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Putting Theory to Work: From Learning Bounds to Meta-Learning Algorithms

In this paper, we review the recent advances in meta-learning theory and show how they can be used in practice both to better understand the behavior of popular meta-learning algorithms and to improve their generalization capacity. This latter is achieved by integrating the theoretical assumptions ensuring efficient meta-learning in the form of regularization terms into several popular meta-learning algorithms for which we provide a large study of their behavior on classic few-shot classification benchmarks. To the best of our knowledge, this is the first contribution that puts the most recent learning bounds of meta-learning theory into practice for the popular task of few-shot classification.

Introduction

The emerging field of meta-learning, also called learning to learn (LTL) aims at producing a model on data coming from a set of (meta-train) source tasks to use it as a starting point for learning successfully a new previously unseen (meta-test) target task with little supervision. Several theoretical studies [START_REF] Baxter | A Model of Inductive Bias Learning[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Maurer | The benefit of multitask representation learning[END_REF][START_REF] Amit | Meta-learning by adjusting priors based on extended pac-bayes theory[END_REF][START_REF] Yin | Metalearning without memorization[END_REF] 1 provided probabilistic meta-learning bounds that require the amount of data in the meta-train source task and the number of meta-train tasks to tend to infinity for efficient meta-learning. While capturing the underlying general intuition, these bounds do not suggest that all the source data is useful in such learning setup due to the additive relationship between the two terms mentioned above. To tackle this drawback, two very recent studies [START_REF] Du | Few-Shot Learning via Learning the Representation, Provably[END_REF][START_REF] Tripuraneni | Provable Meta-Learning of Linear Representations[END_REF] aimed at finding deterministic assumptions that lead to faster learning rates allowing meta-learning algorithms to benefit from all the source data. Contrary to probabilistic bounds that have been used to derive novel learning strategies [START_REF] Amit | Meta-learning by adjusting priors based on extended pac-bayes theory[END_REF][START_REF] Yin | Metalearning without memorization[END_REF], there was no attempt to verify the validity of the assumptions leading to the fastest known learning rates in practice or to enforce them through an appropriate optimization procedure.

In this paper, we bridge the meta-learning theory with practice by harvesting the theoretical results from [START_REF] Tripuraneni | Provable Meta-Learning of Linear Representations[END_REF] and [START_REF] Du | Few-Shot Learning via Learning the Representation, Provably[END_REF], and by showing how they can be implemented algorithmically and integrated, when needed, to popular existing meta-learning algorithms used for few-shot classification (FSC). More precisely, our contributions are three-fold. First, we identify two common assumptions from the theoretical works on meta-learning and show how they can be verified and forced via a novel regularization scheme. Second, we investigate whether these assumptions are satisfied for popular meta-learning algorithms. Third, we show that enforcing the assumptions to be valid in practice leads to better generalization of the considered algorithms.

The rest of the paper is organized as follows. After presenting preliminary knowledge on the metalearning problem in Section 2, we detail the existing meta-learning theoretical results with their corresponding assumptions and show how they can be enforced via a novel regularization technique in Section 3. Then, we provide an experimental evaluation of several popular few-shot learning (FSL) methods in Section 4 and highlight the different advantages brought by the proposed regularization technique in practice. Finally, we conclude and outline the future research perspectives in Section 5.

Preliminary Knowledge

Given a set of T source tasks observed through finite size samples of size n 1 grouped into matrices X t = (x t,1 , . . . , x t,n1 ) ∈ R n1×d and vectors of outputs y t = (y t,1 , . . . , y t,n1 ) ∈ R n1 , ∀t ∈ [[T ]] := {1, . . . , T }, our goal is to learn a shared representation φ belonging to a certain class of functions

Φ := {φ | φ : X → V, X ⊆ R d , V ⊆ R k } and linear predictors w t ∈ R k , ∀t ∈ [[T ]] grouped in a matrix W ∈ R T ×k .
More formally, this is done by solving the following optimization problem:

φ, W = arg min φ∈Φ,W∈R T ×k 1 2T n 1 T t=1 n1 i=1 (y t,i , w t , φ(x t,i ) ), (1) 
where

