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Abstract

The pseudo-deterministic (or simply deterministic) transport method is used
in Monte Carlo particle transport problems to increase the sampling of a
region in space that particles have a low probability of reaching. Although
it has been used by many authors over the years, mainly due to its imple-
mentation in the code MCNP which itself has been extensively validated, to
our knowledge, a proof of the unbiasedness of the method has never been
published.

This article thus provides a comprehensive mathematical description of
the pseudo-deterministic transport method, built from simple transforma-
tions of a given random variable representing an arbitrary physical quan-
tity of interest. Some considerations are made for the handling of potential
secondary particles created during the interaction process, and of specific
estimators such as pulse height or energy spectrum.

This description should allow for a better understanding of the technique,
including its possible uses and limitations, and can be used as a reference by
both simulation code users and developpers looking to implement pseudo-
deterministic transport in their code.
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1. Introduction

The pseudo-deterministic transport method is meant to improve the sam-
pling of a region in space that particles have a low probability of reaching,
and therefore improve the efficiency of estimations made in this area. It is
used whenever a scattering interaction occurs, at which point a new par-
ticle, called ”deterministic”, is created. Its direction is sampled towards a
user-defined sphere, arbitrarily placed in space, and the distance travelled
before the next interaction is sampled such that it is large enough to reach
the sphere. This makes it possible to bring a particle to the area of interest
for every scattering event occuring during the simulation. Estimations are
supposed to remain unbiased by :

� Appropriately weighting the deterministic particle, depending on the
probability of being scattered towards the sphere and then reaching it.

� Killing the original particle if it enters the sphere during the step fol-
lowing the scattering event (which means giving zero weight to any
subsequent contribution to an estimator).

The most detailed description of this method can be found in the MCNP
code documentation [1], due to the implementation in MCNP of a version
of the pseudo-deterministic transport called DXTRAN. This description, al-
though useful for MCNP users, could be considered incomplete : while it gives
the general recipe for applying the technique to particle transport, such as
the deterministic particle weight or the conditions that lead to killing the
original particle, it doesn’t provide a complete and formal mathematical de-
scription of the method, including a proof of its unbiasedness regarding the
various estimations that can be made while using this technique. No mention
is made, either, of the secondary particles potentially created by the inter-
action, and thus questions can arise : assuming this technique is applied to
the Compton scattering of a photon and creates a new deterministic photon,
what of the recoil electron ? Is it necessary to create a second one, and if so
what would be its energy, direction and weight ?

The MCNP documentation is generally used as a basis for other descrip-
tions of the method found in the litterature, and, to our knowledge, no formal
description and proof of its unbiasdness has been published yet. This, how-
ever, could be necessary for implementing the method in any Monte Carlo
simulation code used to solve problems that would require a better sampling
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of a remote or shielded area, such as the calculation of the out-of-field dose
in radiotherapy. This article thus aims to provide a proper mathematical
description of the pseudo-deterministic transport method, by building the
technique from simple mathemathical transformations of the random vari-
able used in an arbitrary estimation of a physical quantity.

2. Sampling of a scattering event

Let us consider a very general case of a particle transport Monte Carlo
model, in which the random variable Y represents any physical quantity of
interest. From that model we can draw samples yi of Y , which is equivalent to
simulating particle tracks and scoring the adequate quantities. This allows an
estimation of some of the properties of Y by using the appropriate estimator,
such as using the mean deposited energy over N particle tracks to estimate its
expected value. Note that even though we refer to this process as ”sampling”
the random variable, it could instead be called ”generating a value according
to its probability density function”, while keeping the word ”sampling” for
directly drawing samples from a known probability density function. Both
will be called ”sampling” in this paper, but it must be kept in mind that this
sampling will generally be done indirectly as the probability density function
of the variable is usually unknown.

Transporting a particle, or drawing a sample of Y , is done by sampling
a series of interactions between which the particle travels in straight lines
called steps. Both the outcome of interactions and the travelled distance
during a step are random and can be represented by random variables which
probability density functions are determined by physical laws and considered
to be known at least approximately in a simulation code.

