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Abstract�Due to the increasing profitability of photovoltaic 
systems, the penetration of decentralized domestic photovoltaic 
energy sources is growing. Contrarily to conventional energy 
sources, photovoltaic systems cannot be scheduled to meet the 
consumption. This prompts the need to shift the energy 
consumption towards times with high photovoltaic production. 
Indeed, local consumption of the produced energy allows the 
prosumer to increase the profitability of its photovoltaic system 
and decreases the impact of high photovoltaic penetration on the 
distribution grid. To this end, energy management methods are 
investigated. However, the benefits of the methods are 
inherently dependent on the study case. This paper presents a 
sensitivity analysis based on a demand response method, 
investigating its dependency with the prosumer load profile and 
with the production forecast accuracy. The demand response 
method introduces flexibility in the time-of-use of electricity 
consuming devices in order to increase the profitability of 
photovoltaic systems, but also to reduce the peak power 
exchanged with the distribution grid.  

Keywords�photovoltaic, demand response, self-consumption, 
optimization, forecast, genetic algorithm 

I. INTRODUCTION 

In France, grid parity is about to be reached, making 
photovoltaic (PV) systems profitable without subsidies [1], 
[2]. The profitability of PV systems is likely to prompt the 
development of decentralized residential PV. A high 
penetration of distributed generators (DG) on low-voltage 
grids triggers the need either to enhance the grid infrastructure 
or to occasionally curtail the renewable production. Authors 
in [3] showed how demand response (DR) can help control 
voltage in distribution grids with high DG penetration, by 
decreasing the power exchanged with the grid. In this way, 
demand response can reduce the need for grid reinforcement 
in spite of a high PV penetration rate. Another benefit of DR 
is for a prosumer to increase the profitability of its PV system. 
In a situation where the selling price of PV power is lower than 
electricity retail price, it is more lucrative for the prosumer to 
shift his energy consumption in order to consume its own 
electricity, as illustrated on Fig. 1.  

In a context of increasing penetration of decentralized PV 
systems, energy management methods are increasingly 
investigated. Authors in [4] reviewed scientific literature on 
self-consumption (SC) and found that two methods to increase 
SC are mainly used: energy storage management and active 
load shifting. According to [5], information technologies 
enable the demand to become more flexible, �thanks to the 
ability of real time sensing, controlling and scheduling the 
power usage, and the introduction of mobile loads and local 
storage�. Similar studies in [6]�[10] present various methods 
to take advantage of this flexibility and increase the 
simultaneity of demand and production. 

 Depending on the aim of the energy management strategy, 
three indicators can be used to quantify the results: the self-
consumption rate SC%, the self-production rate SP% and the 
peak exchanged power Pmax. When striving for a bigger 
amount of energy consumed locally (surface C on Fig. 1), SC% 
and SP% are the main metrics. SC% represents the locally 
consumed share of the produced energy, and SP% represents 
the locally produced share of the consumed energy. These two 
indicators are defined in Eq.  and  based on Fig. 1. 
When aiming at reducing the impact of a prosumer on the 
distribution grid, the peak exchanged power can be used as an 
indicator.  

 

 

However, the improvement brought by these energy 
management strategies is inherently dependent on the study 
case. Authors in [4] point out significant variations in the 
results of scientific research about the use of storage and 
demand response to increase the amount of self-consumed 
energy. They explain that �many influential factors differ 
between the studies, e.g. climate, building characteristics, load 
types, PV system sizes, etc�. In addition, for energy 
management methods based on day-ahead PV production 
forecasts, the accuracy of the forecast can influence the results 
of the study.   

