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Profound future uncertainty is present when planning renewable energy investments -Many decisions are made at the territorial level, especially related to heating -Simple decision-making tool allowing consideration of uncertainties is needed -We seek robust solutions performing well over a wide range of plausible futures -Current domestic natural gas heating performs badly in all futures simulated

Introduction

Considerable investments in renewable energy technologies are needed in order to reduce greenhouse gas (GHG) emissions to achieve the Paris Agreement climate change mitigation target to limit global warming below 2°C [START_REF] Le Net | Adoption of the Paris Agreement, Proposal by the President[END_REF][START_REF] Masson-Delmotte | IPCC Special Report 1.5 -Summary for Policymakers[END_REF]. Many of these investment decisions are made at territorial level and the local decision makers such as the local administrators, municipal planners and local industries play a role in the decision-making process.

When selecting the most suitable renewable energy options for a territory, local decision makers face multiple questions. These questions are related to the technical properties and costs of renewable energy technologies, the resources available in the region (e.g. biomass, solar radiation, geothermal and excess energy sources), as well as the existing local energy system and industrial activities. The decision makers need to consider several viewpoints-economic, social, and environmental-simultaneously, to choose the most suitable energy solutions for the region. Thus, decision makers face a decision-making problem in which multiple criteria need to be considered simultaneously. They also face the profound uncertainty of the future, as decisions on energy systems are always long-term investments (e.g. 20-50 years lifetime), the development of novel technologies may be faster or slower than anticipated, the prices of various fuels and feedstock can vary significantly, and the global climate and energy policy developments can affect the profitability or the expected impacts of certain technologies. Significant uncertainty related to the energy system studies is widely acknowledged, but only a minor part of the studies uses uncertainty analysis methods [START_REF] Yue | A review of approaches to uncertainty assessment in energy system optimization models[END_REF].

Several methods have been developed for decision making under uncertainty, and presented e.g. by Marchau et al. [START_REF] Marchau | Decision Making Under Deep Uncertainty[END_REF]. In addition, numerous tools are available for multi-criteria decision making [START_REF] Mardani | A review of multicriteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015[END_REF]. An important question is what kinds of results and data are useful for the decision makers when they select between investment options? Another question is the level of complexity of the tools used, in terms of the research resources available as well as the ability to interpret and apply the results. This is especially relevant at the territorial level, where the resources for complex studies may be limited.

In this study, we aim to build an easily approachable decision making framework, yet with a strong focus on uncertainties. We focus on the robust decision-making method [START_REF] Lempert | Robust decision making (RDM)[END_REF] and aim to combine it with features of multi-criteria analysis. The core of the approach is that we want to improve the decision maker's understanding of the conditions that make a technology succeed or fail, and the possible trade-offs. We aim to provide territorial decision makers with a robust and flexible tool, which can adapt to different levels of data available and different level of detail in the models and evaluation methods used. By territory, we mean an area smaller than the national scale (e.g. a county, district, municipalities, department, or commune) with some kind of internal coherence regarding the environment, actors, or governance. While several definitions have been proposed for 'territory' [START_REF] Loiseau | Environmental assessment of a territory: An overview of existing tools and methods[END_REF][START_REF] O'keeffe | When considering no man is an island-assessing bioenergy systems in a regional and LCA context: a review[END_REF][START_REF] Nitschelm | Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: Current practices and method development[END_REF], the final definition should be case specific.

We test the method proposed by studying renewable heating investments. The territorial context is especially suitable for heating systems, as they are mostly local solutions. For example, in contrast to electricity, heating systems do not have international transfer grids. In addition, heating is a timely topic as the sector is facing a huge transition process [START_REF]Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions -Stepping up Europe's 2030 climate ambition[END_REF]. Currently, around half of the energy consumption in the EU is due to heating and cooling in buildings and industry [START_REF]Heating and cooling[END_REF]. According to the Commission's impact assessment for 2030, the heating sector is one of the core sectors where emission reductions are needed, and at least 40% of heating should be produced by renewables by 2030 [START_REF]Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions -Stepping up Europe's 2030 climate ambition[END_REF]. In 2018, only 21% of the total energy used for heating and cooling in the EU was produced by renewable energy [START_REF]Renewable energy statistics[END_REF]. Here we present an illustrative case study in the Isére department in France for selecting the most robust renewable heating options.

