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Abstract

In this paper, we review the recent advances in meta-learning theory and show
how they can be used in practice both to better understand the behavior of popular
meta-learning algorithms and to improve their generalization capacity. This latter is
achieved by integrating the theoretical assumptions ensuring efficient meta-learning
in the form of regularization terms into several popular meta-learning algorithms for
which we provide a large study of their behavior on classic few-shot classification
benchmarks. To the best of our knowledge, this is the first contribution that puts the
most recent learning bounds of meta-learning theory into practice for the popular
task of few-shot classification.

1 Introduction

The emerging field of meta-learning, also called learning to learn (LTL) aims at producing a model on
data coming from a set of (meta-train) source tasks to use it as a starting point for learning successfully
a new previously unseen (meta-test) target task with little supervision. Several theoretical studies
[1, 2, 3, 4, 5]1 provided probabilistic meta-learning bounds that require the amount of data in the
meta-train source task and the number of meta-train tasks to tend to infinity for efficient meta-learning.
While capturing the underlying general intuition, these bounds do not suggest that all the source data
is useful in such learning setup due to the additive relationship between the two terms mentioned
above. To tackle this drawback, two very recent studies [10, 11] aimed at finding deterministic
assumptions that lead to faster learning rates allowing meta-learning algorithms to benefit from all the
source data. Contrary to probabilistic bounds that have been used to derive novel learning strategies
[4, 5], there was no attempt to verify the validity of the assumptions leading to the fastest known
learning rates in practice or to enforce them through an appropriate optimization procedure.

In this paper, we bridge the meta-learning theory with practice by harvesting the theoretical results
from [11] and [10], and by showing how they can be implemented algorithmically and integrated,
when needed, to popular existing meta-learning algorithms used for few-shot classification (FSC).
More precisely, our contributions are three-fold. First, we identify two common assumptions from
the theoretical works on meta-learning and show how they can be verified and forced via a novel
regularization scheme. Second, we investigate whether these assumptions are satisfied for popular
meta-learning algorithms. Third, we show that enforcing the assumptions to be valid in practice leads
to better generalization of the considered algorithms.

1We do not mention the results provided for meta-learning in the context of online convex optimization
[6, 7, 8, 9] as they concern a different learning setup.
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The rest of the paper is organized as follows. After presenting preliminary knowledge on the meta-
learning problem in Section 2, we detail the existing meta-learning theoretical results with their
corresponding assumptions and show how they can be enforced via a novel regularization technique
in Section 3. Then, we provide an experimental evaluation of several popular few-shot learning (FSL)
methods in Section 4 and highlight the different advantages brought by the proposed regularization
technique in practice. Finally, we conclude and outline the future research perspectives in Section 5.

2 Preliminary Knowledge

Given a set of T source tasks observed through finite size samples of size n1 grouped into matrices
Xt = (xt,1, . . . ,xt,n1) ∈ Rn1×d and vectors of outputs yt = (yt,1, . . . , yt,n1) ∈ Rn1 , ∀t ∈ [[T ]] :=
{1, . . . , T}, our goal is to learn a shared representation φ belonging to a certain class of functions
Φ := {φ | φ : X → V, X ⊆ Rd, V ⊆ Rk} and linear predictors wt ∈ Rk, ∀t ∈ [[T ]] grouped in a
matrix W ∈ RT×k. More formally, this is done by solving the following optimization problem:

φ̂,Ŵ = argmin
φ∈Φ,W∈RT×k

1

2Tn1

T∑
t=1

n1∑
i=1

`(yt,i, 〈wt, φ(xt,i)〉), (1)

where ` : Y×Y → R+, with Y ⊆ R, is a loss function. Once such a representation is learned, we want
to apply it to a new previously unseen target task observed through a pair (XT+1 ∈ Rn2×d, yT+1 ∈
Rn2) containing n2 samples generated by the distribution µT+1. We expect that a linear classifier
w learned on top of the obtained representation leads to a low true risk over the whole distribution
µT+1. More precisely, we first use φ̂ to solve the following problem:

ŵT+1 = argmin
w∈Rk

1

n2

n2∑
i=1

`(yT+1,i, 〈w, φ̂(xT+1,i)〉).