This paper investigates how the benefits brought by a 
demand response method depend on variations in prosumers 
load profiles and production forecast accuracy. An demand 
response method based on a genetic algorithm is implemented 
to schedule day-ahead programmable loads in a household. 
The genetic algorithm was chosen because of its ease of 
implementation and its ability to look rapidly through the 
solution space. The method considers that electricity 
prosumers have the capacity to shift part of their load by 
scheduling programmable appliances to increase the 
consumption of self-produced energy. The potential of a 
prosumer to improve its consumption pattern depends on the  

Fig. 1: illustration of an energy management strategy.



available PV power and on the programmable share of the 
consumption. Two types of weather forecast are used in the 
paper. In the reference case, called �ideal forecast�, it is 
assumed that the PV production of the next day is known day-
ahead with complete accuracy. In the second case, called 
�realistic forecast�, a day-ahead PV production forecast is 
provided by a third party short term PV forecasting service.  

This paper is organized as follows: Part II describes the 
approach used to solve the optimal scheduling problem under 
constraints. Part  III describes the data used in the different 
study cases. Part IV investigates the impact of the prosumer 
profile on the results of the algorithm. Part V addresses the 
issue of realistic forecast and its impact on the obtained 
results. Finally, Part VI discusses the results and gives 
perspectives for future work. 

II. APPROACH USED 

A. Problem definition 

The consumption profile Pcons of an household is 
composed of two parts: a baseload profile Pbase that cannot be 
controlled, and a set of shiftable loads that can be scheduled 
to start at predefined times. For this purpose, the household is 
equipped with a set A of programmable appliances, each 
appliance a being used to satisfy a set N(a) of day-to-day 
needs. Each need n in N(a) has a predefined consumption 
profile Pa,n, a duration dn, and a set O(n) of occurrences in the 
following day. During the day-ahead optimization phase, a 
genetic algorithm schedules each occurrence of a need to start 
with a delay o. This is formalized in . 

 

The production source examined in this paper is a PV 
system with a production curve PPV. Thus, the power 
exchanged between the household and the electricity grid is  
given in . 

 

B. Constraints of the problem 

In order to simulate the operation of an actual PV system, 
following constraints are added to the problem:  the 
consumed power cannot exceed the power Psub subscribed 
from the DSO , and two needs requiring the same 
appliance cannot satisfied simultaneously . In , dn is 
the duration of the need associated with the occurrence oi or 
oj, that has the earliest starting time and | oi - oj |is the time 
difference between two starts of appliance a. 

 

 

C. Objective functions and evaluation of the results 

The genetic algorithm takes a population of 250 
individuals, each individual being the set of delay times for 
all occurrences of every need requiring one of the 
programmable appliance in the household in the following 
day. This population evolves over generations depending on 
the ability of its individuals to meet a chosen optimization 
objective. The optimization process targets a single objective 

among maximizing SC%, maximizing SP% or minimizing the 
peak exchanged power Pmax. Mathematical formulation of the 
three indicators are given in Eq. � . 

 

 

Eq. �  indicate the percentage gain of the self-
consumption rate, the self-production rate and the maximal 
peak power, with Xini and Xopt the values of indicator X 
respectively before and after optimization. 

 

 

III. AVAILABLE DATA 

A. Consumption profiles 

The consumption profiles of the studied households are 
extracted from the Load Profile Generator (LPG) [11]. LPG 
generates a consumption pattern for a chosen household 
template using a behavior based model.  Three household 
templates provided by LPG have been used in this paper: 

 CHR05: 5 person family, both parents work outside home 
 CHR35: single person, works outside home 
 CHR04: couple, one works outside home, one at home  

Table 1 provides information on the generated 
consumption patterns, such as the yearly consumption, the 
programmable appliances available (dishwasher DW, 
washing machine WM and dryer DR), the mean use of these 
appliances per week, and their share in the total consumption. 
It can be observed from this data that the consumption patterns 
vary among the three household templates. CHR05 has the 
highest consumption, the highest share of programmable 
appliances in the consumption and the most frequent use of 
the appliances. On the other hand, CHR35 has the lowest share 
and the less frequent use of programmable appliances, as well 
as the lowest overall consumption. CHR04 has an 
intermediate consumption and use of the programmable 
appliances. The demand response method presented in Part II 
will be able to control 32.4% of CHR05 consumption, 7.5% 
of CHR35 consumption and 12.1% of CHR04 consumption.  