The article consist of the following sections: First, we present a short review of the robust decisionmaking and multi-criteria analysis methods, how they deal with uncertainties, their benefits and challenges, and which of their features we aim to include in the decision-making framework proposed. Then we present the method proposed and illustrate the assumptions for the case study. This is followed by the results and discussion. Finally, we provide conclusions and further needs for development.
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Literature check

In their book Marchau et al. 2019 [4] present various methods for decision making under deep uncertainty (DMDU), including Robust Decision Making (RDM), Dynamic Adaptive Planning (DAP), Info-Gap Decision Theory (IG) and Engineering Options Analysis (EOA). RDM and IG search for robust policy solutions, while DAP emphasizes the importance of monitoring and adaptation to changes over time to prevent a chosen policy from failure. An EOA presents a more detailed analysis of technical alternatives, and can complement the other approaches [START_REF] Marchau | Decision Making Under Deep Uncertainty[END_REF].

In our study, we concentrated on the RDM method, as it provides one answer to the question of what kinds of results and data are useful for the decision makers when they select between policy and investment options. We have constantly increasing computational power to create models to provide responses to our questions [START_REF] Bankes | Exploratory Modeling for Policy Analysis Steve[END_REF]. However, Bankes [START_REF] Bankes | Exploratory Modeling for Policy Analysis Steve[END_REF] notes that the increased use of models does not always improve the quality of decision-making, but rather increases the discussion on sensitivities and shortcomings related to the models themselves. He proposed that we should focus on "explorative modelling" and include the future uncertainty as an inherent part of the analysis. With explorative modelling, he meant using models for series of computational experiments in the uncertain future. Bankes's idea is behind the development of a method known as "scenario discovery" or "robust decision-making" by Lempert et al. [START_REF] Lempert | Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis[END_REF], Groves and Lempert [START_REF] Groves | A new analytic method for finding policy-relevant scenarios[END_REF] and Bryant and Lempert [START_REF] Bryant | Thinking inside the box: A participatory, computer-assisted approach to scenario discovery[END_REF].

In RDM, we model a large number of possible futures and test our technological solution in all these futures. The aim is to find the future conditions which make the solution or scenario studied fail or succeed [START_REF] Bryant | Thinking inside the box: A participatory, computer-assisted approach to scenario discovery[END_REF][START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF]. This helps the decision maker choose strategies that are more robust and can more effectively achieve their goals in an uncertain future [START_REF] Bryant | Thinking inside the box: A participatory, computer-assisted approach to scenario discovery[END_REF]. The idea is to seek robust, rather than optimal strategies, which perform well over a wide range of plausible futures [START_REF] Lempert | Robust decision making (RDM)[END_REF]. The RDM method has been applied e.g. by Kasprzyk et al. [START_REF] Kasprzyk | Many objective robust decision making for complex environmental systems undergoing change[END_REF] to study a city's water supply, by Forsström [START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF] and Perrier [START_REF] Perrier | Penser la transition énergétique : stratégies robustes aux incertitudes et impacts sur l ' emploi[END_REF] to study future energy systems, and by Björnberg [START_REF] Björnberg | Renewable energy system in Finland -A Business case study in steel industries[END_REF] to study fossil-free industrial systems. Moallemi applied parts of the method (PRIM analysis) to study the transition of an electricity system [START_REF] Moallemi | A participatory exploratory modelling approach for long-term planning in energy transitions[END_REF]. In addition, the method has often been applied to complex systems, e.g. on adaptation to climate change [START_REF] Bhave | Barriers and opportunities for robust decision making approaches to support climate change adaptation in the developing world[END_REF]. Lindroos et al. [START_REF] Lindroos | Robust decision making analysis of BECCS ( bio-CLC ) in a district heating and cooling grid[END_REF] have applied parts of the method to study the role of bioenergy combined with carbon capture and storage in a district heating and cooling grid, but otherwise the authors are not aware of RDM studies specific on heating sector.

