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Abstract— Branch coverage of source code is a very widely 

used test criterion. Moreover, branch coverage is a similar 

problem to line coverage, MC/DC and the coverage of assertion 

violations, certain runtime errors and various other types of test 

objective. Indeed, establishing that a large number of test 

objectives are unreachable, or conversely, providing the test 

inputs which reach them, is at the heart of many verification 

tasks. However, automatic test generation for exhaustive branch 

coverage remains an elusive goal: many modern tools obtain 

high coverage scores without being able to provide an 

explanation for why some branches are not covered, such as a 

demonstration that they are unreachable. Concolic test 

generation offers the promise of exhaustive coverage but covers 

paths more efficiently than branches. In this paper, I explain 

why, and propose different strategies to improve its 

performance on exhaustive branch coverage. A comparison of 

these strategies on examples of real code shows promising 

results. 
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I. INTRODUCTION 

A. The importance of exhaustive branch coverage 

Structural coverage criteria are based on the simple 
observation that if the part of the program containing a bug is 
not executed (a.k.a. covered) by any test case then the bug 
cannot be detected. Various structural coverage criteria 
defining test objectives in source code, binary code and 
models or specifications have been proposed. The structural 
code coverage criteria mostly widely used in industry seem to 
be line coverage, branch coverage and MC/DC. These are 
often imposed by certification norms. Moreover these norms 
often impose 100% coverage of coverable test objectives and, 
by extension, some justification of why certain test objectives 
cannot be covered. We call this exhaustive coverage and 
define it as the generation, for all test objectives, of either (a) 
a test case input covering the objective or (b) an explanation 
of the lack of a test case. We insist on the difference between 
exhaustive coverage and bug finding i.e. the speedy coverage 
of many test objectives with no guarantee of completion.  

 Automatic test input generation techniques for exhaustive 
coverage must keep track of which objectives have already 
been covered in order to know when to stop test generation 
and to try to avoid generating numerous test cases which cover 
the same objectives while failing to cover others. Moreover, 
in order to provide an explanation of failure to cover a 
particular test objective, test generation should not stop until 
all possible attempts to cover the objective have been made 
and should then report on the result of these attempts. Let us 
suppose that the uncovered objective is a branch in the source 
code. If there seem to be several partial paths through the 
source code leading to the branch, then all these paths should 

be considered. If the infeasibility of all paths to a branch can 
be automatically demonstrated, then this is the explanation of 
failure to cover the branch. If infeasibility of one or more paths 
cannot be demonstrated automatically, for example, because a 
constraint solver times out, then the explanation for these 
paths is the formula whose satisfiability the solver was trying 
to prove or disprove. 

We focus on the exhaustive coverage of branches because 
the problems that it poses can be generalised to several other 
problems. Indeed, if we consider that each branch leads to a, 
possibly empty, sequential block of lines then the only 
difference between line coverage and branch coverage is the 
coverage of "empty" branches. MC/DC imposes the further 
requirement to cover certain pairs of combinations of atomic 
branches, which essentially involves additional book-keeping. 
Moreover, the coverage of other test objectives which can be 
defined in the source code (e.g. assertion violations), or even 
as pseudo-branches (e.g. run-time errors such as division by 
zero) or source code annotations [1], is also similar to branch 
coverage. Techniques for branch coverage can be extended to 
these test criteria and indeed already are in some automatic 
test generation tools such as Pex/Intellitest [2], KLEE [3] and 
PathCrawler [4]. Other verification tasks apart from testing, 
often framed in terms of reachability, also pose problems 
similar to exhaustive branch coverage. In these, unwanted 
program states are defined and the problem is to demonstrate 
whether they can occur. If they can, then the user often needs 
a counter-example, i.e. test inputs, to help with debugging. 

B. Techniques for branch coverage 

Static analysis based on abstract interpretation can be an 
efficient technique for detecting unreachable branches but it 
cannot generate test input values and because of the over-
approximation which is inherent in this approach, it cannot 
guarantee detection of all unreachable branches. It can be used 
in exhaustive branch coverage as a prelude to automatic test 
generation in order to reduce the number of test objectives [5]. 

Most test generation techniques currently used for branch 
coverage fall into four categories 

1.  Search-based testing is based on meta-algorithms, such as 
genetic algorithms, which can only be used for bug-
finding because they cannot guarantee any results of test 
generation or provide any justification for uncovered 
objectives. 