Then, we define the true target risk of the learned linear classifier ŵT+1 as:

L(φ̂, ŵT+1) = E
(x,y)∼µT+1

[`(y, 〈ŵT+1, φ̂(x)〉)]

and want it to be as close as possible to the ideal true risk L(φ∗,w∗
T+1) where w∗

T+1 and φ∗ satisfy:

∀t ∈ [[T + 1]] and (x, y) ∼ µt, y = 〈w∗
t , φ

∗(x)〉+ ε, ε ∼ N (0, σ2). (2)

Equivalently, most of the works found in the literature seek to upper-bound the excess risk defined as
ER(φ̂, ŵT+1) := L(φ̂, ŵT+1)− L(φ∗,w∗

T+1).

Remark 1 We note that many popular meta-learning algorithms used for FSL do not follow exactly
the approach described above. However, we believe that the exact way of how this is done algorith-
mically (with or without the support set, with or without learning episodes) does not change the
statistical challenge of it which is to learn a model that can provably generalize with little supervision.
Supervised learning theory tells us that generalization in this case is poor (not enough target data
and it is difficult to rely on data coming from different probability distributions), while the theoretical
works we built upon suggest that source data may contribute in improving the generalization of the
learned model alongside the target data if the assumptions described below are satisfied.

3 From Theory to Practice

3.1 When does Meta-learning Provably Work?

First studies in the context of meta-learning relied on probabilistic assumption [1, 2, 3, 4, 5] stating that
meta-train and meta-test tasks distributions are all sampled i.i.d. from the same random distribution.
This assumption, however, is considered unrealistic as in FSL source and target tasks’ data are
often given by different draws (without replacement) from the same dataset. In this setup, the
above-mentioned works obtained the bounds having the following form:

ER(φ̂, ŵT+1) ≤ O

(
1

√
n1

+
1√
T

)
.
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Such a guarantee implies that even with the increasing number of source data, one would still have to
increase the number of tasks as well, in order to draw the second term to 0. A natural improvement to
this bound was then proposed by [10] and [11] that obtained the bounds on the excess risk behaving
as

O

(
kd

n1T
+

k

n2

)
and Õ

(
kd

n1T
+

k

n2

)
,

respectively, where k � d is the dimensionality of the learned representation and Õ(·) hides
logarithmic factors. Both these results show that all the source and target samples are useful in
minimizing the excess risk. Thus, in the FSL regime where target data is scarce, all source data helps
to learn well. From a set of assumptions made by the authors in both of these works2, we note the
following two:

Assumption 1. The matrix of optimal predictors W∗ should cover all the directions in Rk evenly.
More formally, this can be stated as

σ1(W
∗)

σk(W∗)
= O(1), (3)

where σi(·) denotes the ith singular value of W∗. As pointed out by the authors, such an assumption
can be seen as a certain measure of diversity between the source tasks that are expected to be
complementary to each other in order to provide a meaningful representation for a previously unseen
target task.

Assumption 2. The norm of the optimal predictors w∗ should not increase with the number of tasks
seen during meta-training3. This assumption says that the classification margin of linear predictors
should remain constant thus avoiding over- or under-specialization to the seen tasks.

While being highly insightful, the authors did not provide any experimental evidence suggesting
that verifying these assumptions in practice helps to learn more efficiently in the considered learning
setting. To bridge this gap, we propose to use a general regularization scheme that allows to enforce
these assumptions when learning the matrix of predictors in several popular meta-learning algorithms.

3.2 Putting Theory to Work

w∗1

Rσ(W∗) ε→0−−→ +∞

w∗2

Rσ(W∗) ε→0−−→ +∞

Source task 1 in Φ∗ space Source task 2 in Φ∗ space

ŵ1

Rσ(Ŵ) ε→0−−→ 1

ŵ2

Rσ(Ŵ) ε→0−−→ 1

Source task 1 in Φ̂ space Source task 2 in Φ̂ space

Figure 1: Illustration of the example from Section 3.2 with ε = 0.02.

As the assumptions mentioned above are stated for the optimal predictors that are inherently linked to
the data generating process, one may wonder what happens when these latter do not satisfy them. To
this end, we aim to answer the following question:

Given W∗ such that Rσ(W
∗) � 1, can we learn Ŵ with Rσ(Ŵ) ≈ 1 while solving

the underlying classification problems equally well?

It turns out that we can construct an example illustrated in Fig. 1 for which the answer to this question
is positive. To this end, let us consider a binary classification problem over X ⊆ R3 with labels
Y = {−1, 1} and two source tasks generated for k, ε ∈ ]0, 1], as follows:

2For a detailed review of the assumptions, the learning setups, and the derived results from these two papers,
as well as an illustration of the theoretical results we refer the interested reader to the Supplementary material.

