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Highlights:  

- Profound future uncertainty is present when planning renewable energy investments 

- Many decisions are made at the territorial level, especially related to heating 

- Simple decision-making tool allowing consideration of uncertainties is needed 

- We seek robust solutions performing well over a wide range of plausible futures 

- Current domestic natural gas heating performs badly in all futures simulated 

 

Abstract:  

Considerable and fast investments in renewable energy technologies are needed in order to reduce 

greenhouse gas emissions to achieve the Paris Agreement climate change mitigation targets. Many of 

these investment decisions are made at the territorial level, especially those relate to the heating 

sector. When choosing the most suitable energy investments, decision makers need to consider 

several performance indicators—economic, social and environmental—simultaneously. In addition, 

decision makers face profound uncertainty concerning the future, as decisions on energy systems are 

always long-term investments. We aim to provide territorial decision makers with a simple decision-

making framework that combines a robust decision-making method with multi-criteria analysis and 

allows the inclusion of territorial features. The main aim is to provide a simple tool to provide data to 

seek robust solutions which will perform well over a wide range of plausible futures. The method 

proposed is illustrated with a case study on renewable heating solutions based in France. Heat 

pumps or central biomass plants are robust in various future conditions, while current domestic 

natural gas based heating performs compared badly to the renewable technologies.  

  

1 Introduction 

 

Considerable investments in renewable energy technologies are needed in order to reduce 

greenhouse gas (GHG) emissions to achieve the Paris Agreement climate change mitigation target to 

limit global warming below 2°C [1,2]. Many of these investment decisions are made at territorial level 

and the local decision makers such as the local administrators, municipal planners and local 

industries play a role in the decision-making process.  
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When selecting the most suitable renewable energy options for a territory, local decision makers 

face multiple questions. These questions are related to the technical properties and costs of 

renewable energy technologies, the resources available in the region (e.g. biomass, solar radiation, 

geothermal and excess energy sources), as well as the existing local energy system and industrial 

activities. The decision makers need to consider several viewpoints—economic, social, and 

environmental—simultaneously, to choose the most suitable energy solutions for the region. Thus, 

decision makers face a decision-making problem in which multiple criteria need to be considered 

simultaneously. They also face the profound uncertainty of the future, as decisions on energy 

systems are always long-term investments (e.g. 20-50 years lifetime), the development of novel 

technologies may be faster or slower than anticipated, the prices of various fuels and feedstock can 

vary significantly, and the global climate and energy policy developments can affect the profitability 

or the expected impacts of certain technologies. Significant uncertainty related to the energy system 

studies is widely acknowledged, but only a minor part of the studies uses uncertainty analysis 

methods [3]. 

Several methods have been developed for decision making under uncertainty, and presented e.g. by 

Marchau et al. [4]. In addition, numerous tools are available for multi-criteria decision making [5]. An 

important question is what kinds of results and data are useful for the decision makers when they 

select between investment options? Another question is the level of complexity of the tools used, in 

terms of the research resources available as well as the ability to interpret and apply the results. This 

is especially relevant at the territorial level, where the resources for complex studies may be limited. 

In this study, we aim to build an easily approachable decision making framework, yet with a strong 

focus on uncertainties. We focus on the robust decision-making method [6] and aim to combine it 

with features of multi-criteria analysis. The core of the approach is that we want to improve the 

decision maker’s understanding of the conditions that make a technology succeed or fail, and the 

possible trade-offs. We aim to provide territorial decision makers with a robust and flexible tool, 

which can adapt to different levels of data available and different level of detail in the models and 

evaluation methods used. By territory, we mean an area smaller than the national scale (e.g. a 

county, district, municipalities, department, or commune) with some kind of internal coherence 

regarding the environment, actors, or governance. While several definitions have been proposed for 

‘territory’ [7–9], the final definition should be case specific. 

We test the method proposed by studying renewable heating investments. The territorial context is 

especially suitable for heating systems, as they are mostly local solutions. For example, in contrast to 

electricity, heating systems do not have international transfer grids. In addition, heating is a timely 

topic as the sector is facing a huge transition process [10]. Currently, around half of the energy 

consumption in the EU is due to heating and cooling in buildings and industry [11]. According to the 

Commission’s impact assessment for 2030, the heating sector is one of the core sectors where 

emission reductions are needed, and at least 40% of heating should be produced by renewables by 

2030 [10]. In 2018, only 21% of the total energy used for heating and cooling in the EU was produced 

by renewable energy [12]. Here we present an illustrative case study in the Isére department in 

France for selecting the most robust renewable heating options.  

The article consist of the following sections: First, we present a short review of the robust decision-

making and multi-criteria analysis methods, how they deal with uncertainties, their benefits and 
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challenges, and which of their features we aim to include in the decision-making framework 

proposed. Then we present the method proposed and illustrate the assumptions for the case study. 

This is followed by the results and discussion. Finally, we provide conclusions and further needs for 

development. 

2  Literature check 

 

In their book Marchau et al. 2019 [4] present various methods for decision making under deep 

uncertainty (DMDU), including Robust Decision Making (RDM), Dynamic Adaptive Planning (DAP), 

Info-Gap Decision Theory (IG) and Engineering Options Analysis (EOA). RDM and IG search for robust 

policy solutions, while DAP emphasizes the importance of monitoring and adaptation to changes 

over time to prevent a chosen policy from failure. An EOA presents a more detailed analysis of 

technical alternatives, and can complement the other approaches [4]. 

In our study, we concentrated on the RDM method, as it provides one answer to the question of 

what kinds of results and data are useful for the decision makers when they select between policy 

and investment options. We have constantly increasing computational power to create models to 

provide responses to our questions [13]. However, Bankes [13] notes that the increased use of 

models does not always improve the quality of decision-making, but rather increases the discussion 

on sensitivities and shortcomings related to the models themselves. He proposed that we should 

focus on “explorative modelling” and include the future uncertainty as an inherent part of the 

analysis. With explorative modelling, he meant using models for series of computational experiments 

in the uncertain future. Bankes’s idea is behind the development of a method known as “scenario 

discovery” or “robust decision-making” by Lempert et al. [14], Groves and Lempert [15] and Bryant 

and Lempert [16].  