2.  Fuzz testing can rapidly cover branches on large code 
bases. It often incorporates  similar techniques to search-
based testing or uses some symbolic execution. It can 
only be used for bug-finding. 

3. The recent DiffBlue Cover tool for Java [6] uses model-
checking. This technique could,  in theory, be used for 
exhaustive branch coverage but DiffBlue Cover does 
guarantee that all reachable branches will be covered and This work was partially supported by ANR grant ANR-18-CE25-0015-01.



does not seem to provide any justification for uncovered 
branches. 

4.  The Pex/Intellitest, KLEE and PathCrawler tools are all 
based on symbolic execution. These techniques can be 
used for exhaustive branch coverage but only if there is 
no "concretisation" of branch constraints and if a 
systematic test generation strategy, rather than one based 
on heuristics or randomisation, is used. To our 
knowledge, none of the strategies proposed for KLEE 
offer exhaustive branch coverage and only PathCrawler 
can provide an explanation for uncovered branches. 

C.  Concolic generation and hopeful flipping 

This paper considers exhaustive branch coverage in 
PathCrawler, which uses a concolic test generation method. In 
this method, the first test case is generated by an arbitrary 
choice of test inputs which satisfy the precondition (which is 
supplied by the user and encodes the test context). For this and 
each subsequently generated test case, symbolic execution is 
used to translate the conditions of the successive branches in 
the path, p, taken by the test case, into constraints over the 
input variable values. The resulting conjunction of constraints, 
c0,c1,...  is the path predicate, pred(p), which defines the input 
values of all test cases which would cover p. In practice, the 
source code must be normalised, in order to unroll loops, 
separate out side-effects, decompose complex conditions, etc. 
Moreover, variables used when accessing array elements or 
dereferencing pointers give rise to additional alias constraints. 
System calls must also be stubbed. But we can consider here, 
without loss of generality, that each of the constraints c0,c1,...  
in pred(p) represents the condition of one of the branches 
b0,b1,...  in p. In order to generate test inputs that will cover a 
different path, one of the constraints, ci, must be negated 
(a.k.a. flipping the branch bi). The result, pred(flip(p,i)), is the 
conjunction of the prefix of pred(p) up  to ci-1 and the negation, 
-ci, of ci. It is the predicate of the path prefix,  flip(p,i), formed 
by appending the opposite branch, -bi, of bi to the prefix up to 
bi-1 of p. pred(flip(p,i)) is submitted to a constraint solver. A 
solution to this formula gives the input values of a new test 
case which will cover one of the feasible paths with prefix 
flip(p,i). 

If the constraint solver finds that pred(flip(p,i)) is 
unsatisfiable then we have the demonstration that flip(p,i) is 
an infeasible path prefix. If the constraint solver times out, 
then pred(flip(p,i)) can be used, if necessary, in an explanation 
of non-coverage of either -bi or some branch which could, in 
theory, be reached from -bi. 

Constraint solving is NP-hard and may run until timeout 
so in order to limit worst-case exhaustive test generation time, 
we should limit the number of solver calls and certainly avoid 
calling the solver several times to solve the same problem. 
Another reason for limiting constraint solving is to limit the 
number of generated tests and hence the time to treat each test. 

Classic concolic test generation reduces the number of 
solver calls for path coverage but may be less efficient for 
branch coverage. Indeed, the concolic method interleaves 
generation of new tests (each time a branch is flipped) and 
exploration of the paths covered by the previously generated 
tests. Covered paths are feasible and so are all their prefixes 
so by flipping a single branch in a feasible prefix, the concolic 
method limits solver calls by ensuring detection of the shortest 
prefixes of all the infeasible paths. The unique feature of the 
concolic method is that we do not know which path will be 

covered by the solution recovered from the constraint solver. 
In the case of path coverage, this does not matter because all 
feasible paths must be covered in any case and the concolic 
method ensures that constraint solving is only performed once 
for each node in the tree of feasible execution paths (FEP 
tree). However, we do not usually need to cover all feasible 
paths in order to cover all reachable branches. This is because 
most branches occur in several paths (although exhaustively 
trying all paths to an unreachable branch can sometimes 
necessitate full path coverage). 

In concolic test generation for branch coverage, if the 
opposite of some branch, bi, is not yet covered (and in the 
absence of any other information) then we should always try 
to flip bi because if successful, we are sure to cover an 
uncovered branch. However, if the opposite branch has 
already been covered then we must decide whether to flip bi 
in the hope that the suffix of the path covered by the newly 
generated case will contain some uncovered branch. We will 
call this hopeful flipping.  