: Y×Y → R + , with Y ⊆ R, is a loss function.
Once such a representation is learned, we want to apply it to a new previously unseen target task observed through a pair (X T +1 ∈ R n2×d , y T +1 ∈ R n2 ) containing n 2 samples generated by the distribution µ T +1 . We expect that a linear classifier w learned on top of the obtained representation leads to a low true risk over the whole distribution µ T +1 . More precisely, we first use φ to solve the following problem:

ŵT +1 = arg min w∈R k 1 n 2 n2 i=1 (y T +1,i , w, φ(x T +1,i ) ).
Then, we define the true target risk of the learned linear classifier ŵT +1 as:

L( φ, ŵT +1 ) = E (x,y)∼µ T +1 [ (y, ŵT +1 , φ(x) )]
and want it to be as close as possible to the ideal true risk L(φ * , w * T +1 ) where w * T +1 and φ * satisfy:

∀t ∈ [[T + 1]] and (x, y) ∼ µ t , y = w * t , φ * (x) + ε, ε ∼ N (0, σ 2 ). (2) 
Equivalently, most of the works found in the literature seek to upper-bound the excess risk defined as ER( φ, ŵT +1 ) := L( φ, ŵT +1 ) -L(φ * , w * T +1 ).

Remark 1 We note that many popular meta-learning algorithms used for FSL do not follow exactly the approach described above. However, we believe that the exact way of how this is done algorithmically (with or without the support set, with or without learning episodes) does not change the statistical challenge of it which is to learn a model that can provably generalize with little supervision. Supervised learning theory tells us that generalization in this case is poor (not enough target data and it is difficult to rely on data coming from different probability distributions), while the theoretical works we built upon suggest that source data may contribute in improving the generalization of the learned model alongside the target data if the assumptions described below are satisfied.

3 From Theory to Practice First studies in the context of meta-learning relied on probabilistic assumption [START_REF] Baxter | A Model of Inductive Bias Learning[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Maurer | The benefit of multitask representation learning[END_REF][START_REF] Amit | Meta-learning by adjusting priors based on extended pac-bayes theory[END_REF][START_REF] Yin | Metalearning without memorization[END_REF] stating that meta-train and meta-test tasks distributions are all sampled i.i.d. from the same random distribution. This assumption, however, is considered unrealistic as in FSL source and target tasks' data are often given by different draws (without replacement) from the same dataset. In this setup, the above-mentioned works obtained the bounds having the following form:

ER( φ, ŵT +1 ) ≤ O 1 √ n 1 + 1 √ T .
Such a guarantee implies that even with the increasing number of source data, one would still have to increase the number of tasks as well, in order to draw the second term to 0. A natural improvement to this bound was then proposed by [START_REF] Du | Few-Shot Learning via Learning the Representation, Provably[END_REF] and [START_REF] Tripuraneni | Provable Meta-Learning of Linear Representations[END_REF] that obtained the bounds on the excess risk behaving as

O kd n 1 T + k n 2 and Õ kd n 1 T + k n 2 ,
respectively, where k d is the dimensionality of the learned representation and Õ(•) hides logarithmic factors. Both these results show that all the source and target samples are useful in minimizing the excess risk. Thus, in the FSL regime where target data is scarce, all source data helps to learn well. From a set of assumptions made by the authors in both of these works2 , we note the following two: Assumption 1. The matrix of optimal predictors W * should cover all the directions in R k evenly. More formally, this can be stated as

σ 1 (W * ) σ k (W * ) = O(1), (3) 
where σ i (•) denotes the i th singular value of W * . As pointed out by the authors, such an assumption can be seen as a certain measure of diversity between the source tasks that are expected to be complementary to each other in order to provide a meaningful representation for a previously unseen target task.

Assumption 2. The norm of the optimal predictors w * should not increase with the number of tasks seen during meta-training 3 . This assumption says that the classification margin of linear predictors should remain constant thus avoiding over-or under-specialization to the seen tasks.