In RDM, we model a large number of possible futures and test our technological solution in all these 

futures. The aim is to find the future conditions which make the solution or scenario studied fail or 

succeed [16,17]. This helps the decision maker choose strategies that are more robust and can more 

effectively achieve their goals in an uncertain future [16]. The idea is to seek robust, rather than 

optimal strategies, which perform well over a wide range of plausible futures [6]. The RDM method 

has been applied e.g. by Kasprzyk et al. [18] to study a city’s water supply, by Forsström [17] and 

Perrier [19] to study future energy systems, and by Björnberg [20] to study fossil-free industrial 

systems. Moallemi applied parts of the method (PRIM analysis) to study the transition of an 

electricity system [21]. In addition, the method has often been applied to complex systems, e.g. on 

adaptation to climate change [22]. Lindroos et al. [23] have applied parts of the method to study the 

role of bioenergy combined with carbon capture and storage in a district heating and cooling grid, 

but otherwise the authors are not aware of RDM studies specific on heating sector. 

The benefit of the RDM and other DMDU approaches is that they concentrate on finding solutions 

that can adapt to various future circumstances. This sets them apart from more traditional “predict 

then act” strategies for long-term decision-making [4], and they can rather be considered as “assess-

risk-of-policy” approaches [22]. Kwakkel and Haasnoot [24] point out that in the literature there is 

“an emerging consensus that any decision regarding a complex system should be robust with respect 

to the various uncertainties”.  They further state that under deep uncertainty, decision-making 
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support should move away from trying to define one correct solution, and rather aim at enabling 

discussion and common understanding between the stakeholders. Popper et al. [25] state that 

simple exploratory modelling, such as RDM can be seen as a tool for an initial check to identify the 

most important factors affecting the decision-making. These factors can then be further investigated 

with additional methods or models. 

Marchau et al. [4] report also on the challenges of DMDU approaches. The models and tools used 

should be developed so that they are simple and transparent enough, and more guidance is needed 

on when and how to apply DMDU tools. In addition, the scope of the application of DMDU tools 

could be broadened, and suitable sectors could for example include transportation, energy and 

spatial planning  [4]. In this article, we provide a user case for the heating sector. 

In addition to the problem of uncertainty, decision makers often face a situation where several 

indicators need to be considered simultaneously. Numerous methods of multi-criteria decision 

making (MCDM) are available and widely applied also for renewable energy technologies [5]. The 

MCDM methods are generally divided under two groups: Multi-Attribute Decision Making (MADM) 

and Multi-Objective Decision Making (MODM) [26]. The MADM methods are applied when the 

problem has a small and finite set of solutions, and it aims at identifying the best option based on the 

known attributes of a limited number of alternatives. MCDM methods applied for this type of 

problems include e.g.  AHP, ANP, TOPSIS, DEMATEL, ELECTRE, PROMETHEE, and UTA [26]. The 

MODM methods are applied when there is a large and infinite set of alternative solutions. Several 

objectives are simultaneously taken into account within a mathematical programming model, and 

the aim is to find the best solution that satisfies the decision maker’s desires. The results can be 

presented e.g. as Pareto-efficient solutions. The methods include Ɛ-constrain, Global Programming, 

and the Weighting method [26].  

Uncertainty in an MCDM analysis can be handled by various means. Stewart and Durbach [27] have 

classified uncertainty as internal and external uncertainty. With internal uncertainty they mean the 

uncertainty of the MCDM model itself, as well as the human judgement of the criteria. With external 

uncertainty they mean the lack of knowledge about the consequences of a particular choice, which 

relates to the main interest of this paper in profound future uncertainty. Stewart and Durbach [27] 

conclude that there is always a role for systematic sensitivity analysis “but care needs to be taken to 

avoid simple one-at-a-time variations in assumptions”. Sophisticated approaches are used for 

uncertainty in MCDA, such as fuzzy set approaches. Fuzzy set approaches have been widely proposed 

for energy policy planning [28], and they allow the expression of uncertainties in human opinions 

through the concept of partial truth, in which the truth-value may range between completely true 

and completely false. Stewart and Durbach [27] also see the benefit of combining MCDA with 

scenario planning, as this can be a very transparent tool to illustrate uncertainties to decision 

makers. However, an open question is what a suitable number of the scenarios is. Here RDM could 

provide a solution with its approach to simulate a large variety of futures possible. Stewart and 

Durbach [27] also conclude that it is important that the analyses are fully understandable to all 

participants in the process, and thus very elegant mathematical models may be of less practical 

value, especially in the cases where fewer research resources are available. The comprehensibility of 

the method to the users is one of our main aims. 
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Luca et al. 2017 [29]and Gamper and Turcanu 2007 [30] have listed benefits and challenges of 

MCDM. The benefits include the comprehensiveness of the analysis, the learning process for the 

participants, a common understanding of the problem, the systemic transparent process, and a 

clearer view of sustainable solutions. On the other hand, the challenges of the analysis can include 

the fact that the analysis brings more uncertainties and methodological disagreements, that it is 

technically complex and difficult to understand, simplifies the decision context and is time 

consuming. Wu et al. 2017 [31] concluded that Different MCDA methods provide different results 

even to the same problem and with the same data, and it is usually difficult to determine which 

method provides the most appropriate solution. They propose that a reasonable solution would be 

to apply a combination of two or more MCDA methods. At the same time, Mardani et al 2017 [5] 

highlighted that the MDCM approach should be easily understood. If the decision makers cannot 

understand how a methodology works, they may see it similarly to black box and loose trust in the 

method. This adds to the reasons why we aim for a simple method which can be used as an initial 

check of the problem in hand.  

For building a simple decision making-framework for territories, we compared example studies with 

multi-criteria and RDM methods to show the benefits and differences (Table 1).  

Table 1. Comparison of MCDM methods and RDM. 