D. Research question 

This article investigates how to reduce hopeful flipping 
and tries to answer the following research question: 
Does reducing hopeful flipping in concolic generation for 
exhaustive branch coverage result in fewer solver calls?  

II. OUR EXAMPLES 

The strategies described here were tried on 7 real-life 
examples of C functions: A (a string-processing function 
from the Apache code), ANU (the same example with no 
unreachable branches), D (another string-processing 
function), E (the GNU Core Utils Echo utility), L (checks a 
property of credit-card numbers), T (the Tcas control logic) 
and TNU (the same example with no unreachable branches). 
The table shows the number of lines of code, branches, 
unreachable branches (with the given precondition) and loops 
(with a variable number of iterations) for each example. 

 LOC Branches Unreachable Loops  

A 70 30 1 4 

DNU 70 20 0 1 

E 340 128 37 6 

L 50 18 2 2 

T 170 80 1 0 

All the strategies except MT were run 10 times on each 
example and the results averaged, in an attempt to smooth the 
effects of non-determinism in constraint solving. The MT 
strategy, which combines the non-determinism of multi-
threading with that of constraint solving, was run 100 times 
on each example. 

III. THE DFS STRATEGY 

The first test generation strategy tried on our example is 
simple depth-first search of the FEP tree with a stopping 
criterion which is coverage of all the reachable branches. 

As explained in the Introduction, on order to construct 
pred(flip(p,i)), the concolic test generator must traverse 
pred(p), adding each constraint c0,c1,... to the constraint 
satisfaction problem (CSP) until it reaches ci, where it is -ci, 



which is added. However, each newly covered path (except 
for the first) shares a prefix with the previously generated path. 
To avoid repeating the addition of the constraints of shared 
prefixes, we use incremental constraint solving and the state 
of the solver is stored in a stack after addition of each 
constraint. When a new test case is generated, covering a new 
path suffix, s, then instead of resubmitting the constraints from 
the shared prefix, we can just recover the state of the solver 
from the stack and start to add the constraints from s. In fact, 
for each ci, we use backtracking to the previous state of the 
solver to alternate between flipping or not. If we choose to flip, 
then we add -ci to the CSP and then try to resolve it. If we 
choose not to flip then we add ci and proceed to the next 
constraint, ci+1. 

This is why it is particularly efficient to use an incremental 
solver and backtracking. To facilitate this, PathCrawler is 
implemented in Constraint Logic Programming (CLP) and 
uses the COLIBRI solver [7]. Note that adding a constraint to 
our CSP triggers constraint propagation. This has quadratic 
complexity but it enables certain forms of unsatisfiability to 
be detected before full constraint resolution, whose 
complexity is even greater. Below, we do not count constraint 
propagation as a solver call. 

In our DFS strategy, the first branch to be flipped in each 
newly-covered path suffix, s, is the final branch. If this causes 
a new test case to be generated then the new suffix, s’, is then 
treated, as well as all suffixes generated from s’. After that, the 
generator backtracks back down s, flipping each branch in the 
same way. Test generation stops when either all branches have 
been covered or no branches are left to flip. 

IV. THE EAGER STRATEGY 

The next strategy “reverses” DFS by systematically 
flipping each branch of s first, and, if successful, exploring the 
new suffix, s’, before backtracking over the flip in order to 
proceed to the next branch in s. This makes the strategy more 
breadth-first and as a result, changes the order in which certain 
suffixes might be covered.  

V. THE LOOKAHEAD STRATEGY 

This strategy tries to improve on Eager by taking account 
of whether flipping each branch could increase coverage. It is 
the same as Eager except that each branch is only flipped if its 
opposite is either uncovered or else could possibly lead to an 
uncovered branch. Whether the opposite branch could 
possibly lead to an uncovered branch is decided by a simple 
test of connectivity in the control-flow graph, without trying 
to evaluate the feasibility of the path to the uncovered branch. 

VI. THE ELSE STRATEGY 

This strategy tries to improve on Lookahead by prioritising 
flipping of uncovered branches over hopeful flipping. It starts 
by eagerly flipping just the branches in s whose opposite is 
uncovered and then backtracks down s to hopefully flip any 
unflipped branches whose opposite may lead to uncovered 
branches. 