In the context of particle transport, the variable Y can be expressed as a
function of every physical event or random process taking place during the
particle track, expressed as variables X0 to Xn, such that :

Y = h(X0, X1, . . . , Xn−1, Xn) (1)

Assuming a scattering event takes place during the particle track between
the two random processes Xk and Xl, then we can write

Y = h(X0, . . . , Xk,
−→
Ω , X,Xl . . . , Xn) (2)

where
−→
Ω is the random variable associated to the scattering direction and

X is the distance travelled before the next interaction. The variables X0 to
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Xk will be referred to as
−→
X0 and the variables Xl to Xn as

−→
Xn, such that we

have
Y = h(

−→
X0,
−→
Ω , X,

−→
Xn) (3)

The function h depends on how quantities of interest are scored during
the particle transport. In the case of the energy deposited by a source particle
in some volume, a sample of Y is the sum of all instances of energy deposit
in said volume during the particle track. In this case, Y can be written as
the sum of quantities scored before and after any scattering event, such that

Y = g0(
−→
X0) + g(

−→
Ω , X,

−→
Xn) = Y0 + Yn (4)

The value of Y0 is known from scoring quantities before the scattering
event, while Yn is computed by scoring values during and after the interaction.

Note that even though Yn only depends on
−→
Ω , X and

−→
Xn, in practice, its

sampling still requires the sampling of
−→
X0, as the probability density functions

of random events are only known conditionally to the outcome of the previous
event. In other words, to score the required quantitites after the scattering
event, the particle first needs to be followed up to that event. Even though
the deposited energy is used as an example here, what follows remains true
for any variable that can be written in the form shown in equation 4.

The joint probability density function of the variables X0 to Xn will here
be written as

f(−→x0,
−→ω , x,−→xn) (5)

and the expected value of Y as

E(Y ) =

∫
E

h(−→x0,
−→ω , x,−→xn)f(−→x0,

−→ω , x,−→xn)d−→x0d
−→ω dxd−→xn (6)

3. Conditional sampling of the scattering direction

Let us here assume that Y is a physical quantity computed in an area
that particles have a very low probability of reaching. Then, estimations of
properties of Y will potentially be very uncertain. This will show as a very
high variance, and the estimations will require a large number of samples to
be drawn. This can be somewhat improved by having more particles reaching
the area of interest.

To reach the area of interest, the only way for a particle that is not
directly emitted towards it is, first, to undergo a scattering event in which
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it can be redirected towards it. If we define S as the set of directions that
point towards the area of interest from the location of the interaction, then

it would be helpful to sample, instead of
−→
Ω , the conditional variable giving

the scattering direction knowing it is part of S, written as
−→
Ω |−→Ω∈S, such that

the particle will always be scattered in a direction with a high probability of
contribution to the estimation.

However, this change of variable neglects the complementary set of di-
rections, and the expected value of the new variable would be different from
that of Yn, thus biasing the estimation. To prevent this, one can first split
the expected value of Yn into two parts, by replacing Yn with

Yn1S(
−→
Ω ) + Yn1S(

−→
Ω ′) (7)

where 1S is the indicator function of the set S, 1S is the indicator function

of the complementary set S, and both
−→
Ω and

−→
Ω ′ are defined by the same

probability density function. It is clear that in this case, the expected value
of the random variable in equation 7 is the same as that of Yn.

Because we know that the expected value of Yn1S(
−→
Ω ) is

E(g(
−→
Ω , X,

−→
Xn)1S(

−→
Ω )) =

∫
g(−→ω , x,−→xn)f(−→x0,

−→ω , x,−→xn)1S(−→ω )d−→ω dxd−→xn (8)

with
f(−→x0,

−→ω , x,−→xn)1S(
−→
Ω ) = f(−→x0,

−→ω , x,−→xn|
−→
Ω ∈ S)P (

−→
Ω ∈ S) (9)

where P (
−→
Ω ∈ S) denotes the probability that the direction

−→
Ω is part of S,

it is now possible to introduce the variable
−→
Ω |−→Ω∈S with no bias by replacing

the sampling of Yn1S(
−→
Ω ) in equation 7 by that of the variable Ys defined as

Ys = g(
−→
Ω , X,

−→
Xn)|−→Ω∈SP (

−→
Ω ∈ S) (10)

with the expected value

E(Ys) =

∫
g(−→ω , x,−→xn)f(−→x0,

−→ω , x,−→xn|
−→
Ω ∈ S)P (

−→
Ω ∈ S)d−→ω dxd−→xn (11)

which is, because of 9, equal to E(Yn1S(
−→
Ω )).