The benefit of the RDM and other DMDU approaches is that they concentrate on finding solutions that can adapt to various future circumstances. This sets them apart from more traditional "predict then act" strategies for long-term decision-making [START_REF] Marchau | Decision Making Under Deep Uncertainty[END_REF], and they can rather be considered as "assessrisk-of-policy" approaches [START_REF] Bhave | Barriers and opportunities for robust decision making approaches to support climate change adaptation in the developing world[END_REF]. Kwakkel and Haasnoot [START_REF] Kwakkel | Supporting DMDU: A Taxonomy of Approaches and Tools. Decision Making under Deep Uncertainty[END_REF] point out that in the literature there is "an emerging consensus that any decision regarding a complex system should be robust with respect to the various uncertainties". They further state that under deep uncertainty, decision-making support should move away from trying to define one correct solution, and rather aim at enabling discussion and common understanding between the stakeholders. Popper et al. [START_REF] Popper | Reflections: DMDU and Public Policy for Uncertain Times[END_REF] state that simple exploratory modelling, such as RDM can be seen as a tool for an initial check to identify the most important factors affecting the decision-making. These factors can then be further investigated with additional methods or models.

Marchau et al. [START_REF] Marchau | Decision Making Under Deep Uncertainty[END_REF] report also on the challenges of DMDU approaches. The models and tools used should be developed so that they are simple and transparent enough, and more guidance is needed on when and how to apply DMDU tools. In addition, the scope of the application of DMDU tools could be broadened, and suitable sectors could for example include transportation, energy and spatial planning [START_REF] Marchau | Decision Making Under Deep Uncertainty[END_REF]. In this article, we provide a user case for the heating sector.

In addition to the problem of uncertainty, decision makers often face a situation where several indicators need to be considered simultaneously. Numerous methods of multi-criteria decision making (MCDM) are available and widely applied also for renewable energy technologies [START_REF] Mardani | A review of multicriteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015[END_REF]. The MCDM methods are generally divided under two groups: Multi-Attribute Decision Making (MADM) and Multi-Objective Decision Making (MODM) [START_REF] Banasik | Multi-criteria decision making approaches for green supply chains: a review[END_REF]. The MADM methods are applied when the problem has a small and finite set of solutions, and it aims at identifying the best option based on the known attributes of a limited number of alternatives. MCDM methods applied for this type of problems include e.g. AHP, ANP, TOPSIS, DEMATEL, ELECTRE, PROMETHEE, and UTA [START_REF] Banasik | Multi-criteria decision making approaches for green supply chains: a review[END_REF]. The MODM methods are applied when there is a large and infinite set of alternative solutions. Several objectives are simultaneously taken into account within a mathematical programming model, and the aim is to find the best solution that satisfies the decision maker's desires. The results can be presented e.g. as Pareto-efficient solutions. The methods include Ɛ-constrain, Global Programming, and the Weighting method [START_REF] Banasik | Multi-criteria decision making approaches for green supply chains: a review[END_REF].

Uncertainty in an MCDM analysis can be handled by various means. Stewart and Durbach [START_REF] Stewart | Dealing with uncertainties in MCDA[END_REF] have classified uncertainty as internal and external uncertainty. With internal uncertainty they mean the uncertainty of the MCDM model itself, as well as the human judgement of the criteria. With external uncertainty they mean the lack of knowledge about the consequences of a particular choice, which relates to the main interest of this paper in profound future uncertainty. Stewart and Durbach [START_REF] Stewart | Dealing with uncertainties in MCDA[END_REF] conclude that there is always a role for systematic sensitivity analysis "but care needs to be taken to avoid simple one-at-a-time variations in assumptions". Sophisticated approaches are used for uncertainty in MCDA, such as fuzzy set approaches. Fuzzy set approaches have been widely proposed for energy policy planning [START_REF] Kaya | A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making[END_REF], and they allow the expression of uncertainties in human opinions through the concept of partial truth, in which the truth-value may range between completely true and completely false. Stewart and Durbach [START_REF] Stewart | Dealing with uncertainties in MCDA[END_REF] also see the benefit of combining MCDA with scenario planning, as this can be a very transparent tool to illustrate uncertainties to decision makers. However, an open question is what a suitable number of the scenarios is. Here RDM could provide a solution with its approach to simulate a large variety of futures possible. Stewart and Durbach [START_REF] Stewart | Dealing with uncertainties in MCDA[END_REF] also conclude that it is important that the analyses are fully understandable to all participants in the process, and thus very elegant mathematical models may be of less practical value, especially in the cases where fewer research resources are available. The comprehensibility of the method to the users is one of our main aims.