While being highly insightful, the authors did not provide any experimental evidence suggesting that verifying these assumptions in practice helps to learn more efficiently in the considered learning setting. To bridge this gap, we propose to use a general regularization scheme that allows to enforce these assumptions when learning the matrix of predictors in several popular meta-learning algorithms. As the assumptions mentioned above are stated for the optimal predictors that are inherently linked to the data generating process, one may wonder what happens when these latter do not satisfy them. To this end, we aim to answer the following question:
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w * 1 R σ (W * ) ε→0 --→ +∞ w * 2 R σ (W * ) ε→0 --→ +∞ Source task 1 in Φ * space Source task 2 in Φ * space ŵ1 R σ ( W) ε→0 --→ 1 ŵ2 R σ ( W) ε→0 --→ 1 Source task 1 in Φ space Source task 2 in Φ space
Given W * such that R σ (W * )
1, can we learn W with R σ ( W) ≈ 1 while solving the underlying classification problems equally well?

It turns out that we can construct an example illustrated in Fig. 1 for which the answer to this question is positive. To this end, let us consider a binary classification problem over X ⊆ R 3 with labels Y = {-1, 1} and two source tasks generated for k, ε ∈ ]0, 1], as follows:

1. µ 1 is uniform over {1 -kε, k, 1} × {1} ∪ {1 + kε, k, -1} × {-1}; 2. µ 2 is uniform over {1 + kε, k, k-1 ε } × {1} ∪ {-1 + kε, k, 1+k ε } × {-1}.
We now define the optimal representation and two optimal predictors for each distribution as the solution to Eq. 1 over the two data generating distributions and

Φ = {φ| φ(x) = Φ T x, Φ ∈ R 3×2 }: φ * , W * = arg min φ∈Φ,W∈R 2×2 2 i=1 E (x,y)∼µi (y, w i , φ(x) ), (4) 
One solution to this problem can be given as follows:

Φ * = 1 0 0 0 1 0 T , W * = 1 ε 1 -ε ,
where Φ * projects the data generated by µ i to a two-dimensional space by discarding its third dimension and the linear predictors satisfy the data generating process from Eq. 2 with ε = 0.

One can verify that in this case W * have singular values equal to √ 2 and √ 2ε, so that the ratio R σ (W * ) = 1 ε : when ε → 0, the optimal predictors make the ratio arbitrary large thus violating Assumption 1.

Let us now consider a different problem where we want to solve Eq. 4 with a constraint that forces linear predictors to satisfy Assumption 1:

φ, W = arg min φ∈Φ,W∈R 2×2 2 i=1 E (x,y)∼µi (y, w i , φ(x) ), s.t. R σ (W) ≈ 1. (5) 
Its solution is different and is given by

Φ = 0 1 0 0 0 1 T , W = 0 1 1 -ε .
Similarly to Φ * , Φ projects to a two-dimensional space by discarding the first dimension of the data generated by µ i . The learned predictors in this case also satisfy Eq. 2 with ε = 0, but contrary to

W * , R σ ( W) = 2+ε 2 +ε √ ε 2 +4 2+ε 2 -ε √ ε 2 +4
tends to 1 when ε → 0. Several remarks are in order here. First, it shows that even when W * does not satisfy Assumption 1 in the space induced by φ * , it may still be possible to learn a new representation space φ such that the optimal predictors in this space will satisfy Assumption 1. This can be done either by considering the constrained problem from Eq. 5, or by using a more common strategy that consists in adding R σ (W) directly as a regularization term

φ, W = arg min φ∈Φ,W∈R T ×k 1 2T n 1 T t=1 n1 i=1 (y t,i , w t , φ(x t,i ) ) + λ 1 R σ (W). (6) 
Below, we explain how to implement this idea in practice for popular meta-learning algorithms.