At this point, the sampling of the random variable Yn has been replaced
with

Yn1S(
−→
Ω ′) + Ys (12)
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of same expected value. The sum indicates that two contributions need to
be added, meaning that two particles now need to be followed. The first
one is similar to Yn, which is sampled by following a particle normally after
the scattering event, but the indicator function shows that its contribution
is non-zero only if its direction after the interaction is not part of S. In other
words, the particle is killed if directed towards the area of interest after the
scattering event. The second term is a particle which direction is sampled
conditionally, knowing it is part of S, and will therefore always result in
a particle scattered towards the area of interest. However, its contribution

needs to be weighted by P (
−→
Ω ∈ S).

4. Conditional sampling of the step

With the previous change of random variable, a particle is guaranteed
to be directed towards the area of interest after the scattering event, but it
might not be able to reach it without interacting again and will potentially
be absorbed or scattered in another direction. The previous operation can
be repeated for the distance travelled by the particle, this time by splitting
the expected value of Ys into two parts. If R is defined as the set of step
values large enough for the particle to reach the area of interest and R as the
complementary set, the random variable X now needs to be replaced with
X|X∈R,

−→
Ω =−→ω

1 to make sure a particle will reach the area of interest. As before,

the variable YS is replaced by the sum of the two new variables :

YS1R(X)|−→Ω∈S + YS1R(X ′)|−→Ω∈S (13)

With X and X ′ following the same probability density function. Again, the
expected value of the variable of equation 13 is equal to that of YS. In the
same way as shown in part 3, the first term of this new variable can be
replaced by the conditional variable

YSR = g(
−→
Ω , X,

−→
Xn)|−→Ω∈S,X∈RP (

−→
Ω ∈ S)P (X ∈ R|

−→
Ω = −→ω ) (14)

of same expected value. This new variable is the deterministic particle : its
direction is sampled towards the area of interest, its step is large enough to

1Although it will not be written explicitly as R(Ω), it must be kept in mind that the
set R depends on the value of Ω, hence the conditional dependance of X on Ω = ω.
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reach it, but its contribution must be weighted by P (
−→
Ω ∈ S)P (X ∈ R|

−→
Ω =

−→ω ). Because the computation of P (
−→
Ω ∈ S) can be very time-consuming, we

can choose to replace
−→
Ω |−→Ω∈S with a random variable following a specifically

chosen probability density function (also defined on S) using the importance
sampling method (this is explained in MCNP’s documentation [1]).

5. Handling of complementary particles

At this point, the expected value of the sampled random variable has
been split twice into two parts and the expected value of Yn is estimated
by sampling three different variables, each corresponding to a particle that
needs to be transported :

YRS + YS1R(X ′)|Ω∈S + Yn1S(
−→
Ω′) (15)

However, the variable YS1R(X ′)|Ω∈S, as written explicitly

g(
−→
Ω , X ′,

−→
Xn)|−→Ω∈SP (

−→
Ω ∈ S)1R(X ′)|−→Ω∈S (16)

can be replaced with the variable of same expected value (see property 9) :

g(
−→
Ω , X ′,

−→
Xn)1S(

−→
Ω )1R(X ′) (17)

which can also be written as

Yn1S(
−→
Ω )1R(X ′) (18)

The sampled variable then becomes

YRS + Yn1S(
−→
Ω )1R(X ′) + Yn1S(

−→
Ω′) (19)

Finally, the last two terms of the random variable in equation 19 can then be
merged with no change to the expected value to create the random variable
associated to pseudo-deterministic transport :

YRS + Yn

[
1S(
−→
Ω′)1R(X ′) + 1S(

−→
Ω′)
]

(20)

with, again,
−→
Ω′ defined by the same probability density function as

−→
Ω . The

second variable of equation 20 can be sampled by following only one particle
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instead of two as in equation 15, thus saving computer time. This particle
is transported in a completely analog manner, except that its contribution
to any estimation will only be non-zero at the condition that it is either
not directed towards the area of interest, or it is directed towards it but
doesn’t reach it within its next step. In other words, the particle must be
killed if it enters the area of interest in the step following the interaction.
This complementary particle is similar to the “non-deterministic” particle
from the DXTRAN method. As each step retained the expected value of the
previous sampled variable, it can be shown that