Table 1: consumption data for three household templates 

 
Household template 

CHR05 CHR35 CHR04 

Yearly consumption [kWh] 5419 1828 3178 

Programmable appliances DW WM DR WM DR WM DW 

Mean use of appliances 
[times/day] 

2.3 0.4 0.9 

Share of prog. appliances in 
consumption [%] 

32.4 7.5 12.1 



B. Production profiles 

The PV production forecast used in Part IV is generated 
by solving the single-diode model under irradiance data from 
the Copernicus Atmosphere Monitoring Service Information 
for the year 2015. The day-ahead optimization in Part IV is 
therefore based on  an ideal forecast of the PV production. 
Three sizes of PV systems are considered: 1.1 kWp, 2.2 kWp 
and 4.4 kWp, respectively producing 3.2 MWh/year, 
6.3 MWh/year and 9.5 MWh/year. 

To investigate the impact of PV production forecast 
accuracy on the result of the optimization method (Part V), the 
appliances are scheduled based on a realistic day ahead 
forecast of the PV production. This forecast is provided for an 
existing PV system by a third-party expert system combining 
artificial intelligence, statistical and physical models. The 
actual production of the PV system is monitored and used to 
evaluate indicators SC%, SP% and Pmax. The indicators are 
compared with those obtained from an �ideal forecast� of the 
PV production. In this �ideal forecast�, measures of the 
production are used for both the day-ahead scheduling and the 
evaluation of the indicators. 

IV. IMPACT OF CONSUMPTION PROFILE 

In this part, the genetic algorithm schedules appliances for 
nine prosumer profiles labeled P1 to P9, obtained by crossing 
the three consumption profiles with the three sizes of PV 
systems. The characteristics of the prosumer profiles are given 
in Table 2. The simulations run over one year, to take into 
account seasonal variations in consumption and production. 

Table 2: Description of the simulated prosumers 

Household 
template 

Peak power of the PV system [kWp] 

1.1 2.2 4.4 

CHR05 P1 P2 P3 

CHR35 P4 P5 P6 

CHR04 P7 P8 P9 

A. Results 

Table 3 presents the results of the study: for each profile, 
the algorithm was applied three times, for the three objective 
functions described in Part II.C. The yearly values of SC%, 
SP% and Pmax are given before and after applying the 
scheduling algorithm, and the gains gsc, gsp and gp are 
calculated based on Eq. - . 

Table 3: Yearly self-consumption rate, self-production rate and maximal 
peak power before and after optimization for each profile  

 The three household templates chosen show different 
shares of energy consumed by programmable appliances in 
the total consumed energy (see Table 2). However, Fig. 2 
shows no direct relationship between this share and the gains 
generated by the algorithm, defined in Eq. . Indeed, in its 
initial consumption pattern, household CHR04 already has a 
use of programmable appliances during the day time, as 
depicted on Fig. 3, while CHR05 and CHR35 have an 
important use of flexible appliances in the evening. Since 
CHR04 use of programmable appliances is initially already at 
hours with PV production, the demand method response 
brings little improvement to SC%, SP% or Pmax. 

 
Fig. 2: Improvement of the self-consumption rate for each household 
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Profile 
SC% SP% Pmax [kW] 

gsc gsp gp 

Ini Opti Ini Opti Ini Opti 

P1 50 68 15 20 7.9 6.2 36 33 22 

P2 37 56 22 32 7.6 6.1 51 45 20 

P3 27 42 31 49 7.6 6.0 56 58 21 

P4 24 29 21 25 4.8 4.4 21 19 8 

P5 16 20 28 33 4.8 4.4 25 18 8 

P6 10 12 36 42 4.8 4.4 20 17 8 

P7 51 57 25 28 5.9 5.4 12 12 8 

P8 40 44 38 43 5.3 4.7 10 13 11 

P9 27 30 53 58 5.1 4.2 11 9 18 
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Fig. 3: Repartition of programmable appliances consumption through 
the day, before and after optimization 



The results in Table 3 also show that SC% and SP% vary 
significantly depending on the sizing of the PV system, while 
Pmax stays quite stable. Indeed, in the nine study cases, Pmax 
happens when withdrawing energy from the grid.  