Ensuring assumption 1. We propose to compute singular values of W during the meta-training stage and follow its evolution during the learning episodes. In practice, this can be done by performing the Singular Value Decomposition (SVD) on W ∈ R T ×k with a computational cost of O(T k 2 ) floatingpoint operations (flop). However, as T is typically quite large, we propose a more computationally efficient solution that is to take into account only the last batch of N predictors (with N T ) grouped in the matrix W N ∈ R N ×k that capture the latest dynamics in the learning process. We further note that σ

i (W N W N ) = σ 2 i (W N ), ∀i ∈ [[N ]
] implying that we can calculate the SVD of W N W N (or W N W N for k ≤ N ) and retrieve the singular values from it afterwards. We now want to verify whether w t cover all directions in the embedding space and track the evolution of the ratio of singular values during training

R σ (W N ) = σ 1 (W N ) σ N (W N ) .
For the sake of conciseness, we use R σ instead of R σ (W N ) thereafter. According to the theory, we expect R σ to decrease gradually during the training thus improving the generalization capacity of the learned predictors and preparing them for the target task. When we want to enforce such a behavior in practice, we propose to use R σ as a regularization term in the training loss of popular meta-learning algorithms. Alternatively, as the smallest singular value σ N (W N ) can be arbitrarily close to 0 and lead to numerical errors, we propose a more convenient replacement of R σ given by the entropy of the vector of singular values defined as follows:

H σ (W N ) = - N i=1 softmax(σ(W N )) i • log softmax(σ(W N )) i ,
where σ(W N ) is the vector of eigenvalues of W N and softmax(σ(W N )) i is the i th output of the softmax function. Analogously to R σ , we write H σ instead of H σ (W N ) from now on. Since the distribution with the highest entropy is the uniform distribution, adding R σ or -H σ as a regularization term leads to a better coverage of R k with a nearly identical importance regardless of the direction. We refer the reader to the Supplementary materials for the derivations ensuring the existence of the subgradients for these terms.

Ensuring assumption 2. In addition to the full coverage of the embedding space by the linear predictors, the meta-learning theory assumes that the norm of the linear predictors does not increase with the number of tasks seen during meta-training, i.e., w 2 = O(1) or, equivalently, W 2 F = O(T ). If this assumption does not hold in practice, we propose to regularize the norm of linear predictors during training or directly normalize the obtained linear predictors w = w w 2 . The final meta-training loss with the theory-inspired regularization terms is given as:

min φ∈Φ,W∈R T ×k 1 2T n 1 T t=1 n1 i=1 (y t,i , w t , φ(x t,i ) ) + λ 1 R σ (W N ) + λ 2 W N 2 F , (7) 
and depending on the considered algorithm, we can replace R σ by -H σ and/or replace w t by wt instead of regularizing with W N

F . 2 
In what follows, we consider λ 1 = λ 2 = 1 and we refer the reader to the Supplementary materials for more details and experiments with other values.

Related work

Below, we discuss several related studies aiming at improving the general understanding of metalearning, and mention other regularization terms specifically designed for meta-learning.

Understanding meta-learning Raghu et al. [START_REF] Raghu | Rapid learning or feature reuse? Towards understanding the effectiveness of MAML[END_REF] investigated whether MAML algorithm works well due to rapid learning with significant changes in the representations when deployed on target task, or due to feature reuse where the learned representation remains almost intact. They establish that the latter factor is dominant and propose a new variation of MAML that freezes all but task-specific layers of the neural network when learning new tasks. In [START_REF] Goldblum | Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks[END_REF], the authors explain the success of meta-learning approaches by their capability to either cluster classes more tightly in feature space (task-specific adaptation approach), or to search for meta-parameters that lie close in weight space to many task-specific minima (full fine-tuning approach). Finally, the effect of the number of shots on the classification accuracy was studied in [START_REF] Cao | A theoretical analysis of the number of shots in few-shot learning[END_REF] for PROTONET algorithm. Our paper is complementary to all other works mentioned above as it investigates a new aspect of meta-learning that has never been studied before and provides a more complete experimental evaluation with the three different approaches of meta-learning (based on gradient, metric or transfer learning), separately presented in [START_REF] Raghu | Rapid learning or feature reuse? Towards understanding the effectiveness of MAML[END_REF], [START_REF] Cao | A theoretical analysis of the number of shots in few-shot learning[END_REF] and [START_REF] Goldblum | Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks[END_REF].

