′

with K def= P .
Rule PAR1L
P1 (m,v,L(Ψ) .L ginv(P2,R(Ψ))) a→ P ′

1 (m′, v′,Ψ′

1)
⊢ P1∣P2 (m,v,Ψ) a→ P ′

1∣P2 (m′, v′,Ψ′)

with Ψ′ = ginv upd(L(Ψ) .L R(Ψ),Ψ′

1)
Rule PAR2L
P1 (m,v,L(Ψ) .L ginv(P2,R(Ψ))) a→ P ′

1 (m′, v′1,Ψ
′)

P2 (m,v, ginv(P1, L(Ψ)) .R R(Ψ)) a→ P ′

2 (m′, v′2,Ψ
′)

⊢
P1∣P2 (m,v,Ψ) τ→ P ′

1∣P ′

2 (m′, v′,Ψ)

with v′(clk) = 0 if v′1(clk)=0 ∨ v′2(clk)=0 ,
else v′(clk) = v′1(clk) = v′2(clk), for any clock clk ∈ Clk.

The process execution is inductively defined on the form
of the process term. Action prefixing (m,φ, a,R,m′).Pi
evolves to Pi under the constraint that time elapsing is com-
patible with its clock formula φ and formula of current g-
invariant f(Ψ). In case of invariant definition inv(ψ).P ,
then function ginv upd is called to update the relevant side
of the g-invariant for next action executions in P and other
parallel processes if any. In fact, the case of parallel com-

position is the most subtle, other rules are classic [5]. It
uses a function ginv which computes the formula of a g-
invariant of process P given a current g-invariant Ψ (of an
ec). Concerned part of Ψ is returned in case no new invari-
ant is encountered. For clarity’s sake, functions ginv upd
and ginv are defined using the Pattern-Matching notation
of OCaml 3 as follows:
ginv upd(Ψ,Ψ′) = match Ψ with
∣ ψ → Ψ′ ∣ Ψ1 . Ψ2 → Ψ′ ∣ Ψ1 .R Ψ2 → Ψ1 . R(Ψ′)
∣ Ψ1 .L Ψ2 → L(Ψ′) . Ψ2

ginv(P,Ψ) = match P with
∣ ∑i∈I αi.Pi → f(Ψ)
∣ nil → f(Ψ)
∣ inv(ψ).P → ψ
∣ P1∣P2 → ginv(P1, L(Ψ)) ∧ ginv(P2,R(Ψ))
∣ K → ginv(P) if K def= P

An illustrative execution of two parallel processes is given
in Fig.1. It shows how actions a and b will be interleaved in
the presence of invariants. From context ec0 = (m0, [clk →
0],Ψ0) with Ψ0 = True, both left process P1 and right
process P2 are evaluated. P2 can evolve into P ′

2 which al-
lows to reach context ec3. P1 cannot be executed, as rule
PAR1L requires g-invariant L(Ψ0) .L ginv(P2,R(Ψ0))
to be satisfied for P1 to be executed, with L(Ψ0) = True
and ginv(P2,R(Ψ0)) = clk < 1. The execution of P1 is en-
abled by formula clk = 1, which cannot be satisfied at the
same time as g-invariant clk < 1 at this point of execution.
In the evaluation, once the g-invariant True.L clk < 1 is
applied on some process (here left), it is returned in a neu-
tral form True. clk < 1. Later on, from context ec3, the
execution of process P1 becomes possible: rule PAR1L
applies as g-invariant becomes True .L True (previously
True.Lclk < 1) which allows time elapsing with any delay.

ab

ginv(P2,R(Ψ0))
clk < 1

ginv(P ′

2,R(Ψ3))
True

Ψ0 global invariant of ec0
True

Ψ3 global invariant of ec3
True . clk < 1

([clk = 1] , a)
∣

inv(clk < 1)
.([1/2 ≤ clk < 1] , b)
.inv(True)

([clk = 1] , a)
∣

inv(True)

P1∣P2 P1∣P ′

2

Figure 1: Parallel execution

The transformation process described in Section 4 gen-
erates the NAZA processes given in Fig.2. We in-
dicate each time the tuple of requirement identifiers
that allowed the inference. Fig.4 is a graphical view
of the NAZA Core process obtained from requirements
(R1,R2,R3,R4,R5,R6A).