B. Discussion 

The results in Table 3 show, for each prosumer profile, a 
positive impact of the scheduling for all three optimization 
objectives: applying the demand response method increases 
SP% and SC% and decreases Pmax. The impact is most 
remarkable for profile P3. For this prosumer profile, gsc is 
worth  56%, gsp is worth 58% and gp is worth 21%. By 
scheduling his appliances, this prosumer increases his amount 
of self-consumed energy by 647 kWh. In France, a prosumer 
similar to P3, with a 4.4 kWp PV system and a 9 kVA 
electricity subscription will sell its production surplus 
6 ct�/kWh [13] and buy its electricity 14.69 ct�/kWh. 
Therefore, the 647 kWh increase in its self-consumed energy 
will make a 56� difference on its electricity bill each year. The 
decrease in the maximal power exchanged with the DSO 
could allow this prosumer to switch from a 9 kVA to a 6 kVA 
subscription, saving him 15 �/year [14].   

However, the values of gsc, gsp and gp in Table 3 also shows 
the difficulty of assessing the quality of an energy 
management method. When evaluating improvement brought 
by the method, we find important discrepancies depending on 
the the study case. Indeed, each prosumer has a different 
potential for shifting its consumption. This confirms the 
difficulty pointed out in [4] to distinguish a trend in the 
increase of self-consumption using demand response. 

It is therefore advisable to apply a demand response 
method to different prosumer profiles when assessing its 
results. In this way, the potential of the method can be assessed 
under various conditions. Numerous parameters can vary 
among the prosumer profiles: the overall production and 
consumption, the consumption pattern without demand side 
management, the magnitude of the seasonal variations in 
demand and production, or the share of the consumption that 
can be shifted. 

V. IMPACT OF FORECAST QUALITY 

In the previous part, programmable appliances in several 
households where scheduled day-ahead, based on an ideal 
forecast of the production. In order to emulate this ideal 
forecast, the same measured irradiance data was used as day-
ahead forecast and as actual irradiance. However, an energy 
management system implemented in a real household would 
have to decide of the scheduling of appliances based on 
forecasts of the PV production. In this part, the results of the 
method based on an ideal forecast are compared to the results 

based on a realistic day-ahead forecast of the production, in 
order to assess the impact of forecast quality.  

The PV production profiles used in this part come from a 
PV plant in the French Alps. A third party service provides a 
day-ahead forecast of the production, and the actual 
production is monitored. The data is scaled to simulate 
production from a 4.4 kWp PV system. The forecast and 
measured productions are illustrated on Fig. 4 for a one week 
period. The scheduling method is applied for prosumer P3 as 
described in Part IV. In the first case, the genetic algorithm 
searches an optimal scheduling based on the day-ahead PV 
production forecast (realistic forecast) and in the second case 
based on the measured production (ideal forecast). 

A. Results 

Table 4 presents the daily SC% of prosumer P3 with the 
initial consumption pattern (without optimization of the 
demand) and with consumption patterns optimized based on 
realistic and ideal production forecasts. The percentage gain 
gsc is also calculated. Both optimized consumption patterns 
show an improvement compared with the initial case.  For two 
days, 9th and 10th of February, the use of a realistic forecast 
decreases SC% by more 10%, and for the five others days the 
results are fairly similar. Fig. 5 presents the optimized self-
consumption rates based on realistic and ideal forecasts for a 
two months period. The boxplot displays the median, 
minimum and maximum values of daily self-consumption 
rates observed over this period, as well as the interquartile 
range. It shows a decrease of the self-consumption rates when 
scheduling the appliances based on realistic day-ahead 
forecast, compared to ideal forecast, with a median value of 
SC% going from 60.5% to 57.5%. 