Study Multi-criteria analysis with 

ranking 
 

Example:  

[32] 

Search for Pareto optimal 

solutions 
 

Example:  

[33,34] 

Robust decision-making 

 
 

Example:  

[16,17] 

Method • Multi-criteria analysis 

and weighting by 

preference scenarios  

• Optimisation or 

simulation model to find 

Pareto optimal solutions 

or to illustrate Pareto 

front 

• Robust decision-making by 

means of regret analysis 

and PRIM statistical 

analysis 

Decision 

maker’s 

role (with 

analyst) 

• Selects the 

technologies studied 

• Selects the criteria 

used  

• Can select the 

weighting preferred 

• Selects the scenarios 

studied 

• Selects the criteria used 

• Selects the technologies / 

scenarios studied 

• Selects the performance 

metrics used 

• Defines future 

uncertainties for 

parameters (no need for 

agreement) 

Results • Show final total score 

or weighted score for 

each studied system 

• Show the ranking of 

the systems 

• Pareto frontier 

• Show the trade-offs 

between different 

indicators 

• Show which future 

assumptions make the 

scenario succeed or fail 

(and which parameters are 

less important) 

 

Decision 

based on  

• The DM chooses the 

winning system based 

on final ranking and 

his judgement on the 

weighting values  

• The DM chooses the 

optimal strategies based 

on a judgement on the 

trade-offs between the 

various criteria 

• The DM chooses the most 

robust (or other) scenario 

based on the information 

on the scenario’s 

performance in different 

futures, and on a 

judgement on how 
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probable this future is 

Benefits • Simplicity, easy to 

understand 

• Multiple criteria 

possible 

• Weighting provides a 

way to illustrate 

various preferences 

• Illustrates the trade-offs 

between criteria 

• No need for agreement on 

assumptions of uncertainty 

• Inclusion of uncertainties is 

an inherent part of analysis 

• Illustrates which 

assumptions are the most 

relevant in uncertain future 

and what are their trade-

offs 

 

We aim to combine some characteristics and benefits of the methods presented above into a simple 

decision-making framework with the following properties: 

- inclusion of uncertainty as an inherent part of the analysis, 

- creating common understanding for the stakeholders on the future vulnerabilities and trade-

offs, 

- inclusion of multiple indicators, 

- inclusion of territorial features to the analysis as weighting factors.  

The need for this kind of hybrid approaches has been identified also by e.g. Sharma et al. [35], who 

have combined energy systems optimization models with multi-criteria assessment and stakeholder 

participation via workshop. Our main aim is to provide decision makers with a simple tool providing 

data that allows seeking robust solutions which perform well over a wide range of plausible futures.  

3 Proposed decision-making framework 

 

The decision-making framework proposed is illustrated in Figure 1. This section describes the 

principles of the analysis. Section 4 with the case study illustrates how the analysis is done in 

practice. The analysis is participatory and can be conducted in co-operation with the decision 

makers, as illustrated in Figure 1. It can be used for both analysing individual technologies or 

technology portfolios. 
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Figure 1. Illustration of the proposed decision-making framework with examples for performance metrics and uncertain 

factors. The box numbers illustrate the order of the process. 

The analysis is based on the territorial data and characteristics, which define the local technical, 

social, and environmental conditions. This data provides the basis for the choice of suitable 

technologies to be included in the study. For example, the local energy consumption and current 

production; local feedstock, solar radiation, and wind conditions; possible excess heat and 

geothermal sources; as well as heat storage possibilities all affect which renewable energy 

technologies or their combinations are suitable for the region. In addition, the social features such as 

the density of habitation, or environmental features such as vulnerable landscapes can affect the 

choice. This “structural” information providing a first diagnosis of the territory are possible pre-

conditions for engaging in the decision-making process. The framework can be used with different 

levels of data available in the territory. Whatever the in-depth quality of the data used, the proposed 

methodology provides information at the strategic level and not the operational one. 

 

3.1 Robust decision making method with multiple performance metrics 

The Robust Decision-Making method was developed by the RAND corporation [14,15] and has been 

described by Bryant and Lempert [16], and applied e.g. by Forsström [17] and Perrier [19]. The 

method aims to test a proposed solution (e.g. technology or portfolio of technologies) in thousands 

of different futures to determine whether the solution is robust in different future conditions.  

The methodology is based on defining the following factors [14,17]: 

• Uncertain factors (U) describe the factors outside the control of the decision makers. These 

factors can however be fundamental in defining the success of a technology/strategy in the 

future. These are factors such as investment costs, prices of fuel or feedstock in the future, 
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the price of CO2, or other uncertain emission parameters. An uncertainty range is defined for 

all these parameters. The uncertainties can be defined in co-operation with the decision 

makers, and there is no need for agreement on the values, as wide uncertainties can be 

included. For example, if one decision maker thinks that in the future the price of CO2 will be 

150 €/t and another one believes that it will be 10 €/t, both opinions can be included, and 

the variation is fixed between 10 and 150 €/t. A uniform distribution is used as all the values 

are considered equally probable. During the analysis some iteration can be carried out and 

the uncertainty range can be reduced or widened in accordance with the decision maker 

choices. 

• Factors under control (C) comprise actions that are in the decision maker’s hands. These can 

be for example: the selection of technologies that the decision maker wants to study, some 

of the technical characteristics, and some parameter restrictions.  

• Models (M) include the models used in the study, which can be simulations of optimisation 

models. The requirement is that the model is simple enough so that it can be used to study 

thousands of futures. 

• Performance metrics (P) are the metrics used to rank the technologies or portfolios (e.g. 

economic, environmental, and social metrics). These can be selected by the decision makers. 

The performance metrics correspond to the various criteria used in multi-criteria analysis.   

The analysis of the success of a solution is based on a regret analysis [17]. This means that we study 

the success of each technology in each of the simulated futures (e.g. 5 000 futures, meaning 5 000 

different combinations of the calculation parameters). This is done by comparing the performance of 

a technology to the performance of other technologies in the same future. The regret is 0 for the 

technology which performs the best in that particular future (e.g. the technology which has the 

lowest costs or lowest emissions). The regret (R) is calculated for each future and for each 

performance metric by: 

When the minimisation of a performance metric is preferred (e.g. cost or emission) 

�����, �� = 
����, �� − �
���
����, ���,      (1) 

When the maximisation of a performance metric is preferred (e.g. amount of jobs created) 

�����, �� = �����
����, ��� − 
����, ��,       (2) 

Where  

R  = regret, 

C = is the performance index of the performance metric in question (e.g. €/MWh or 

gCO2/MJ), 

pm  = performance metric 

j  = strategy (e.g. technology or portfolio), 

f  = future. 
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In order to normalise the results between the different performance metrics, the regret results are 

used to calculate the “points” (x) for each technology and each performance metric. The point varies 

between 0 and 1, being 1 for the best technology. The normalisation is done by studying the distance 

of the particular regret result from the maximum regret in the same future: 

���,�� =
����������, ��� − �����, ��

����������, ��� − �
��������, ���
.																																																																									�3� 

The final “total points” (Xtot) is the sum of the final average points of all the studied performance 

metrics for the technology. 