3While not stated as a separate assumption in [10], the authors assume it in their analysis of linear repre-
sentations and further use it to derive the Assumption 1 mentioned above. See page 5 and the discussion after
Assumption 4.3 in their pre-print.

3



1. µ1 is uniform over {1− kε, k, 1} × {1} ∪ {1 + kε, k,−1} × {−1};

2. µ2 is uniform over {1 + kε, k, k−1
ε } × {1} ∪ {−1 + kε, k, 1+k

ε } × {−1}.

We now define the optimal representation and two optimal predictors for each distribution as the
solution to Eq. 1 over the two data generating distributions and Φ = {φ| φ(x) = ΦTx, Φ ∈ R3×2}:

φ∗,W∗ = argmin
φ∈Φ,W∈R2×2

2∑
i=1

E
(x,y)∼µi

`(y, 〈wi, φ(x)〉), (4)

One solution to this problem can be given as follows:

Φ∗ =

(
1 0 0
0 1 0

)T

, W∗ =

(
1 ε
1 −ε

)
,

where Φ∗ projects the data generated by µi to a two-dimensional space by discarding its third
dimension and the linear predictors satisfy the data generating process from Eq. 2 with ε = 0.
One can verify that in this case W∗ have singular values equal to

√
2 and

√
2ε, so that the ratio

Rσ(W
∗) = 1

ε : when ε → 0, the optimal predictors make the ratio arbitrary large thus violating
Assumption 1.

Let us now consider a different problem where we want to solve Eq. 4 with a constraint that forces
linear predictors to satisfy Assumption 1:

φ̂,Ŵ = argmin
φ∈Φ,W∈R2×2

2∑
i=1

E
(x,y)∼µi

`(y, 〈wi, φ(x)〉), s.t. Rσ(W) ≈ 1. (5)

Its solution is different and is given by

Φ̂ =

(
0 1 0
0 0 1

)T

, Ŵ =

(
0 1
1 −ε

)
.

Similarly to Φ∗, Φ̂ projects to a two-dimensional space by discarding the first dimension of the data
generated by µi. The learned predictors in this case also satisfy Eq. 2 with ε = 0, but contrary to

W∗, Rσ(Ŵ) =
√

2+ε2+ε
√
ε2+4

2+ε2−ε
√
ε2+4

tends to 1 when ε → 0.

Several remarks are in order here. First, it shows that even when W∗ does not satisfy Assumption 1
in the space induced by φ∗, it may still be possible to learn a new representation space φ̂ such that the
optimal predictors in this space will satisfy Assumption 1. This can be done either by considering the
constrained problem from Eq. 5, or by using a more common strategy that consists in adding Rσ(W)
directly as a regularization term

φ̂,Ŵ = argmin
φ∈Φ,W∈RT×k

1

2Tn1

T∑
t=1

n1∑
i=1

`(yt,i, 〈wt, φ(xt,i)〉) + λ1Rσ(W). (6)

Below, we explain how to implement this idea in practice for popular meta-learning algorithms.

Ensuring assumption 1. We propose to compute singular values of W during the meta-training stage
and follow its evolution during the learning episodes. In practice, this can be done by performing the
Singular Value Decomposition (SVD) on W ∈ RT×k with a computational cost of O(Tk2) floating-
point operations (flop). However, as T is typically quite large, we propose a more computationally
efficient solution that is to take into account only the last batch of N predictors (with N � T )
grouped in the matrix WN ∈ RN×k that capture the latest dynamics in the learning process. We
further note that σi(WNW>

N ) = σ2
i (WN ), ∀i ∈ [[N ]] implying that we can calculate the SVD of

WNW>
N (or W>

NWN for k ≤ N ) and retrieve the singular values from it afterwards. We now want
to verify whether wt cover all directions in the embedding space and track the evolution of the ratio
of singular values during training

Rσ(WN ) =
σ1(WN )

σN (WN )
.
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For the sake of conciseness, we use Rσ instead of Rσ(WN ) thereafter. According to the theory,
we expect Rσ to decrease gradually during the training thus improving the generalization capacity
of the learned predictors and preparing them for the target task. When we want to enforce such a
behavior in practice, we propose to use Rσ as a regularization term in the training loss of popular
meta-learning algorithms. Alternatively, as the smallest singular value σN (WN ) can be arbitrarily
close to 0 and lead to numerical errors, we propose a more convenient replacement of Rσ given by
the entropy of the vector of singular values defined as follows:

Hσ(WN ) = −
N∑
i=1

softmax(σ(WN ))i · log softmax(σ(WN ))i,

where σ(WN ) is the vector of eigenvalues of WN and softmax(σ(WN ))i is the ith output of the
softmax function. Analogously to Rσ, we write Hσ instead of Hσ(WN ) from now on. Since the
distribution with the highest entropy is the uniform distribution, adding Rσ or −Hσ as a regularization
term leads to a better coverage of Rk with a nearly identical importance regardless of the direction.
We refer the reader to the Supplementary materials for the derivations ensuring the existence of the
subgradients for these terms.

Ensuring assumption 2. In addition to the full coverage of the embedding space by the linear
predictors, the meta-learning theory assumes that the norm of the linear predictors does not increase
with the number of tasks seen during meta-training, i.e., ‖w‖2 = O(1) or, equivalently, ‖W‖2F =
O(T ). If this assumption does not hold in practice, we propose to regularize the norm of linear
predictors during training or directly normalize the obtained linear predictors w̄ = w

‖w‖2
.

The final meta-training loss with the theory-inspired regularization terms is given as:

min
φ∈Φ,W∈RT×k

1

2Tn1

T∑
t=1

n1∑
i=1

`(yt,i, 〈wt, φ(xt,i)〉) + λ1Rσ(WN ) + λ2‖WN‖2F , (7)

and depending on the considered algorithm, we can replace Rσ by −Hσ and/or replace wt by w̄t

instead of regularizing with ‖WN‖2F . In what follows, we consider λ1 = λ2 = 1 and we refer the
reader to the Supplementary materials for more details and experiments with other values.

3.3 Related work

Below, we discuss several related studies aiming at improving the general understanding of meta-
learning, and mention other regularization terms specifically designed for meta-learning.

Understanding meta-learning Raghu et al. [12] investigated whether MAML algorithm works well
due to rapid learning with significant changes in the representations when deployed on target task,
or due to feature reuse where the learned representation remains almost intact. They establish that
the latter factor is dominant and propose a new variation of MAML that freezes all but task-specific
layers of the neural network when learning new tasks. In [13], the authors explain the success of
meta-learning approaches by their capability to either cluster classes more tightly in feature space
(task-specific adaptation approach), or to search for meta-parameters that lie close in weight space to
many task-specific minima (full fine-tuning approach). Finally, the effect of the number of shots on
the classification accuracy was studied in [14] for PROTONET algorithm. Our paper is complementary
to all other works mentioned above as it investigates a new aspect of meta-learning that has never
been studied before and provides a more complete experimental evaluation with the three different
approaches of meta-learning (based on gradient, metric or transfer learning), separately presented in
[12], [14] and [13].

Other regularization strategies In general, regularization in meta-learning is applied to the weights
of the whole neural network [15, 5], the predictions [16, 13] or is introduced via a prior hypothesis
biased regularized empirical risk minimization [2, 17, 18, 19, 9]. Our proposal is different from all the
approaches mentioned above for the following reasons. First, we do not regularize the whole weight
matrix learned by the neural network but the linear predictors of its last layer contrary to the first
group of methods, and the famous weight decay approach [20]. The purpose of the regularization in
our case is also completely different: weight decay is used to improve generalization through sparsity
in order to avoid overfitting, while our goal is to keep the classification margin unchanged during the
training to avoid over-/under-specialization to some source tasks. Similarly, spectral normalization
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proposed by [?] to satisfy the Lipschitz constraint in GANs through dividing W values by σmax(W)
does not affect the ratio between σmax(W) and σmin(W) and serves a completely different purpose.
Second, we regularize the singular values of the matrix of linear predictors obtained in the last
batch of tasks instead of the predictions used by the methods of the second group (e.g., using the
theoretic-information quantities in [16]). Finally, the works of the last group are related to the online
setting with convex loss functions only, and, similarly to the algorithms from the second group, do
not specifically target the spectral properties of the learned predictors.

4 Practical Results

In this section, we use extensive experimental evaluations to answer the following two questions:

Q1) Do popular meta-learning methods naturally satisfy the learning bounds assumptions?

Q2) Does ensuring these assumptions help to (meta-)learn more efficiently?

To this end, we first run the original implementations of popular meta-learning methods to see what
their natural behavior is. Then, we observe the impact of forcing them to follow the theoretical setup.