3https://ocaml.org/

Core
def=

inv(clk1 ≤ 5).calc setpoints
.(new setpoints.determine common levers. consensus
.(send batteries setpoints.([clk1 = 5],{clk1}).Core
∣ (send topological orders.([clk1 = 5],{clk1}).Core
∣ send modulation orders.([clk1 = 5],{clk1}).Core))
+(((no result,{clk2}))).inv(clk1 ≤ 5 ∧ clk2 ≤ 60)
.((([[[10 ≤ clk2 ≤ 60]]], execute backup algorithm)))
.inv(clk1 ≤ 5).([clk1 = 5],{clk1}).Core)

(R1,R2,R3,R4,R5,R6A)
Core′

def=
inv(clk1 ≤ 5).calc setpoints
.(!new setpoints.determine common levers. consensus
.(send batteries setpoints.([clk1 = 5],{clk1}).Core′
∣ (send topological orders.([clk1 = 5],{clk1}).Core′
∣ send modulation orders.([clk1 = 5],{clk1}).Core′))
+!no result.([clk1 = 5],{clk1}).Core′)

(R1,R2,R3,R4,R5,R6B)
Supervisor

def=
([nominal], ?no result,{clk2},⊳backup).Supervisor
+[backup].inv(clk2 ≤ 60)
.([10 ≤ clk2 ≤ 60], execute backup algorithm,⊳nominal)
.inv(True).Supervisor
+([backup], ?new setpoints,⊳nominal).Supervisor

(R6B,R7,R8)

Figure 2: NAZA processes

Exploration For any finite sequence of P0
a0Ð→ P1 ,⋯, Pn−1

anÐ→ Pn, we note P0
a1.⋯.anÐÐÐÐ→ Pn, or simply P0

∗Ð→ Pn. Our
operational approach to exploration relies on small steps of
the form P

aÐ→ P ′ which corresponds to the execution in
a process P of an action a. This leads to a new process
P ′ that synthesizes possible executions that may occur after
action a. Potential deadlocks can be detected typically for
a sequence P0

∗Ð→ Pn such that no successor process Pn+1
can be computed from Pn. A deadlock arises in process
Core (because of R6A). The execution of the backup algo-
rithm in Core is constrained by the formula 10 ≤ clk2 ≤ 60
which is not compatible with the formula of g-invariant
clk1 ≤ 5 ∧ clk2 ≤ 60. The ambiguity comes from miss-
ing requirements on some parallel execution which is in
charge of the backup algorithm, unconstrained by the period
of 5 seconds. It is hereafter specified by a dedicated process
Supervisor which executes in parallel with the newCore′.
The full NAZA case study introduces requirements for an
additional complex process Acquisition, itself divided into
a number of parallel processes with various periods: every
10 seconds, the NAZA Acquisition shall request new data-
points from middleware and transmit them to NAZA Core;
if no data is received within 10 minutes upon datapoints
request, the NAZA Supervisor shall enter in fault mode; ev-
ery 1 minutes, the NAZA Acquisition shall request new net-
work situation from upper level and transmit them to NAZA
Core; etc. We have also applied exploration with the aim of
identifying the so-called zeno executions [16], i.e., execu-
tions in timed systems with an unbounded number of ac-

⟨trigger⟩a
ct ∣

a
ct ⟨ system

response
⟩ a

ct ⟨ system
response

⟩

(a) parallel responses

⟨trigger⟩

a
ct ⟨ system

response
⟩ +

a
ct

a
ct ⟨trigger⟩

(b) non-deterministic triggers

clk1 ≤ din
v

.

∶d
ef ⟨ system ⟩

re
c ⟨ system ⟩

a
ct [clk1 = d]

{clk1}

(c) periodic repetition

clk1 ≤ d ∧ clk2 ≤ d2

a
ct ⟨ trigger

{clk2}
⟩ .

a
ct

[d1 ≤ clk2 ≤ d2]

⟨ system
response

⟩
.

in
v .

in
v clk1 ≤ d

(d) time constraint

⟨! trigger⟩

a
ct ⟨ system 1

response
⟩ .

a
ct ⟨ system 2

response
⟩ .

a
ct

a
ct ⟨? trigger⟩

(e) synchronization

Figure 3: Transformation patterns

tions executed in a bounded length of time. The NAZA re-
quirements should not allow such behaviors, as they are not
possible in practice. By applying small-steps P0

a1.⋯.anÐÐÐÐ→
Pn loops (Pn = P0) are checked to be non-zeno, i.e., there
exists a clock clk and some i, j ≤ n such that clk is reset
in step i and clk is bounded from below ε < clk in step j.
Overall, the exploration of processes helped provide a good
understanding of the NAZA requirements and assisted their
refinement.