E
(
YRS + Yn

[
1S(
−→
Ω′)1R(X ′) + 1S(

−→
Ω′)
])

= E(Yn) (21)

6. Handling of secondary particles produced

In the final expression of the random variable associated with pseudo-

deterministic transport in equation 20, both g(
−→
Ω , X,

−→
Xn)|−→Ω∈S and g(

−→
Ω ′, X ′,

−→
Xn
′)

appear when explicitly writing YRS and Yn. Those functions depend on
−→
Xn

or
−→
Xn
′, which are themselves sampled by transporting the scattered particle

after the interaction where pseudo-deterministic transport was applied. This
includes any secondary particles produced, such as the recoil electron from a

Compton scattering, whose energy depends on
−→
Ω .

Taking Compton scattering as an example, this means two recoil elec-
trons with different energy need to be transported : one associated to the
deterministic photon and carrying the same weight, and one associated to
the complementary photon and which must be killed if the photon enters
the area of interest. This would cause a substantial increase in computation
time, but can be avoided by transporting only the recoil electron produced
by the complementary photon, with no weight or kill condition. This also
applies to any secondary particle produced, such as X-ray emitted by the
atomic relaxation after being ionised by the scattering interaction.

Let us write as
−→
Xp every random process encountered by the primary

particle, and as
−→
Xs every random process encountered by any secondary

particle produced by the scattering interaction. Then the variable Yn (see
equation 4) can also be written as :

Yn = g(
−→
Ω ,
−→
Xp,
−→
Xs) (22)
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Assuming the energy deposited by the entire particle track is being scored,
then the function g is the sum of the contributions of the primary particle
and of the secondary particles and can be written as :

Yn = g(
−→
Ω ,
−→
Xp,
−→
Xs) = h(

−→
Ω ,
−→
Xp) + h′(

−→
Ω ,
−→
Xs) (23)

Notice that in this case, the scattering angle
−→
Ω is sampled as the inter-

action takes place, and both the next processes of the primary and of the
secondary particles produced depend on its value. That is why applying

pseudo-deterministic transport, as shown in section 3, by first splitting
−→
Ω

according to whether or not the particle is directed towards the area of in-
terest would create two sets of primary and two sets of secondary particles
to be simulated.

However, if we introduce the variable
−→
Ω ′ of same probability density

function as
−→
Ω , then we have

E (Yn) = E
(
h(
−→
Ω ,
−→
Xp) + h′(

−→
Ω ′,
−→
Xs)
)

(24)

In this step, the scattering angle associated to the secondary particles is

independent from
−→
Ω and must be sampled separately.

Then, in order to apply pseudo-deterministic transport, one first needs
to split the random variable according to the scattering angle of the primary

photon as shown in section 3. The variable h(
−→
Ω ,
−→
Xp) in equation 23 is then

replaced by :

h(
−→
Ω ,
−→
Xp)1S(

−→
Ω ) + h(

−→
Ω ,
−→
Xp)1S(

−→
Ω ) (25)

As before, it can be shown that

E(Yn) = E
(
h(
−→
Ω ,
−→
Xp)1S(

−→
Ω ) + h(

−→
Ω ,
−→
Xp)1S(

−→
Ω ) + h′(

−→
Ω ′,
−→
Xs)
)

(26)

Then, the variable h(
−→
Ω ,
−→
Xp)1S(

−→
Ω ) is split according the the distance trav-

elled during the next step, and becomes

h(
−→
Ω ,
−→
Xp)1S(

−→
Ω )1R(

−→
Ω ) + h(

−→
Ω ,
−→
Xp)1S(

−→
Ω )1R(

−→
Ω ) (27)

We now have :

E(Yn) = E

(
h(
−→
Ω ,
−→
Xp)1S(

−→
Ω )1R(

−→
Ω ) + h(

−→
Ω ,
−→
Xp)1S(

−→
Ω )1R(

−→
Ω )

+ h(
−→
Ω ,
−→
Xp)1S(

−→
Ω ) + h′(

−→
Ω ′,
−→
Xs)

) (28)
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The variable
−→
Ω can now be replaced with