Datasets & Baselines For our evaluation, we focus on the few-shot image classification problem
on three benchmark datasets, namely: 1) Omniglot [21] consisting of 1,623 classes with 20 images
of size 28× 28 per class, 2) miniImageNet [22] consisting of 100 classes with 600 images of size
84× 84 per class, and 3) tieredImageNet [23] consisting of 779,165 images divided into 608 classes.
For each dataset, we follow the commonly adopted experimental protocol used in [24] and [25] and
use a four-layer convolution backbone (Conv-4) with 64 filters as done by [25]. On Omniglot, we
perform 20-way classification with 1 shot and 5 shots, while on miniImageNet and tieredImageNet
we perform 5-way classification with 1 shot and 5 shots. Finally, we evaluate four FSL methods: two
popular meta-learning strategies, namely, MAML [24], a gradient-based method, and Prototypical
Networks (PROTONET) [26], a metric-based approach; two popular transfer learning baselines,
termed as BASELINE and BASELINE++ [22, 27, 25]. Even though these baselines are trained with
the standard supervised learning framework, such a training can also be seen as learning a single task
in the LTL framework.

Implementation details Enforcing Assumptions 1 and 2 for MAML is straightforward as it closely
follows the LTL framework of episodic training. For each task, the model learns a batch of linear
predictors and we can directly take them as WN to compute its SVD. Since the linear predictors are
the weights of our model and change slowly, regularizing the norm ‖WN‖F and the ratio of singular
values Rσ does not cause instabilities during training.

Meanwhile, metric-based methods do not use linear predictors but compute a similarity between
features. In the case of PROTONET, the similarity is computed with respect to class prototypes
(i.e. the mean features of the images of each class). Since they act as linear predictors, a first idea
would be to regularize the norm and ratio of singular values of the prototypes. Unfortunately, this
latter strategy hinders the convergence of the network and leads to numerical instabilities. Most
likely because prototypes are computed from image features which suffer from rapid changes across
batches. Consequently, we regularize the entropy of singular values Hσ instead of the ratio Rσ to
avoid instabilities during training to ensure Assumption 1 and we normalize the prototypes to ensure
Assumption 2 by replacing wt with w̄t in Eq. 7.

For transfer learning methods BASELINE and BASELINE++, the last layer of the network is discarded
then new linear predictors are learned during meta-testing. Thus, we only regularize the norm
‖WN‖F of the new linear predictors learned during the finetuning phase of meta-testing. Similarly
to MAML, we compute the ratio of singular values Rσ with the last layer of the network during
training and fine-tuning phase.

Remark 2 We choose well-established meta-learning algorithms for our comparison, but the pro-
posed regularization can be integrated similarly into their recent variations [28, 29] (see Supplemen-
tary materials for results obtained with the method of [28]). Finally, using models that do not rely on
linear predictors is also possible but might be more difficult as it would require upstream work to
understand which part of the model acts as predictors (as done for PROTONET in this paper) and
how to compute and track the desired quantities.
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Figure 2: (a) Evolution of ‖WN‖F (left), Rσ (middle) and validation accuracy (right) during
training of MAML (top) and PROTONET (bottom) on miniImageNet (1 shot for MAML, 5 shots for
PROTONET). (b) Evolution of Rσ (left) and validation accuracy (right) during training of BASELINE
(top) and BASELINE++ (bottom) on Omniglot (dashed lines) and tieredImageNet (solid lines).

Q1 – Verifying the assumptions According to theory, ‖WN‖F and Rσ should remain constant or
converge toward a constant value when monitoring the last N tasks. From Fig. 2(a), we can see
that for MAML (Fig. 2(a) top), both ‖WN‖F and Rσ increase with the number of tasks seen during
training, whereas PROTONET (Fig. 2(a) bottom) naturally learns the prototypes with a good coverage
of the embedding space, and minimizes their norm. This behavior is rather peculiar as neither of the
two methods specifically controls the theoretical quantities of interest, and still, PROTONET manages
to do it implicitly. As for the transfer learning baselines (Fig. 2(b) top and bottom), we expect them
to learn features that cover the embedding space with Rσ rapidly converging towards a constant
value. As can be seen in Fig. 2(b), similarly to PROTONET, BASELINE++ naturally learns linear
predictors that cover the embedding space. As for BASELINE, it learns a good coverage for Omniglot
dataset, but fails to do so for the more complicated tieredImageNet dataset. The observed behavior of
these different methods leads to a conclusion that some meta-learning algorithms are inherently more
explorative of the embedding space.