���� =����,���,� .																																																																																																																												�4� 

 

3.2 Vulnerable future discovery  

One internal part of the robust decision-making method is so called vulnerable future discovery. It is 

applied to identify the uncertain inputs that best predict the future conditions when the technologies 

or strategies studied become vulnerable (or alternatively where they perform well). For example, we 

can search for combinations of parameters which cause the worst 10% of the results for a 

technology. Finally, we want to illustrate these futures of vulnerability (or success) to the decision 

makers so that they can decide if they believe those conditions would take place or not. For example, 

the analysis could show that with a certain combination of CO2 and fuel prices, a technology would 

most probably fail, and the decision maker can then judge if he sees these prices to represent the 

future he believes will take place or not. 

The method for the vulnerable future discovery is described in Bryant and Lempert [16] and in 

Kasprzyk et al. [18]. The analysis uses the Patient Rule Induction Method (PRIM) by Friedman and 

Fisher [36], and it can be applied by using the R programming language [37] and SDToolkit [38]. A 

tool for Python programming is also available [see 19]. In the discovery process, we first define the 

performance thresholds for the regret analysis and then find the drivers for the threshold violations 

(the combinations of parameters causing the vulnerable futures). With the cases passing the 

performance threshold defined, the PRIM creates “scenario boxes” which describe the values causing 

violations of the threshold (Figure 2).  

 

 

Figure 2. Principle of the PRIM analysis (Figure adapted from Kasprzyk et al. 2013). 
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The PRIM method is interactive and by visualising the results, it helps the user to choose the best 

scenario boxes and balance them with the three measures of scenario quality: the coverage, density, 

and interpretability of the scenario box. The coverage quantifies how many of the vulnerable points 

are captured in the scenario, whereas the density shows how many of the captured points are 

actually in the vulnerable set [17]. The user wants to maximise both the coverage and the density of 

the scenario box.  

 

3.3 Portfolio construction 

Often one technology is not enough to supply the whole need for renewable energy in a territory, 

but rather a portfolio of technologies is needed. In addition, the impact of a technology portfolio can 

be different than the impact of an individual technology [39]. Thus, technology portfolio evaluation 

with the methodology proposed is also illustrated in this paper. To construct a technology portfolio 

we need information on the energy demands in the territory, which is then fulfilled with a 

combination of technologies. The portfolio construction in our case study is further explained in 

section 3.2. 

 

3.4 Preference scenarios and territorial weighting 

In a multi-criteria analysis, the weighting of the various criteria is often applied. Klein and Whalley 

[32] and Nock and Baker [39] have applied a weighting of multiple criteria with “preference 

scenarios” describing the decision maker’s preferences. For example, one can consider the economic 

criteria to be more important than the climate criteria, or the other way round, and give weights to 

the points accordingly. The weighting is often somewhat subjective, and one could argue that the 

weights can be modified until the results present the initial opinion of the decision maker. However, 

for example Klein and Whalley [32] show the ranking of the technologies over several decision 

preference scenarios which allows the decision maker to make a robust choice of a technology, 

which performs well with different kinds of weighting scenarios, i.e. ranks highest on average. 

The weighting “preference scenarios” could also be based on territorial features. In life cycle 

assessment (LCA) studies this kind of “spatialization” has already taken place. For example Nitschelm 

[9] and Patouillard [40,41] have studied the spatialization of LCA and the use of spatialized 

characterisation or sensitivity factors in impact assessments. This means that when studying the 

environmental impacts, the local environmental characteristics such as soil quality, slope, watershed 

conditions, distance to water, etc. are included in the analysis. The spatial resolution naturally varies 

for different impact categories (e.g., GHG impacts are global, while soil quality impacts are specific to 

a land area). A similar idea of “sensitivity factors” could be applied for the preference weighting 

factors in territorial, multi-criteria analyses, based on regional circumstances. A simple example could 

be that in a region which is poor, isolated, and has high biodiversity values, the weighting of the 

criteria could illustrate these features. For example, a high weight could be set for economic 

indicators to emphasise low-cost technologies, a low weight could be set for health indicators as 

particulate emissions are not so harmful in isolated areas, and a high weight could be set for 

biodiversity to select technologies with low biodiversity impacts. Some propositions for the 

“spatialization” of weighting indicators are listed in Table 2. These indicators can be seen as a 
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structural, territorial initial check that could be used during the analytical process to help the decision 

makers. 

 

Table 2. Possible indicators for regional weighting. 

Criteria Performance 

metric 
High weight given to 

criteria if 
Low weight given to 

criteria if 
Possible indicator 

Economic LCOE The region is poor  The region is rich 

 

€/person (e.g. BIP in the 
region per inhabitant) 

Climate GHG emissions The region is rich 

 
There are ambitious regional 
targets to reduce GHG 
emissions 

The region is poor €/person (e.g. BIP in the 
region per inhabitant) 
 
% of emissions reduction in 
regional climate strategy 

Health PM10/ 
PM2.5 

Densely populated Isolated Persons/m2 

Social Jobs There is a high 
unemployment rate 

There is a low 
unemployment rate 

Unemployment% 

Technical Capacity factor There is a high proportion of 
wind and solar in the energy 
system 

There is a low 
proportion of wind and 
solar in the energy 
system 

Share of wind and solar in the 
regional energy system 

Environ 
mental 

Biodiversity There are important areas 
for biodiversity in the region 

There are less 
important areas for 
biodiversity in the 
region 

Protected areas/ecosystems, 
Natura areas, etc. in the 
region (m2/m2)  

Water Acidification / 
Eutrophication 

 
 
Water footprint 
  

There are 
important/vulnerable 
watersheds in the region 

 
The region is vulnerable to 
droughts  

There are no 
watersheds in the 
region 

  
 
The region is not 
vulnerable to droughts  

Protected 
watersheds/distance to 
water/state of watersheds in 
the region 
 
Meteorological data on 
droughts 

4 Case study 

We illustrate the use of the method presented in Section 3 in a case study considering a medium-

sized community in the Isère region in France (based on the characteristics of the Fontaine 

community of around 22 000 habitats). The study follows the framework presented in Figure 1.  

 

4.1 Technology selection  

The heating technologies studied and their main characteristics are listed in Table 3. The data on 

technologies is from European and French studies [42–44]. The large biomass heat plants as well as 

all the central solutions (central heat pumps and solar heating) are assumed to be attached to a 

district-heating system. Therefore, the costs of construction of the distribution network are also 

considered for these technologies. Natural gas heating is included as a fossil reference, representing 

the current practice. 
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Table 3. Technology selection and key parameters. 