Luca et al. 2017 [START_REF] Luca | Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review[END_REF]and Gamper and Turcanu 2007 [START_REF] Gamper | On the governmental use of multi-criteria analysis[END_REF] have listed benefits and challenges of MCDM. The benefits include the comprehensiveness of the analysis, the learning process for the participants, a common understanding of the problem, the systemic transparent process, and a clearer view of sustainable solutions. On the other hand, the challenges of the analysis can include the fact that the analysis brings more uncertainties and methodological disagreements, that it is technically complex and difficult to understand, simplifies the decision context and is time consuming. Wu et al. 2017 [START_REF] Wu | A Review on Multiple Criteria Performance Analysis of Renewable Energy Systems[END_REF] concluded that Different MCDA methods provide different results even to the same problem and with the same data, and it is usually difficult to determine which method provides the most appropriate solution. They propose that a reasonable solution would be to apply a combination of two or more MCDA methods. At the same time, Mardani et al 2017 [START_REF] Mardani | A review of multicriteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015[END_REF] highlighted that the MDCM approach should be easily understood. If the decision makers cannot understand how a methodology works, they may see it similarly to black box and loose trust in the method. This adds to the reasons why we aim for a simple method which can be used as an initial check of the problem in hand.

For building a simple decision making-framework for territories, we compared example studies with multi-criteria and RDM methods to show the benefits and differences (Table 1). 

Study Multi-criteria analysis with ranking

Example: [START_REF] Klein | Comparing the sustainability of U.S. electricity options through multicriteria decision analysis[END_REF] Search for Pareto optimal solutions

Example: [START_REF] Cambero | Incorporating social benefits in multi-objective optimization of forestbased bioenergy and biofuel supply chains[END_REF][START_REF] Pingoud | Trade-offs between forest carbon stocks and harvests in a steady state -A multi-criteria analysis[END_REF] 

Robust decision-making

Example: [START_REF] Bryant | Thinking inside the box: A participatory, computer-assisted approach to scenario discovery[END_REF][START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF] We aim to combine some characteristics and benefits of the methods presented above into a simple decision-making framework with the following properties:

-inclusion of uncertainty as an inherent part of the analysis, -creating common understanding for the stakeholders on the future vulnerabilities and tradeoffs, -inclusion of multiple indicators, -inclusion of territorial features to the analysis as weighting factors.

The need for this kind of hybrid approaches has been identified also by e.g. Sharma et al. [START_REF] Sharma | A new hybrid approach for evaluating technology risks and opportunities in the energy transition in Ireland[END_REF], who have combined energy systems optimization models with multi-criteria assessment and stakeholder participation via workshop. Our main aim is to provide decision makers with a simple tool providing data that allows seeking robust solutions which perform well over a wide range of plausible futures.

Proposed decision-making framework

The decision-making framework proposed is illustrated in Figure 1. This section describes the principles of the analysis. Section 4 with the case study illustrates how the analysis is done in practice. The analysis is participatory and can be conducted in co-operation with the decision makers, as illustrated in Figure 1. It can be used for both analysing individual technologies or technology portfolios. The analysis is based on the territorial data and characteristics, which define the local technical, social, and environmental conditions. This data provides the basis for the choice of suitable technologies to be included in the study. For example, the local energy consumption and current production; local feedstock, solar radiation, and wind conditions; possible excess heat and geothermal sources; as well as heat storage possibilities all affect which renewable energy technologies or their combinations are suitable for the region. In addition, the social features such as the density of habitation, or environmental features such as vulnerable landscapes can affect the choice. This "structural" information providing a first diagnosis of the territory are possible preconditions for engaging in the decision-making process. The framework can be used with different levels of data available in the territory. Whatever the in-depth quality of the data used, the proposed methodology provides information at the strategic level and not the operational one.