Q2 – Ensuring the assumptions Armed with our regularization terms, we now aim to force the
considered algorithms to verify the assumptions when it is not naturally done. In particular, for
MAML we regularize both ‖WN‖F and Rσ in order to keep them constant throughout the training.
Similarly, we regularize Rσ during the training of BASELINE and BASELINE++, and both ‖WN‖F
and Rσ during the finetuning phase of meta-testing. For PROTONET, we enforce a normalization of
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Dataset Episodes MAML PROTONET BASELINE BASELINE++

Omniglot 20-way 1-shot +3.95∗ +0.33∗ −13.2∗ −7.29∗

20-way 5-shot +1.17∗ +0.01 +0.66∗ −2.24∗

miniImageNet 5-way 1-shot +1.23∗ +0.76∗ +1.52∗ +0.39
5-way 5-shot +1.96∗ +2.03∗ +1.66∗ −0.13

tieredImageNet 5-way 1-shot +1.42∗ +2.10∗ +5.43∗ +0.28
5-way 5-shot +2.66∗ +0.23 +1.92∗ −0.72

Table 1: Accuracy gap (in p.p.) with the addition of the regularization (or normalization in the case
of PROTONET) enforcing the theoretical assumptions. All accuracy results are averaged over 2400
test episodes and 4 different seeds. Statistically significant results (out of confidence intervals) are
reported with ∗. Absolute performances are reported in the Supplementary material.

the prototypes. According to our results for Q1, regularizing the singular values of the prototypes
through the entropy Hσ is not necessary.4

Based on the obtained results, we can make the following conclusions. First, from Fig. 2(a) (left,
middle) and Fig. 2(b) (left), we note that, for all methods considered, our proposed methodology used
to enforce the theoretical assumptions works as expected, and leads to a desired behavior during the
learning process. This means that the differences in terms of accuracy results presented in Table 1 are
fully explained by this particular regularization added to the optimized objective function. Second,
from the shape of the accuracy curves provided in Fig. 2(a) (right) and the accuracy gaps when
enforcing the assumptions given in Table 1, we can see that respecting the assumptions leads to
several significant improvements related to different aspects of learning. On the one hand, we observe
that the final validation accuracy improves significantly in all benchmarks for meta-learning methods
and in most of experiments for BASELINE (except for Omniglot, where BASELINE already learns to
regularize its linear predictors). In accordance with the theory, we attribute the improvements to the
fact that we fully utilize the training data, which leads to a tighter bound on the excess target risk
and, consequently, to a better generalization performance. On the other hand, we also note that our
regularization reduces the sample complexity of learning the target task, as indicated by the faster
increase of the validation accuracy from the very beginning of the meta-training. Roughly speaking,
less meta-training data is necessary to achieve a performance comparable to that obtained without
the proposed regularization using more tasks. Finally, we note that BASELINE++ and PROTONET
methods naturally satisfy some assumptions: both learn diverse linear predictors by design, while
BASELINE++ also normalizes the weights of its linear predictors. Thus, these methods do not benefit
from additional regularization.

5 Conclusion

In this paper, we studied the validity of the theoretical assumptions made in recent papers applied
to popular meta-learning algorithms and proposed practical ways of enforcing them. On the one
hand, we showed that depending on the problem and algorithm, some models can naturally fulfill
the theoretical conditions during training. Some algorithms offer a better covering of the embedding
space than others. On the other hand, when the conditions are not verified, learning with our proposed
regularization terms allows to learn faster and improve the generalization capabilities of meta-learning
methods. The theoretical framework studied in this paper explains the observed performance gain.
Notice that no specific hyperparameter tuning was performed as we rather aim at showing the effect
of ensuring learning bounds assumptions than comparing performance of the methods. Absolute
accuracy results are detailed in the Supplementary materials.

While this paper proposes an initial approach to bridging the gap between theory and practice in
meta-learning, some questions remain open on the inner workings of these algorithms. In particular,
being able to take better advantage of the particularities of the training tasks during meta-training
could help improve the effectiveness of these approaches. Self-supervised meta-learning and multiple
target tasks prediction are also important future perspectives for the application of meta-learning.

4For more details on the effect of entropic regularization on PROTONET, we refer the interested reader to the
Supplementary materials.
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