Other regularization strategies In general, regularization in meta-learning is applied to the weights of the whole neural network [START_REF] Balaji | MetaReg: Towards Domain Generalization using Meta-Regularization[END_REF][START_REF] Yin | Metalearning without memorization[END_REF], the predictions [START_REF] Abdullah | Task Agnostic Meta-Learning for Few-Shot Learning[END_REF][START_REF] Goldblum | Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks[END_REF] or is introduced via a prior hypothesis biased regularized empirical risk minimization [START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Kuzborskij | Fast rates by transferring from auxiliary hypotheses[END_REF][START_REF] Denevi | Incremental learningto-learn with statistical guarantees[END_REF][START_REF] Denevi | Learning to learn around a common mean[END_REF][START_REF] Denevi | Learning-to-learn stochastic gradient descent with biased regularization[END_REF]. Our proposal is different from all the approaches mentioned above for the following reasons. First, we do not regularize the whole weight matrix learned by the neural network but the linear predictors of its last layer contrary to the first group of methods, and the famous weight decay approach [START_REF] Krogh | A simple weight decay can improve generalization[END_REF]. The purpose of the regularization in our case is also completely different: weight decay is used to improve generalization through sparsity in order to avoid overfitting, while our goal is to keep the classification margin unchanged during the training to avoid over-/under-specialization to some source tasks. Similarly, spectral normalization proposed by [?] to satisfy the Lipschitz constraint in GANs through dividing W values by σ max (W) does not affect the ratio between σ max (W) and σ min (W) and serves a completely different purpose. Second, we regularize the singular values of the matrix of linear predictors obtained in the last batch of tasks instead of the predictions used by the methods of the second group (e.g., using the theoretic-information quantities in [START_REF] Abdullah | Task Agnostic Meta-Learning for Few-Shot Learning[END_REF]). Finally, the works of the last group are related to the online setting with convex loss functions only, and, similarly to the algorithms from the second group, do not specifically target the spectral properties of the learned predictors.

Practical Results

In this section, we use extensive experimental evaluations to answer the following two questions: Q1) Do popular meta-learning methods naturally satisfy the learning bounds assumptions? Q2) Does ensuring these assumptions help to (meta-)learn more efficiently?

To this end, we first run the original implementations of popular meta-learning methods to see what their natural behavior is. Then, we observe the impact of forcing them to follow the theoretical setup.

Datasets & Baselines For our evaluation, we focus on the few-shot image classification problem on three benchmark datasets, namely: 1) Omniglot [START_REF] Brenden | Human-level concept learning through probabilistic program induction[END_REF] consisting of 1,623 classes with 20 images of size 28 × 28 per class, 2) miniImageNet [START_REF] Ravi | Optimization as a model for few-shot learning[END_REF] consisting of 100 classes with 600 images of size 84 × 84 per class, and 3) tieredImageNet [START_REF] Ren | Meta-Learning for Semi-Supervised Few-Shot Classification[END_REF] consisting of 779,165 images divided into 608 classes. For each dataset, we follow the commonly adopted experimental protocol used in [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF] and [START_REF] Chen | A closer look at few-shot classification[END_REF] and use a four-layer convolution backbone (Conv-4) with 64 filters as done by [START_REF] Chen | A closer look at few-shot classification[END_REF]. On Omniglot, we perform 20-way classification with 1 shot and 5 shots, while on miniImageNet and tieredImageNet we perform 5-way classification with 1 shot and 5 shots. Finally, we evaluate four FSL methods: two popular meta-learning strategies, namely, MAML [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF], a gradient-based method, and Prototypical Networks (PROTONET) [START_REF] Snell | Prototypical Networks for Few-shot Learning[END_REF], a metric-based approach; two popular transfer learning baselines, termed as BASELINE and BASELINE++ [START_REF] Ravi | Optimization as a model for few-shot learning[END_REF][START_REF] Gidaris | Dynamic Few-Shot Visual Learning Without Forgetting[END_REF][START_REF] Chen | A closer look at few-shot classification[END_REF]. Even though these baselines are trained with the standard supervised learning framework, such a training can also be seen as learning a single task in the LTL framework.