VII. THE MT STRATEGY 

The two previous strategies modified Eager, which 
introduced an element of breadth-first search. However, Eager 
is not true breath-first search because the earlier branches in 
the suffix are still flipped before the later ones and suffixes 
covered by newly generated tests are explored before 

completing exploration of the suffixes covered by the earlier 
tests. In order to implement “fairer” breadth-first search 
strategies while still taking advantage of the efficiency of 
backtracking, we implemented Else using multi-threading. 

In this strategy, each thread treats one covered path and 
each thread is treated in turn. Moreover, threads are classified 
as high-priority while the treatment advances along s and then 
become low-priority when the treatment backtracks back 
down s for hopeful flipping. Low-priority threads are only 
active while no threads are still high-priority. The information 
on which branches are covered is shared between threads. 

VIII. RESULTS 

Exhaustive branch coverage was achieved on all examples 
and strategies. Figures 1 and 2 illustrate, on the different 
examples, the variation of hopeful flips  and solver calls over 
the successive strategies. The value for the DFS strategy is 
taken as a reference and the values for the other strategies 
calculated as a percentage of this. Note that these DFS base 
values were much higher for A (1427 and 1719) than for ANU 
(152 and 165) but only slightly higher for T than for TNU. 

 

Fig. 1 Hopeful flips  

 

Fig. 2 Solver calls 

The answer to our research question is that there is a 
correlation between hopeful flips and solver calls for all 
examples and strategies. 

However, the influence of fortuitous coverage, and the 
way it varies on different examples, is also evident. It is the 
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reason for which the results for Eager are sometimes worse 
than those for DFS and similarly for Else and Lookahead. 

IX. RELATED WORK 

The work described here is related to a large body of work 
on devising symbolic-execution-based test generation 
strategies to limit path explosion [8]. Some researchers have 
proposed to tackle this problem with strategies to decide 
which branch to hopefully flip next, often based on heuristics, 
such as the shortest theoretical path to an uncovered branch 
[3][9].  Other approaches are based on a decomposition of the 
search space, for example by treating called functions 
separately and storing the results [10], or by identifying non-
interfering blocks of code [11]. There has also been work on 
pruning the search space, by taking advantage of redundancies 
in the FEP tree to use information learnt during generation of 
previous tests [12][13][14]. Our work is complementary to 
most of this. It does propose basic pruning of the search space 
(based on connectivity in the control-flow graph) but tries 
above all to flip uncovered branches first, in order to limit the 
number of hopeful flipping choices, rather than focusing on 
how to choose which branch to hopefully flip next.  

Our MT strategy is closely related to the forking of 
symbolic processes at the heart of the KLEE tool, which is not 
based on concolic generation. Instead, it builds a tree of 
symbolic processes which mirrors the FEP  tree structure. At 
each node in the FEP tree, the feasibility of the prefix ending 
in one of the branches is checked and then, if feasible, that of 
the prefix ending in the other branch. If both are feasible, 
KLEE clones the symbolic execution state so that it can 
explore both paths. It is only at the end of a path, or when a 
possible assertion violation or run-time error is encountered, 
that it generates a test. KLEE has to make more feasibility 
checks (up to 2 per node of the FEP tree) than the concolic 
method and uses a constraint cache to limit solver calls. It does 
not benefit from incremental constraint solving or 
backtracking and this may make it less efficient [15] but 
breadth-first generation strategies are easily implemented. To 
do that in PathCrawler, while keeping the efficiency of 
backtracking, we used multi-threading. Our MT strategy 
clones not only the symbolic execution state, as in KLEE, but 
also the state of our incremental solver. 

PathCrawler is implemented in CLP, which was also used 
to compare different test generation strategies to explore 
executable behavior models in [16]. They discuss the 
difficulty of implementing breadth-first strategies in CLP and 
instead of multi-threading, propose an interleaving strategy. 

Unlike most previous work, ours explicitly takes account 
of how unreachable branches should be treated in exhaustive 
branch coverage. 

X.  CONCLUSIONS 

The answer to our Research Question - whether we can 
reduce the number of solver calls by reducing hopeful flipping 
in concolic test generation - was positive for our examples.  

Our MT strategy is breadth-first, prioritises the flipping of 
uncovered branches and conditions the flipping of the other 
branches to control-flow graph connectivity to an uncovered 
branch. MT was designed to limit the number of hopeful flips 
when performing exhaustive branch coverage and 
successfully did so on all but the A and ANU examples. 
Indeeed, our experiments show that the effectiveness of 

concolic test generation strategies varies somewhat according 
to the tested function. 

The next step in reducing the number of hopeful flips is by 
supplementary measures to prune the search space and this is 
what we will investigate in future work. 
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