Table 4: Comparison of SC% for consumption patterns optimized based on 
realistic and ideal forecasts of the production 

Day 

Initial SC% Optimized SC% gsc 

Initial Realistic 
forecast 

Ideal 
forecast 

Ideal 
forecast 

Realistic 
forecast 

06/02 7 11 11 57 57 

07/02 87 99 100 14 15 

08/02 47 75 75 60 60 

09/02 16 27 36 69 125 

10/02 57 72 80 26 40 

11/02 49 49 49 0 0 

12/02 9 26 26 189 189 

13/02 26 40 42 54 62 

Fig. 4: Day-ahead forecast and actual production of a PV plant
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Fig. 5: boxplot of the daily SC rates over two months (median, minimum, 

maximum and interquartile range) 

B. Discussion 

The results illustrated on Fig. 5 show the importance of 
evaluating an energy management method based on realistic 
PV production forecast, in order not to over-estimate the 
potential of the method. Using a realistic day-ahead forecast 
reduces the benefit brought by the demand response method. 
In order to obtain better results, real time adjustments of the 
scheduling can be made, based on a production forecast with 
a shorter horizon. However, a practical implementation of 
real-time energy management methods brings significantly 
more complexity in the energy management system. It would 
be interesting to assess the benefits of real-time methods 
compared to day-ahead scheduling of the consumption. The 
method presented in this paper takes advantage of long-term 
production surplus to schedule household appliances with a 
long running time. It is likely that methods striving to use short 
term electricity surplus by loading batteries or transforming it 
into heat  would benefit more from a real-time scheduling. 
Indeed, the optimal scheduling of appliances with a long 
operating time is only marginally affected by short-term 
variations in the production. 

VI. CONCLUSION 

This paper presented a sensitivity analysis based on a 
demand response method, investigating its dependency with 
the prosumer load profile and with the production forecast 
accuracy. A method for improving the consumption pattern 
of a household by scheduling a set of programmable 
appliances is implemented. The scheduling is chosen day-
ahead using a genetic algorithm. Three different objective 
functions are proposed for the optimization: the scheduling 
can be chosen to maximize the self-production rate, the self-
consumption rate or to minimize the peak power exchanged 
with the DSO. This method was applied to nine different 
prosumer profiles and provides positive results in all cases. 
However, the improvement in the value of the chosen 
optimization objective vary significantly depending on the 
prosumer�s initial consumption pattern. It is therefore 
advisable to assess the potential of an energy management 
method by applying it to a diversity of prosumer profiles, in 
order to take into account this variability. 

The impact of PV production forecast accuracy on the 
results of a day-ahead scheduling of appliances highlighted 
in Part V shows the need to use realistic forecast data when 
evaluating an energy management method. With a realistic 
day-ahead forecast, the results of the chosen method are 
slightly under those obtained with an ideal forecast. Using 
real-time optimization based on forecast with a shorter 
horizon could improve the results, but would complicate 

significantly the energy management system. In the study 
presented in Part V, a lower forecast accuracy causes little 
decrease in SC%. 

In further work, advanced method for optimizing the 
consumption pattern of a household or a group of households 
will be developed, taking into account the control of electrical 
heating and energy storage systems. In this context, the need 
for real-time control may arise, if the impact of day-ahead 
forecast quality becomes significant.  

The organization of prosumers into microgrids for 
collective self-consumption is interesting, as it reduces the 
impact of single prosumer profiles on the evaluation of the 
benefits brought by a demand response method. The 
association of prosumers can increase their overall flexibility 
and their potential for consuming their own electricity. With 
enough flexibility in its consumption, a microgrid could 
integrate a larger PV production without affecting the 
distribution grid stability or prompting the need to resize 
electricity distribution infrastructure. 
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