4 Transformation
We outline next the main transformation patterns into pro-
cess algebra. System responses sharing the same trigger
are composed in parallel (Fig.3a); and triggers can be non-

clk1 ≤ 5in
v

+

∶d
ef Core

re
c

Core

re
c

Core re
c

Core

re
c

Core

a
ct determine common levers

a
ct no result

{clk2}

a
ct calculate levers setpoints

.

a
ct consensus

a
ct [clk1 = 5]

{clk1}

a
ct new setpoints

in
v clk1 ≤ 5 ∧ clk2 ≤ 60

a
ct send batteries setpoints

a
ct send topolgical orders a
ct send modulation orders

in
v clk1 ≤ 5

a
ct [[[10 ≤ clk2 ≤ 60]]]

execute backup algorithm

op ∣

a
ct [clk1 = 5]

{clk1}

a
ct [clk1 = 5]

{clk1}

a
ct [clk1 = 5]

{clk1}

∣

.

.

.

.

.

.

.

.

..

.

.

.

m,φ, a,R,m′ .

a
ctA

D

C

B

(A) Node kind
(B) Node label
(C) Node operator

for successors scheduling
(D) Links to successors

(R1,R2,R3,R4,R5,R6A)

Figure 4: Graphical view of a NAZA process

determistically produced upon a system response (Fig.3b).
Each (sub-)system is assumed to have an implicit initial-
ization upon which its behavior occurs. Repetitive behav-
ior of sub-system is also assumed with a topmost recursion
(Fig.3c). It can be associated a period d : time is con-
strained during the iteration through an invariant of the form
inv(clk1 ≤ d), and at the end system clock clk1 is reset
through ([clk1 = d],{clk1}). A synchronization together
with corresponding input / output actions is inferred if a
sub-system response is triggered by some other sub-system
behavior (Fig.3e). When a system response occurs within
an interval [d1, d2], a dedicated clock clk2 is used to encode
such constraint (d1 ≤ clk2 ≤ d2) associated with an invari-
ant (re-)definition inv(clk1 ≤ d ∧ clk2 ≤ d2), which sets an
upper bound d2 on time elapsing before the response occurs
(Fig.3d). State-driven triggers/responses are transformed by
various patterns involving enabling modes or mode change
constructs of the process algebra.

5 Related Work
Requirements are used as a tool to ensure sound com-

munication between stakeholders for the successful design
of the system [15]. Thus, specifying good requirements is

important to develop qualitative products that can satisfy
user’s needs [4]. Cross-checking CPS industrial require-
ments, mostly expressed in natural language, presents a ma-
jor challenge, that formal methods can help meet by validat-
ing CPS requirements.
Analyzing requirements written as natural language and
getting guarantees of non-ambiguity, completeness, consis-
tency would be ideal. Unfortunately, obtaining formal guar-
antees from natural language requirements is difficult, as
they often lack a structure that would allow to apply for-
mal methods. Some works explore nonetheless the possibil-
ities for extracting useful information from natural language
documents, for instance [11] automates a process based on
use case documents. The authors use dependency parsing
techniques to automatically generate activity diagrams de-
scribing use case flow. The input writing style for use case
is fixed, so use cases may have to be rewritten according to
this style, and some other steps in the method may require
manual intervention. The authors provide algorithms to au-
tomatically check some structural defects they identify, but
results include false positives and false negatives due to the
intrinsic ambiguity of natural language. For stronger assur-
ances, other works focus on what formal methods offer.

