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Collisional vertical f - asymmetry effect

Poloidal asymmetry 

• The poloidal asymmetry is given by the parallel force balance

• With the electrostatic potential modelled as e(f-<f>)/Te = dfcosq+Dfsinq and

Self-consistent collisional impurity transport model

• Implemented in FACIT code (FAst Collisional Impurity Transport)

• Impurity flux & asymmetry are non-linear functions of the impurity gradient

• Collisional friction couples vertical & horizontal asymmetry: tilting w.r.t. the drive 

Analytical approach for collisional impurity transport
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 Heavy impurity transport is a key issue in metallic wall tokamaks

 Collisional part can be dominant over turbulent one in the core [1]

 Derivation of a fast analytical model for collisional impurity transport

 Self-consistent Poloidal asymmetry and radial flux

 Applicable to rotating & ICR Heated plasmas [2]

 Compared with XTOR [3,4] simulations, and with NEO [5]

 Investigation on a rare case of Tungsten accumulation on WEST

 ICRH-driven asymmetry could be the main mechanism
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Summary

The natural case (no rotation, no f asymmetry)

Numerical experiments with XTOR-2F code [2]

• Neoclassical physics [4] 

• Impurity conservation and momentum equations

• The collisionality (na) is scanned artificially

• The circle in the (d, D) plane is recovered …

• … as well as the reduction of the pinch velocity (fig. 2)

Neoclassical steady-state (Gneo=0)

• Poloidal asymmetry cancels (fig. 3)

• XTOR simulation follow same initial trajectory in (d, D)
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Neoclassical impurity transport 

• With a poloidal distribution parametrized as                                                     [1]:

• with                                                  , e=r/R0, C0
a~1.5 and ki~-1.17 in the banana regime

Fig.1 : Radial impurity flow as a function

of the impurity charge Za with & without

selft-consistent poloidal asymmetry

(left); corresponding asymmetry

(right).The impurity profile is flat.

Extension of the natural case to finite f - asymmetry 

• Ion-electron collisions drive a vertical f - asymmetry [7]

• with

• Asymmetry recovered with NEO at 1rst order : not used 

for computing impurity flux

• But in fact, it strongly impact impurity flux & poloidal 

asymmetry in the absence of other drives (no rotation 

& no ICRH) (fig.4)

• Only effective at low Ti Fig.4 : Natural vertical electrostatic

potential asymmetry profile, pinch

velocity and horizontal asymmetry

with and without Dnat, .

Tungsten peaking & ICRH operation: a WEST case

Poloidal asymmetry parameters (d, D) move on a circle as collisionality varies 

• Pinch velocity is strongly reduced by poloidal asymmetry at high Z (flat na) [6] (fig.1)

Fig.2 : Asymmetry (top) and

ratio of radial flow to

theoretial value without

asymmetry (bottom): XTOR

simulations & FACIT model

Fig.3 : Left: radial flux (top) and asymmetry (bottom).

Right : XTOR simulations & FACIT model

Toroidal rotation and ICRH effect

Toroidal rotation 

• Neoclassical diffusion coefficient, pinch velocity and 

horizontal asymmetry at Gneo=0 in good agreement 

with NEO for Mi<0.3 (fig. 5)

• Pinch velocity overestimated above Mi<0.3

• Low Field Side localization due to centrifugal force

Fig.5 : Diffusion coefficient,

pinch velocity and horizontal

asymmetry as a function of

the ion Mach number.

ICRH

• Minority temperature anisotropy : horizontal f-asymmetry

• Neoclassical diffusion coefficient, pinch velocity and 

horizontal asymmetry at Gneo=0 agrees with NEO (fig.6)

• High Field Side localization due to electrostatic force

• Transition from expulsion to accumulation above a critical 

temperature anisotropy

• Neoclassical diffusion vanishes at the transition: classical 

diffusion dominant

• Favorable domain T/T|| < (T/T||)
crit expands with Mi as

Fig.6 : Diffusion coefficient, pinch

velocity and horizontal

asymmetry as a function of T/T||.

Rare cases of Tungsten accumulation on WEST

• Low torque plasma: turbulent transport dominates [8]

• Accumulation observed in some ICRH pulses (fig.7)

Modeling of Tungsten peaking

• Interpretative Integrated modeling with METIS [9]

• Ion temperature deduced neutron flux & Ti  (neTe)

• Minority temperature anisotropy : EVE/AQL [10] (fig. 8)

• Minority temperature screening effect not considered

• Toroidal rotation not measured but (4,1) MHD mode 

accelerates linearly with ICRH power (fig.9)

• Rotation:                                          with (V/P)~3km/s/MW

• Tungsten peaking from FACIT consistent with ICRH drive 

at low rotation (V0~0) (fig.10)

Fig.7 : ICRH power,

radiative power and core

electron temperature.

EVE/AQL

fH=5%

Fig.8 : H temperature

anisotropy from EVE/AQL
Fig.9 : MHD mode rotation

as a function of PIC.

Fig.10 : Tungsten peaking in (PIC, Vj)

map. Trajectories for V0=0 and 50 km/s