Identification  Technology Output 

capacity 

Input Example 

capacity 

Conversion 

efficiency 

Panels 

installed 

Life 

time 

O&M costs 

        MW GJ/GJ m2 y % of investment 

Technology 1 2MW, forest 
biomass 

Heat  
(2 MWth) 

Forest 
residues 

2 0.85  25 4% 

Technology 2 20MW, forest 
biomass 

Heat  
(20 MWth) 

Forest 
residues 

20 0.85  25 4% 

Technology 3 Central 
heating 
biomass 

Heat 
(0.15MWth) 

Forest 
residues 

0.15 0.85  20 4% 

Technology 4 Domestic 
biomass, 
traditional 

Heat  
(0.010 
MWth) 

Wood 
logs 

0.01 0.75  15 6% 

Technology 5 Domestic 
biomass, 
modern 

Heat  
(0.010 
MWth) 

Pellets 0.01 0.90  15 6% 

Technology 6 Domestic 
solar heating 

Heat  
(0.0035 
MWth) 

Solar 
radiation 

0.0035  5 20 2% 

Technology 7 Central solar 
heating 

Heat  
(0,15 MWth) 

Solar 
radiation 

0.15  214 25 2% 

Technology 8 Domestic 
heat pumps 

Heat  
(0.010 
MWth) 

Electricity 0.01   15 3% 

Technology 9 Central heat 
pumps 

Heat  
(0.10 MWth) 

Electricity 0.15   20 3% 

Technology 10 2MW, natural 
gas 

Heat  
(2 MWth) 

Natural 
gas 

2 0.9  20 2% 

Technology 11 Domestic 
natural gas 

Heat  
(0.015 
MWth) 

Natural 
gas 

0.01 0.9  20 6% 

 

4.2 Definitions for robust decision-making 

The definitions (see Section 2.3) used for the robust decision-making analysis are listed in Table 4. 

The parameters within control include the conversion efficiencies and lifetimes of the technologies, 

which were fixed in the study. The uncertain factors include all the data related to the costs of the 

technologies, fuels used, and the price given for CO2. Here the CO2 price was applied for fossil fuels, 

even in domestic use. In addition, the emission indicators were considered as somewhat uncertain, 

as the biomass used in the plants could come from different biomass sources and over different 

distances, and as there is always some degree of uncertainty related to LCA results. 

The model used in this study is built in Excel and allows the simulation of 5 000 future cases. The 5 

000 futures were created by combinations of 5 000 random values of the calculation parameters 

within their uncertainty ranges (section 3.4). An Excel-based model was used also for the portfolio 

definition. In further analyses, these models could be replaced with more refined tools. 
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Table 4. The definitions needed for robust decision-making for the case study. 

Within control (C): 

• Technology selection 
• Conversion efficiencies 
• Portfolio construction 

 

 

Uncertain factors (U): 
• Cost of investment 
• Cost of biomass 
• Cost of natural gas 
• Cost of CO2 
• Cost of electricity 
• Peak load times 
• Solar production 
• GHG emissions 
• PM emissions 
• Number of jobs 

 

Models (M): 
• Excel-based model to analyse the 

technologies, 5 000 futures simulated 
• Excel-based model to construct the 

portfolios, 5 000 futures simulated 
 

Performance metrics (P): 
• Economic: LCOE 
• Climate: GHG 
• Health: PM2.5 and PM10 
• Technical: capacity factor (used only for 

the comparison of individual technologies) 
• Social: Jobs 

 

The performance metrics selected for the case study illustrate the economic performance for the 

levelized cost of energy (LCOE), climate impacts by GHG emissions, health impacts by particulate 

emissions (PM2.5 and PM10), technical properties by capacity factor (CF), and social impacts from the 

jobs created. The indicators are limited to 5 to simplify the analysis, but more performance metrics 

such as biodiversity impacts, water consumption, or more refined social indicators could also be 

added to the analysis. 

The LCOE results were calculated by the equation presented below [45]. 

!
"# = 	
∑ %� +'� + (��1 + *��+�,-

∑ #��1 + *��+�,-
																																																																																												�5� 

where  

It = investment expenditures in the year t, 

Mt = operation and maintenance expenditures in the year t, 

Ft = fuel expenditures in the year t, 

Et = energy generation in the year t, 

r = discount rate (discount rate of 5% was used here), 

n = lifetime of the system. 

The performance metrics are evaluated in terms of varied and fixed costs or emissions (e.g. €/MWh 

and €/MW or gCO2/kWh and gCO2/kW), as demonstrated by Nock and Baker [39]. For the portfolios, 
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the final performance of the portfolio is the sum of the performance of the different technologies in 

the portfolio. This sum is calculated by weighting the varied costs/emissions by the share of the 

technology in portfolio in terms of MWh, and by weighting the fixed costs/emissions by the share of 

the technology in portfolio in terms of MW. The jobs created are only evaluated in terms of jobs per 

MWh due to the data available. For the technology comparison, the capacity factor was varied to 

illustrate the potential peak load hours for each technology. The capacity factor indicator is not 

included in the portfolio metrics, as it is already fixed in the portfolio construction. 

The performance metrics could also be evaluated locally and globally. For example, the fixed GHG 

emissions related e.g. to the manufacture of solar panels are not produced locally, whereas the 

particulate emissions of biomass combustion are local. Here we consider the global emissions as the 

total impacts of the technologies of interest. 

 

4.3 Setting the uncertainties for the parameters 

Setting the uncertainties for the calculation parameters can be done in co-operation with the 

specialists and decision makers. Especially, estimations related to the future costs of technology 

investments, fuel and CO2 prices can vary significantly, depending on who is asked. The robust 

decision-making process allows all the opinions to be included, as wide uncertainty ranges can be 

applied. Here the uncertainty ranges are based on the literature and on expert opinions. 

The CEA experts evaluated the possible variation in the cost of fuels and CO2 in France (Figure 3). The 

CO2 price was assumed to have a wide uncertainty range, as it has been estimated that in France, the 

shadow prices of carbon1 could be close to 800€ in 2050 [46]. The electricity price was estimated not 

to fall below 50€/MWh, as an important share of the price is formed by distribution costs. The 

industrial use of natural gas or biomass was estimated to be lower in cost than domestic use. The 

investment costs were based on ADEME [45] and Sandvall [47]. 