Implementation details Enforcing Assumptions 1 and 2 for MAML is straightforward as it closely follows the LTL framework of episodic training. For each task, the model learns a batch of linear predictors and we can directly take them as W N to compute its SVD. Since the linear predictors are the weights of our model and change slowly, regularizing the norm W N F and the ratio of singular values R σ does not cause instabilities during training. Meanwhile, metric-based methods do not use linear predictors but compute a similarity between features. In the case of PROTONET, the similarity is computed with respect to class prototypes (i.e. the mean features of the images of each class). Since they act as linear predictors, a first idea would be to regularize the norm and ratio of singular values of the prototypes. Unfortunately, this latter strategy hinders the convergence of the network and leads to numerical instabilities. Most likely because prototypes are computed from image features which suffer from rapid changes across batches. Consequently, we regularize the entropy of singular values H σ instead of the ratio R σ to avoid instabilities during training to ensure Assumption 1 and we normalize the prototypes to ensure Assumption 2 by replacing w t with wt in Eq. 7.

For transfer learning methods BASELINE and BASELINE++, the last layer of the network is discarded then new linear predictors are learned during meta-testing. Thus, we only regularize the norm W N F of the new linear predictors learned during the finetuning phase of meta-testing. Similarly to MAML, we compute the ratio of singular values R σ with the last layer of the network during training and fine-tuning phase.

Remark 2 We choose well-established meta-learning algorithms for our comparison, but the proposed regularization can be integrated similarly into their recent variations [START_REF] Park | Meta-curvature[END_REF][START_REF] Lee | Meta-learning with differentiable convex optimization[END_REF] (see Supplementary materials for results obtained with the method of [START_REF] Park | Meta-curvature[END_REF]). Finally, using models that do not rely on linear predictors is also possible but might be more difficult as it would require upstream work to understand which part of the model acts as predictors (as done for PROTONET in this paper) and how to compute and track the desired quantities. Q1 -Verifying the assumptions According to theory, W N F and R σ should remain constant or converge toward a constant value when monitoring the last N tasks. From Fig. 2(a), we can see that for MAML (Fig. 2(a) top), both W N F and R σ increase with the number of tasks seen during training, whereas PROTONET (Fig. 2(a) bottom) naturally learns the prototypes with a good coverage of the embedding space, and minimizes their norm. This behavior is rather peculiar as neither of the two methods specifically controls the theoretical quantities of interest, and still, PROTONET manages to do it implicitly. As for the transfer learning baselines (Fig. 2(b) top and bottom), we expect them to learn features that cover the embedding space with R σ rapidly converging towards a constant value. As can be seen in Fig. 2(b), similarly to PROTONET, BASELINE++ naturally learns linear predictors that cover the embedding space. As for BASELINE, it learns a good coverage for Omniglot dataset, but fails to do so for the more complicated tieredImageNet dataset. The observed behavior of these different methods leads to a conclusion that some meta-learning algorithms are inherently more explorative of the embedding space.

Q2 -Ensuring the assumptions Armed with our regularization terms, we now aim to force the considered algorithms to verify the assumptions when it is not naturally done. the prototypes. According to our results for Q1, regularizing the singular values of the prototypes through the entropy H σ is not necessary. 4Based on the obtained results, we can make the following conclusions. First, from Fig. 2(a) (left, middle) and Fig. 2(b) (left), we note that, for all methods considered, our proposed methodology used to enforce the theoretical assumptions works as expected, and leads to a desired behavior during the learning process. This means that the differences in terms of accuracy results presented in Table 1 are fully explained by this particular regularization added to the optimized objective function. Second, from the shape of the accuracy curves provided in Fig. 2(a) (right) and the accuracy gaps when enforcing the assumptions given in Table 1, we can see that respecting the assumptions leads to several significant improvements related to different aspects of learning. On the one hand, we observe that the final validation accuracy improves significantly in all benchmarks for meta-learning methods and in most of experiments for BASELINE (except for Omniglot, where BASELINE already learns to regularize its linear predictors). In accordance with the theory, we attribute the improvements to the fact that we fully utilize the training data, which leads to a tighter bound on the excess target risk and, consequently, to a better generalization performance. On the other hand, we also note that our regularization reduces the sample complexity of learning the target task, as indicated by the faster increase of the validation accuracy from the very beginning of the meta-training. Roughly speaking, less meta-training data is necessary to achieve a performance comparable to that obtained without the proposed regularization using more tasks. Finally, we note that BASELINE++ and PROTONET methods naturally satisfy some assumptions: both learn diverse linear predictors by design, while BASELINE++ also normalizes the weights of its linear predictors. Thus, these methods do not benefit from additional regularization.