Several formal methods to validate requirements can be
used. We focus on those that take as input natural language
requirements or that address real-time, concurrent systems
as our goal is to validate CPS requirements. The research
problem addressed in [7] is the automatic generation of
timed state-rich formal models from natural-language spec-
ifications to support test generation. Requirements are ex-
pressed according to a controlled language called SysReq-
CNL, where requirements have the form of action state-
ments guarded by conditions. The approach presented in [9]
aims to check some properties or real-time requirements :
rt-consistency, consistency and vacuity. Requirements must
be written following a tightly constrained English grammar
closely related to LTL with the underlying Duration Calcu-
lus semantics. Authors of [14] present a formalisation of
requirements into a process algebra supported by the tool
FDR, used to generate test cases. This work uses a strongly
controlled language as input, and requirements may contain
data but not time.
Filling the gap between natural language and formal
methods is our goal in this paper. In this perspective, a
trade-off must be found between, on the one hand, possibly
difficult to master, strongly constrained requirements [17],
and on the other hand, natural language requirements, that
must be transformed into formal languages [2] and may
lose the intended meaning in the process [8]. Fill-in tem-
plates facilitate clearer specification of event-driven, state-
driven system behaviors. Automatically writing and ana-
lyzing such semi-formal requirements is still a challenge,
especially when taking time into account. Typically, [12]
synthesizes from EARS the logic of CPS controllers, how-
ever timing details are not formally analyzed.

6 Conclusion
This paper investigate a real-time process algebra to rep-
resent structured natural language requirements. Compo-
sitional modeling using process algebra provides powerful
constructs to build larger processes from smaller ones speci-
fied by the unitary structured requirements through transfor-
mation techniques. The proposed approach is implemented,
which enables to explore the resulting model and thus to
better understand the real-time behaviors and concurrency
implied by the requirements. These first results have to be
consolidated on larger experiments. A possible continua-
tion of this work is to develop refinement or bisimulation
methods for the process algebra in order to assist require-
ments evolution and clarification.

References
[1] R. Almeida, S. Nogueira, and A. Sampaio. Automatic

Test Case Generation for Concurrent Features from
Natural Language Descriptions. In SBMF. Springer,
2018.

[2] J. Badger, D. Throop, and C. Claunch. VARED: Ver-
ification and analysis of requirements and early de-
signs. In RE, 2014.

[3] B. Bannour, J. Escobedo, C. Gaston, and P. Le
Gall. Off-line Test Case Generation for Timed Sym-
bolic Model-Based Conformance Testing. In ICTSS.
Springer, 2012.

[4] A. Bennaceur, T. Tun, Y. Yu, and B. Nuseibeh. Re-
quirements engineering. In Handbook of Software En-
gineering. Springer, 2019.

[5] J. Bergstra, A. Ponse, and S. Smolka, editors. Hand-
book of Process Algebra. Elsevier, 2001.

[6] G. Cabral and A. Sampaio. Formal Specification Gen-
eration from Requirement Documents. Elec. Notes
Theor. Comput. Sci., 2008.

[7] G. Carvalho, A. Cavalcanti, and A. Sampaio. Mod-
elling timed reactive systems from natural-language
requirements. Formal Aspects Comput., 2016.

[8] J. Greghi, E. Martins, and A. Carvalho. Semi-
automatic generation of extended finite state machines
from natural language standard documents. In DSN,
2015.

[9] V. Langenfeld, D. Dietsch, B. Westphal, J. Hoenicke,
and A. Post. Scalable analysis of real-time require-
ments. In Int. Conf. RE. IEEE, 2019.

[10] CEA List. Eclipse Formal Modeling Project.
https://projects.eclipse.org/projects/modeling.efm.

[11] S. Liu, J. Sun, Y. Liu, Y. Zhang, B. Wadhwa, J. S.
Dong, and X. Wang. Automatic early defects detection
in use case documents. In ASE. ACM, 2014.

[12] L. Lúcio, S. Rahman, C. Cheng, and A. Mavin. Just
formal enough? automated analysis of EARS require-
ments. In NFM. Springer, 2017.

[13] A. Mavin, P. Wilkinson, and M. Novak. Easy Ap-
proach to Requirements Syntax (EARS). In RE. IEEE,
2009.

[14] S. Nogueira, H. Araujo, R. Araujo, J. Iyoda, and
A. Sampaio. Test Case Generation, Selection and
Coverage from Natural Language. Sci. Comp. Prog.,
2019.

[15] K. Pohl and C. Rupp. Requirements Engineering Fun-
damentals - A Study Guide for the Certified Profes-
sional for Requirements Engineering Exam: Founda-
tion Level - IREB compliant. rockynook, 2011.

[16] S. Tripakis. Verifying Progress in Timed Systems. In
ARTS. Springer, 1999.

[17] L. Wenbin, H. J. Huffman, and T. Mirosław. Tempo-
ral action language (TAL): A controlled language for
consistency checking of natural language temporal re-
quirements. In NFM, 2012.