The COP for heat pumps stands for ‘coefficient of performance’ and shows the ratio of useful heating 

or cooling provided for work required, i.e. the electricity consumed by the pump. The higher the COP, 

the more efficient the heat pump (Figure 4).  

Here the typical timeframe for defining the cost estimations is around 20 years. However, as the 

method allows a large variation of the parameters, it is possible to include a range that presents the 

possible price development on any wanted time scale. 

                                                           
1 A generic definition can be found in Drèze and Stern (1990) [56]: “The shadow prices are the social 
opportunity costs of the resources used (and correspondingly for outputs generated)”. In Quinet (2019), the 
shadow price is the value of an avoided CO2 tonne through a mechanism including CO2 externalities into public 
economic computations. 
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Figure 3. The variation of costs in the robust decision-making analysis based on expert opinion. 

 

Figure 4. The variation of investment costs and technical details based on [45,47]. 

The GHG emissions for bioenergy options were taken from the EU Renewable Energy Directive 2 [48], 

where the default emission factors are given for various types of biofuels. The Ecoinvent database 

was used to estimate the rest of the GHG emissions, as well as particulate emissions [49]. The 

capacity factors were evaluated based on S2Biom [50], ADEME (2016) and Klein & Whalley [32]. Data 

on jobs was based on the ADEME study on the jobs created by various renewable energy 

technologies in France [51], and the study by Klein & Whalley [32]. These assumptions are presented 

in Appendix A. 
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4.4 Portfolios 

For the purpose of testing the proposed methodology for portfolio analyses, we used a simplified 

method to create the technology portfolios. We studied the heating technologies that could be 

attached to a district-heating network, so that a portfolio then illustrates a territorial energy system. 

The technologies selected for the analysis were a biomass-plant, central heat pumps and central 

solar heating solutions. We assumed that if the territory is interested in bioenergy production, it 

would build one larger bio-plant for the district heating network, and then produce the rest of the 

heating needed with the other technologies. No heat storages were included to simplify the analysis. 

Five different technology combinations were studied: 

• Portfolio 1: Biomass-plant alone 

• Portfolio 2: Biomass-plant + central heat pumps 

• Portfolio 3: Biomass-plant + central solar heating 

• Portfolio 4: Central heat pumps + central solar heating 

• Portfolio 5: Biomass-plant + central heat pumps + central solar heating 

We searched for solutions where the heat currently produced by natural gas is replaced by 

renewable energy. This is because we roughly estimated that households that are connected to the 

natural gas supply network exist in areas where it could be feasible to connect to the district heating 

system, i.e. they have a sufficiently high linear heat density. For a more detailed analysis, the heat 

demand should be evaluated based on high-resolution geospatial data [52]. We used the statistical 

data on natural gas consumption, which was available separately for heating and sanitary water [53]. 

To build the heat load curve, the monthly data on local temperatures for the region was used [54], 

and we assumed that heating was needed in months when the average temperature was less than 

15˚C. Heating for sanitary water is needed all year round. This allowed us to roughly estimate the 

form of the heat load curve for the territory (Figure 5). To estimate the potential for solar heat 

production, we used the regional average solar radiation data for the years 2007-2016 from JRC [55], 

and made a cautious estimation of 40% for the thermal solar panels’ efficiency. 

 

Figure 5 a) The annual load curve illustrating the monthly heat consumption and b) an example of a sorted load curve 

used to define the shares of the production of the technologies. 

To build a technology portfolio, we added the production technologies to the load curve. First, we 

assumed that if solar heating was included in the portfolio, the number of panels would correspond 
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to the capacity that could produce the required heating for sanitary water during the summer 

months (any extra panels above this would produce waste heat during the summer, as no storage 

were included). The other technologies then produced the rest of the heat needed. We tested 

different shares of the other technologies, which were added to the load curve, unit by unit, first 

“baseload technology”, then possible “peak load technology” (Figure 5). By varying the share of the 

technologies, the economically optimal portfolio for each technology combination was found. This 

way, the final share of each technology in MWh and MW was defined, and the characteristics of the 

portfolios are illustrated in Figure 6 and in Table 5. 

 

Figure 6. Shares of technologies in portfolios defined a) by heat production (MWh) and b) by capacity (MW). HP = heat 

pump. 

Table 5. Portfolio characteristics  

  Solar     Biomass-plant   Heat pumps   

        peak load time   peak load time   

  m2 MW GWh average MW GWh average MW GWh 

Portfolio 1 0 0.0 0.00 3793 20 76       

Portfolio 2 0 0.0 0.00 3892 19 74 1002 2.1 2 

Portfolio 3 9089 7.2 5.86 3510 20 70       

Portfolio 4 9089 7.2 5.86    3519 20.0 70 

Portfolio 5 9089 7.2 5.86 3784 16 61 1608 6.0 10 

 

5 Results and discussion 

The results can be presented step-by-step, i.e. one metric after another before combining them. Each 

performance metric can be presented following the scheme presented below: comparing the 

performance of the technologies by regret analysis, assessing their robustness and vulnerabilities, 

then comparing the portfolios. Finally, the performance metrics can be combined, and weighting can 

be applied. This step-by-step approach is useful to help decision makers acknowledge, reinforce, or 

change their vision of the potential new territorial energy system. Here the economic performance is 

used as an example. 

a) Per MWh b) Per MW

Portfolio1 Portfolio2 Portfolio3

Portfolio4 Portfolio5

Central solar

Bio plant

Central HP

Portfolio1 Portfolio2 Portfolio3

Portfolio4 Portfolio5

Central solar

Bio plant

Central HP
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5.1 LCOE results and vulnerabilities for technologies 

The absolute LCOE results for the technology comparison are shown in Figure 7. The figure shows the 

variation due to the uncertainties applied and the average LCOE value.  

 

Figure 7. The absolute LCOE average values and uncertainty ranges. 

The regret analysis according to equation 1 shows relative results comparing the technologies to 

each other. Economically speaking, and with the assumptions and uncertainty ranges applied in this 

study, the central and domestic heat pumps are the most interesting options, as they have the 

lowest regret in most of the cases. The sorted LCOE regret results (€/MWh) in Figure 8 show that the 

central heat pumps perform the best in almost all of the 5 000 futures simulated, and do so with 

most of the combinations of the varying calculation parameters. This illustrates that economically 

they are the most robust technologies when considering the future uncertainties. In addition, the 

large biomass-plant, modern domestic biomass and central solar heating perform well. None of the 

futures simulated made the domestic solar heating system successful due to its high investment cost. 