−→
Ω ′ and

−→
Xp with

−→
Xp
′ of same

probability density function in the second and third terms (associated with
the complementary particles) of equation 28 such that we can write

E(Yn) = E

(
h(
−→
Ω ,
−→
Xp)1S(

−→
Ω )1R(

−→
Ω )

+ h(
−→
Ω ′,
−→
Xp
′)
[
1S(
−→
Ω ′)1R(

−→
Ω ′) + 1S(

−→
Ω ′)
]

+ h′(
−→
Ω ′,
−→
Xs)

) (29)

In the first term inside the expected value of equation 29,
−→
Ω and

−→
Xp can

be replaced with the weighted conditional variables
−→
Ω |−→Ω∈SP (

−→
Ω ∈ S) and

−→
Xp|
−→
Xp∈RP (

−→
Xp ∈ R) as was done in parts 3 and 4 in order to formulate the

expected value of a random variable representing a deterministic particle as
shown in equation 14. The next term is the expression of the complementary
particle, as in the second term of equation 20, and the last one represents the
secondary particles produced by the interaction, which, in this case, are not

impacted by replacing the scattering angle
−→
Ω with a conditional variable.

Notice that last two variables in the expected value of equation 29 are

sampled by drawing only one scattering angle
−→
Ω ′, and then transporting

the associated primary particle (
−→
Xp
′) and only one set of secondary particles

(
−→
Xs). Taking the example of a Compton scattering, this means the recoil

electron’s energy and direction are those associated to the complementary
photon’s scattering angle.

7. Use with specific estimators

Up to this point, it was assumed that a sample of the studied random
variable was the sum of contributions from all the particles involved in the
track of a source particle, such as the deposited energy per source parti-
cle which includes not only the energy deposited by both the deterministic
particle and the complementary particle, but also the secondary particles
produced. However, it is not the case for all possible estimations and the use
of pseudo-deterministic transport might require changes in how quantities
are scored compared to a simulation with no variance reduction.

In the case of a pulse height estimator on an energy interval Bi, the
random variable takes for value 1 if the energy deposited during the particle
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track falls into the interval Bi and 0 otherwise. The sampled variable can
therefore be written as

Y pulse = 1Bi
(E) (30)

Where E is the energy deposited during the particle track. This deposited
energy is itself a function of every physical process taking place during the
particle track, such that Y pulse can be written

Y pulse = hpulse(
−→
X0,
−→
Ω , X,

−→
Xn) (31)

as was done in equation 3. In this case however, Y pulse usually cannot be
written as the sum of the two contributions before and after the scattering
event where pseudo-deterministic transport is used. In a simulation without
variance reduction, the total energy deposited by all particles in the track
would be computed and then checked against Bi to determine the value of
Y pulse, which could be written as

hpulse(
−→
X0,
−→
Ω , X,

−→
Xn) = 1Bi

(g0(
−→
X0) + g(

−→
Ω , X,

−→
Xn)) (32)

where g0(
−→
X0) and g(

−→
Ω , X,

−→
Xn) are the energies deposited before and after

the scattering event. Instead of being the sum of both contributions, Ypulse

is a function of this sum. Assuming the way the energy is scored is not
changed when using pseudo-deterministic transport, the pulse height estima-
tions would be biased as condition 4 is not met. As it cannot be expressed
as a sum, applying pseudo-deterministic transport without first separating
the contributions would yield :

hpulse
pseudo−det(

−→
X0,
−→
Ω , X,

−→
Xn)

= hpulse(
−→
X0,
−→
Ω , X,

−→
Xn)|X∈R,

−→
Ω∈SP (

−→
Ω ∈ S)P (X ∈ R|

−→
Ω = −→ω )

+ hpulse(
−→
X0,
−→
Ω ′, X ′,

−→
Xn
′)[1S(

−→
Ω )1R(X) + 1S(

−→
Ω )]

(33)

where
−→
Ω ′, X ′ and

−→
Xn
′ respectively follow the same probability density func-

tion as
−→
Ω , X and

−→
Xn.

Contrary to what was previously done, the contribution of the entire track
that contains the deterministic particle now needs to be weighted, while the
entire contribution from the track of the complementary particle will be set
to zero if it enters the area of interest during its next step.