Conclusion

In this paper, we studied the validity of the theoretical assumptions made in recent papers applied to popular meta-learning algorithms and proposed practical ways of enforcing them. On the one hand, we showed that depending on the problem and algorithm, some models can naturally fulfill the theoretical conditions during training. Some algorithms offer a better covering of the embedding space than others. On the other hand, when the conditions are not verified, learning with our proposed regularization terms allows to learn faster and improve the generalization capabilities of meta-learning methods. The theoretical framework studied in this paper explains the observed performance gain. Notice that no specific hyperparameter tuning was performed as we rather aim at showing the effect of ensuring learning bounds assumptions than comparing performance of the methods. Absolute accuracy results are detailed in the Supplementary materials.

While this paper proposes an initial approach to bridging the gap between theory and practice in meta-learning, some questions remain open on the inner workings of these algorithms. In particular, being able to take better advantage of the particularities of the training tasks during meta-training could help improve the effectiveness of these approaches. Self-supervised meta-learning and multiple target tasks prediction are also important future perspectives for the application of meta-learning.
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 1 When does Meta-learning Provably Work?

Figure 1 :

 1 Figure 1: Illustration of the example from Section 3.2 with ε = 0.02.

Figure 2 :

 2 Figure 2: (a) Evolution of W N F (left), R σ (middle) and validation accuracy (right) during training of MAML (top) and PROTONET (bottom) on miniImageNet (1 shot for MAML, 5 shots for PROTONET). (b) Evolution of R σ (left) and validation accuracy (right) during training of BASELINE (top) and BASELINE++ (bottom) on Omniglot (dashed lines) and tieredImageNet (solid lines).

Table 1 :

 1 Accuracy gap (in p.p.) with the addition of the regularization (or normalization in the case of PROTONET) enforcing the theoretical assumptions. All accuracy results are averaged over 2400 test episodes and 4 different seeds. Statistically significant results (out of confidence intervals) are reported with * . Absolute performances are reported in the Supplementary material.

	Dataset	Episodes	MAML PROTONET BASELINE BASELINE++
	Omniglot	20-way 1-shot +3.95 * +0.33 * 20-way 5-shot +1.17 * +0.01	-13.2 * +0.66 *	-7.29 * -2.24 *
	miniImageNet	5-way 1-shot 5-way 5-shot	+1.23 * +0.76 * +1.96 * +2.03 *	+1.52 * +1.66 *	+0.39 -0.13
	tieredImageNet	5-way 1-shot 5-way 5-shot	+1.42 * +2.10 * +2.66 * +0.23	+5.43 * +1.92 *	+0.28 -0.72

In particular, for MAML we regularize both W N F and R σ in order to keep them constant throughout the training. Similarly, we regularize R σ during the training of BASELINE and BASELINE++, and both W N F and R σ during the finetuning phase of meta-testing. For PROTONET, we enforce a normalization of

We do not mention the results provided for meta-learning in the context of online convex optimization[START_REF] Finn | Online meta-learning[END_REF][START_REF] Balcan | Provable guarantees for gradientbased meta-learning[END_REF][START_REF] Khodak | Adaptive gradient-based meta-learning methods[END_REF][START_REF] Denevi | Learning-to-learn stochastic gradient descent with biased regularization[END_REF] as they concern a different learning setup.4th Workshop on Meta-Learning at NeurIPS

2020, Vancouver, Canada.

For a detailed review of the assumptions, the learning setups, and the derived results from these two papers, as well as an illustration of the theoretical results we refer the interested reader to the Supplementary material.

While not stated as a separate assumption in[START_REF] Du | Few-Shot Learning via Learning the Representation, Provably[END_REF], the authors assume it in their analysis of linear representations and further use it to derive the Assumption 1 mentioned above. See page 5 and the discussion after

Assumption 4.3 in their pre-print.

For more details on the effect of entropic regularization on PROTONET, we refer the interested reader to the Supplementary materials.