Additionally, the currently widely-used natural gas heating performed badly in all the futures.  
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Figure 8. Sorted regret for LCOE for 5 000 cases. The technology with the lowest regret in most of the cases is the most 

robust in various future conditions, in economic terms. 

We then continued to the PRIM analysis to determine the economic conditions which could make 

these best performing technologies vulnerable. We compared the central heat pumps to a 20MW 

biomass-plant by calculating the regret results again between just these two options, and selected 

the worst 10% of the results as a threshold limit for the PRIM algorithm. To be able to recognise 

significant parameters, we fixed the peak load time of both technologies to be equal. The analysis 

provided us with parameters which had the most significant effect on the vulnerability of the 

technology, and the trade-off values with which these vulnerable futures could be experienced. The 

most significant parameters affecting the two technologies were the cost of electricity, the cost of 

biomass and the COP. For example, central heat pumps are vulnerable in conditions where the cost 

of electricity is > 108 €/MWh, and the cost of biomass is < 45 €/MWh. For the large biomass-plant 

these values are < 129 €/MWh and > 60 €/MWh, respectively. These vulnerable areas are illustrated 

in Figure 9. The decision maker’s role is then to judge (with experts), which of these future conditions 

can be considered the most probable in the investigated region. For example, if there are easily 

exploitable, low-cost biomass sources available in the region, but the future national electricity price 

is expected to rise significantly, the future conditions may be closer to those where the heat pumps 

are vulnerable and biomass-plant succeeds (or the other way round in opposite conditions). 
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Figure 9. Example economic conditions in which the best performing technologies are the most vulnerable. 

 

5.2 LCOE results and vulnerabilities for portfolios 

We conducted the regret analysis similarly for the portfolios. The sorted LCOE regret results in Figure 

10 show that Portfolios 1 and 4 have the lowest regret in most of the cases, thus being the most 

robust solutions in economic terms.  

 

Figure 10. Sorted regret for LCOE in 5 000 cases. The portfolio with the lowest regret in most of the cases is the most 

robust in economic terms, in various future conditions. 

The PRIMS analysis was made for all the portfolios, again with the threshold limit of 10% of the worst 

LCOE results. The conditions making each portfolio vulnerable are given in Table 6. The cost of 

electricity and biomass and the COP of the heat pumps were the most significant parameters leading 

to vulnerability, the cost of biomass being the most significant parameter for all of the portfolios. At 

the same time, one can see that the other parameters, such as the investment costs, are less 

significant to the vulnerability of the results. 
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Table 6. Vulnerable combinations of parameters for Portfolios. HP = heat pump. 

  Investment bio Investment HP Investment solar Solar production COP Cost electricity Cost biomass 

  €/kW €/kW €/kW kWh/m2/a   €/MWh €/MWh 

Portfolio 1   < 1378     >2.25 < 119 > 60 

Portfolio 2         > 2.55 < 128 > 67 

Portfolio 3   < 1380     > 2.55 < 137 > 62 

Portfolio 4         < 3.05 > 93 < 49 

Portfolio 5         >2.25 < 120 > 65 

 

Figure 11 illustrates the vulnerable areas for the two most promising portfolios, Portfolio 1 and 

Portfolio 4. Portfolio 1 relying only on biomass-plant is vulnerable when the price of electricity falls 

under 120€/MWh and the COP of the heat pumps is high (i.e. the heat pumps would perform 

efficiently). Portfolio 1 is vulnerable also, when the cost of biomass rises above 60€/MWh. Portfolio 4 

relying on heat pumps becomes vulnerable when the price of biomass falls below 49 €/MWh, the 

COP is lower than 3, and the price of electricity rises above 100€/MWh. Again, it should then be 

judged, which conditions seem the most probable for the future in the region studied.  

 

Figure 11. Example conditions in which the best performing portfolios are the most vulnerable: a) trade-off with COP and 

electricity cost, b) trade-off with biomass and electricity cost 

 

5.3 Total points with all performance metrics 

When the total points from all performance metrics are calculated (equation 3) and sorted for the 

technology comparison, we see the results in Figure 12. The highest total points in most of the 5 000 

cases are gained by the large biomass-plants. This means that this technology is the most robust in 

terms of all the performance metrics analysed, in various future conditions. Additionally, the smaller 

biomass-plants and heat pumps perform well.  
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Figure 12. Sorted total points in 5 000 cases for the technology comparison. The technology with the highest total points 

in most of the cases is the most robust in terms of all performance indicators. 

Figure 13 shows how the average total points are formed from the different performance metrics. 

This shows the differences between the technologies. Additionally, on average, the big biomass-

plants and heat pump solutions performed the best. The worst results are for natural gas due to low 

points from GHG impacts, domestic solar heating due to low points from economic indicators, and 

for traditional biomass due low points from the health indicator (PM10,2.5). It should be kept in mind, 

that the results are still dependent on the assumptions made concerning the uncertainty ranges, and 

more work is needed, for example, to define more reliably the job indicator.  

 

Figure 13. Average total points for the technologies. 
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Figure 14 shows the corresponding results for the portfolios. Portfolio 4 has the highest total points 

in almost all 5 000 cases. This is because it performs the best for several indicators: particulate 

emissions, GHG emissions and often also the LCOE.  

 

Figure 14. Sorted (a) and average (b) total points for the portfolios. 

The PRIM analysis can be continued to study the vulnerabilities created by the various performance 

metrics, some individual metrics of interest, or different combinations of portfolios or technologies. 

It is up to the decision makers and analysts to decide which comparisons they consider the most 

useful for the studied situation.  

5.4 Preference scenarios and territorial weighting 

If the decision makers wish to use weighting for the different performance metrics, one option is to 

use territorial features to do this, as described in Section 2.6. Figure 15 illustrates an example of 

different weighting results for the total points, based on different preferences. If for example the 

region studied is poor and has a high unemployment rate, it may wish to emphasise the low costs of 

the technology and job creation, and a higher weight can be assigned to the LCOE and job indicator 

(e.g. a weight of 0.45 for economic and social indicators and 0.033 for other indicators). If the region 

wants to emphasise climate and health indicators, a higher weight is given to these indicators. A 

result with equal weight for all indicators is presented for comparison (weight of 0.2 for all 

indicators).  
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Figure 15. Example illustration of applying weighting factors for the performance metrics. 

The example shows that the results can vary significantly between the weighting scenarios. For 

example, the domestic solar technology becomes significantly more interesting if a high weight is 

given only to climate and health impacts, instead of economic indicators. 