Some considerations about the secondary particles produced by the in-
teraction also need to be made for pulse height estimations : in the previous
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section, the contributions to the estimation from the two sets of secondary
particles produced by the application of pseudo-deterministic transport were
merged into a single set of particles because the expected value of the random
variable could be written as the sum of both contributions. However, in this
case, using notations defined in section 6, it can be written as :

gpulse(
−→
X0,
−→
Ω ,
−→
Xp,
−→
Xs) = 1Bi

(
h0(
−→
X0) + h(

−→
Ω ,
−→
Xp) + h′(

−→
Ω ,
−→
Xs)
)

(34)

In this case, the total energy deposited by the source particle is computed by
summing the energy deposited before, during and after the scattering event.
Then, the contribution of the source particle is 1 if the total energy falls into
the interval Bi and zero otherwise. We can see that in this case the random
variable is not a sum of the three contributions but again a function of this
sum. This means the process devised in 6 cannot be applied to merge the two
sets of secondary particles into a single one and both need to be transported.

Finally, in the case of an energy spectrum estimation, which consists
of obtaining the distribution of the energy of particles entering a specific
region, multiple energy intervals are defined and each corresponds to a unique
random variable. In each particle track, the number of particles with an
energy contained in each interval is tallied. This means contributions from
all particles are scored independently and the sampled variable for a given
interval Bi, can be written as :

Y spectrum =
N∑
j=1

1Bi
(Ej) (35)

where Ej is the energy of the jth entering particle. With E1 to Ek−1 the
energy of particles entering before the scattering event and Ek to EN the
energy of particles entering after, Y spectrum can be written as :

Y spectrum =
k−1∑
j=1

1Bi
(Ej) +

N∑
j=k

1Bi
(Ej) (36)

which can be expressed as a sum of functions g0 and gn of the energy of
entering particles :

Y spectrum = gspectrum0 (E1 . . . Ek−1) + gspectrumn (Ek . . . EN) (37)

The energy of particles 1 to k − 1 are functions of every random process

occuring before the scattering event,
−→
X0, and similarly, the energy of particles
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k to N are functions of processes
−→
Ω , X and

−→
Xn. As such, Y spectrum can also

be written as :

Y spectrum = hspectrum
0 (

−→
X0) + hspectrum

n (
−→
Ω , X,

−→
Xn) (38)

This allows for the use of pseudo-deterministic transport (applied to the
second term of equation 38) without any change to scoring.

In the case of energy spectrum estimations, the sampled random variable
can also be written as the sum of contributions from the primary particle
and secondary particles produced by the scattering event in the same way
as the deposited energy, and the two sets of secondary particles produced by
the pseudo-deterministic transport can be merged into a single one.

8. Conclusion

Among the many available variance reduction techniques, pseudo-deterministic
transport seems to be one of the most promising for improving the sampling
of a region in space that particles have trouble reaching, by forcing particles
to reach an arbitrarily chosen region (usually spherical).

We have shown that this method can be applied to any scattering event
during the transport of a particle, by splitting the particle track twice de-
pending first on the scattering direction and then on the distance travelled
before interacting again. Among the three particles created, one is a weighted
”deterministic” particle, allowed to reach the desired area by conditionally
sampling the scattering direction and the travelled distance. The other two
can be regrouped without bias into a single particle carrying no weight mod-
ification, but that must be killed if it enters the area of interest during its
next step.

We have also shown that secondary particles created by the scattering
event can, when the sampled variable can be expressed as the sum of every
particle’s contribution, be merged into a single set of secondary particles asso-
ciated with the complementary particle of the pseudo-deterministic transport
while keeping the expected value of the original variable.

Finally, some considerations were made about which estimators can be
used with this method and how this might impact how simulation codes tally
the quantities of interest. Pseudo-deterministic transport can be used with
energy spectrum estimators without any change to scoring, but it will bias
pulse height estimators assuming the code tallies the total energy deposited
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during the particle track with no regard to which type of particle interacted
(deterministic or complementary). Merging the two sets of secondary par-
ticles created by the scattering event also does not work with pulse height
estimators, and both need to be transported.

This works provides a basis for an unbiased implementation of the pseudo-
deterministic transport method in a Monte Carlo simulation transport code,
which can be used to solve problems related to the under-sampling of a
specific region in space.
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