6 Conclusions  

This article presents a simple decision-making framework that can be used by territorial or other 

decision makers who need to consider multiple-criteria when deciding on future renewable energy 

investments under uncertainty. It searches for the technologies that are most robust in various 

future conditions, as well as for trade-offs between different parameters affecting the success of the 

renewable energy technologies. The proposed framework is flexible and it can be used with different 

simulation or optimisation models, as long as they allow running thousands of simulations. The case 

study on future heating solutions gives guidance on how the analysis can be performed. It also shows 

that the currently widely-used natural gas heating performs badly in all simulated future conditions 

compared to renewable technologies. According to the study, heating solutions with heat pumps or 

central biomass plants are most robust in various future conditions. 

The benefit of the method used is that it helps decision makers to recognise the most significant 

parameters creating vulnerabilities (or successful conditions) for the studied technologies. Thus, 

further efforts can be made to even better evaluate these particular parameters. The method shows 

the actual threshold values creating the vulnerable conditions for different technologies. Recognising 

and visualising these conditions and their trade-offs can help the decision makers to make concrete 

evaluations on the performance of the technologies, and to judge how well they would perform in 

future conditions foreseen in their region. 

There are some limitations to the proposed decision-making framework to be tackled in future 

studies. For example, the uncertainty range was not applied for some of the parameters, e.g. here for 

operation and maintenance costs or for the discount rate. However, a change in these costs would 

affect the result. On the other hand, if too many uncertain parameters are included in the analysis, it 
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can be difficult to find any clear vulnerable conditions with the PRIM analysis. Thus, a balanced 

approach is needed. In addition, even though the uncertainty range given for the parameters is wide, 

modifying it in one or another direction can affect the results. This can lead to subjectivity but also 

provides a more accurate vision of the uncertainties through iteration loops that can be made in co-

operation with decision makers. Thus, further real-world test studies are needed. 

The framework based on the robust decision-making method can offer interesting possibilities for 

creating data that can help territorial decision makers to make more comprehensively analysed 

decisions, with better understanding of various possible future conditions. In real life, it is not always 

possible to implement the most economically or environmentally optimal energy production system, 

as the future conditions are per se uncertain, or some other limitations such as economic resources, 

public opinion, or policy developments cannot be entirely modelled in particular in the long term (20 

years or more). Thus, one option for the decision makers is to aim towards solutions which are the 

most robust in various future conditions. The framework proposed provides insight, among other 

methods, to make choices for the territorial energy transition. 
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Table A1. Assumptions on emissions, capacity factor and jobs  

Identifica

tion  

Technology GHG emissions         PM 10 & 2.5 

emissions 

      

    VARIED   FIXED     VARIED FIXED     
    gCO2/

kWh 
gCO2/
kWh           

mg/k
Wh 

mg/k
Wh         

    min max Source min max Unit Source min max m
in 

max Unit Source 

Tech1 2MW, forest 

biomass 

21 64 RED2         4 40 

      

ADEME, 
2018 

Tech2 20MW, forest 

biomass 

21 64 RED2         4 40 

      

ADEME, 
2018 

Tech3 Central 

heating 

biomass 

21 64 RED2         4 40 

      

ADEME, 
2018 

Tech4 Domestic 

biomass, 

traditional 

24 72 RED2         139 2390 

      

ADEME, 
2018 

Tech5 Domestic 

biomass, 

modern 

64 172 RED2         4 139 

      

ADEME, 
2018 

Tech6 Domestic 

solar heating 

      137   kgCO2/
m2 

Ecoinvent 
3.4 

    0 0.34 kgCO2/
m2 

Ecoinvent 
3.4 

Tech7 Central solar 

heating 

      137   kgCO2/
m2 

Ecoinvent 
3.4 

    0 0.34 kgCO2/
m2 

Ecoinvent 
3.4 

Tech8 Domestic 

heat pumps 

100   More&Lon
za 2018 

54   kgCO2eg
/kW  

Ecoinvent 
3.4 

0.65 51 0 0.15 kg/kW  Ecoinvent 
3.4 

Tech9 Central heat 

pumps 

100   More&Lon
za 2018 

54   kgCO2eg
/kW  

Ecoinvent 
3.4 

0.65 51 0 0.15 kg/kW  Ecoinvent 
3.4 

Tech10 2MW, 

natural gas 

221 243 Statistics 
Finland 

        0.02 19       Ecoinvent 
3.4 

Tech11 Domestic 

natural gas 

221 243 Statistics 
Finland 

        0.04 78       Ecoinvent 
3.4 

 

Identification  Technology Capacity factor   Jobs   
  

      
    jobs/GWh   

    min max Source min max Source 

Tech1 2MW, forest 

biomass 

0,46 0,86 S2Biom, ADEME 2016 0.18 2.40 ADEME 2017, Klein & Whalley 
2015 

Tech2 20MW, forest 

biomass 

0,51 0,97 S2Biom, ADEME 2016 0.18 2.40 ADEME 2017, Klein & Whalley 
2015 

Tech3 Central 

heating 

biomass 

0,34 0,86 S2Biom, ADEME 2016 0.18 2.40 ADEME 2017, Klein & Whalley 
2015 

Tech4 Domestic 

biomass, 

traditional 

0,26 0,91 S2Biom, ADEME 2016 0.16 2.40 ADEME 2017, Klein & Whalley 
2015 

Tech5 Domestic 

biomass, 

modern 

0,26 0,91 S2Biom, ADEME 2016 0.19 2.40 ADEME 2017, Klein & Whalley 
2015 

Tech6 Domestic solar 

heating 

0,18 0,28 Klein & Whalley 2015 0.86 2.43 Klein & Whalley 2015 

Tech7 Central solar 

heating 

0,18 0,28 Klein & Whalley 2015 0.86 2.43 Klein & Whalley 2015 

Tech8 Domestic heat 

pumps 

0,17 0,90 ADEME 2016 0.37 1.60 Klein & Whalley 2015 
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Tech9 Central heat 

pumps 

0,21 0,90 ADEME 2016 0.37 1.60 Klein & Whalley 2015 

Tech10 2MW, natural 

gas 

0,46 0,86 ADEME 2016 0.24 1.76 Klein & Whalley 2015 

Tech11 Domestic 

natural gas 

0,26 0,91 ADEME 2016 0.24 1.76 Klein & Whalley 2015 

 

 

 

 

 

 