Robust decision making method with multiple performance metrics

The Robust Decision-Making method was developed by the RAND corporation [START_REF] Lempert | Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis[END_REF][START_REF] Groves | A new analytic method for finding policy-relevant scenarios[END_REF] and has been described by Bryant and Lempert [START_REF] Bryant | Thinking inside the box: A participatory, computer-assisted approach to scenario discovery[END_REF], and applied e.g. by Forsström [START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF] and Perrier [START_REF] Perrier | Penser la transition énergétique : stratégies robustes aux incertitudes et impacts sur l ' emploi[END_REF]. The method aims to test a proposed solution (e.g. technology or portfolio of technologies) in thousands of different futures to determine whether the solution is robust in different future conditions.

The methodology is based on defining the following factors [START_REF] Lempert | Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis[END_REF][START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF]:

• Uncertain factors (U) describe the factors outside the control of the decision makers. These factors can however be fundamental in defining the success of a technology/strategy in the future. These are factors such as investment costs, prices of fuel or feedstock in the future, the price of CO2, or other uncertain emission parameters. An uncertainty range is defined for all these parameters. The uncertainties can be defined in co-operation with the decision makers, and there is no need for agreement on the values, as wide uncertainties can be included. For example, if one decision maker thinks that in the future the price of CO2 will be 150 €/t and another one believes that it will be 10 €/t, both opinions can be included, and the variation is fixed between 10 and 150 €/t. A uniform distribution is used as all the values are considered equally probable. During the analysis some iteration can be carried out and the uncertainty range can be reduced or widened in accordance with the decision maker choices.

• Factors under control (C) comprise actions that are in the decision maker's hands. These can be for example: the selection of technologies that the decision maker wants to study, some of the technical characteristics, and some parameter restrictions.

• Models (M) include the models used in the study, which can be simulations of optimisation models. The requirement is that the model is simple enough so that it can be used to study thousands of futures.

• Performance metrics (P) are the metrics used to rank the technologies or portfolios (e.g. economic, environmental, and social metrics). These can be selected by the decision makers. The performance metrics correspond to the various criteria used in multi-criteria analysis.

The analysis of the success of a solution is based on a regret analysis [START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF]. This means that we study the success of each technology in each of the simulated futures (e.g. 5 000 futures, meaning 5 000 different combinations of the calculation parameters). This is done by comparing the performance of a technology to the performance of other technologies in the same future. The regret is 0 for the technology which performs the best in that particular future (e.g. the technology which has the lowest costs or lowest emissions). The regret (R) is calculated for each future and for each performance metric by: When the minimisation of a performance metric is preferred (e.g. cost or emission)

, = , - , , (1) 
When the maximisation of a performance metric is preferred (e.g. amount of jobs created) In order to normalise the results between the different performance metrics, the regret results are used to calculate the "points" (x) for each technology and each performance metric. The point varies between 0 and 1, being 1 for the best technology. The normalisation is done by studying the distance of the particular regret result from the maximum regret in the same future:

, = , - , , (2) Where 
, = , - , , - , . 3 
The final "total points" (Xtot) is the sum of the final average points of all the studied performance metrics for the technology.
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Vulnerable future discovery

One internal part of the robust decision-making method is so called vulnerable future discovery. It is applied to identify the uncertain inputs that best predict the future conditions when the technologies or strategies studied become vulnerable (or alternatively where they perform well). For example, we can search for combinations of parameters which cause the worst 10% of the results for a technology. Finally, we want to illustrate these futures of vulnerability (or success) to the decision makers so that they can decide if they believe those conditions would take place or not. For example, the analysis could show that with a certain combination of CO2 and fuel prices, a technology would most probably fail, and the decision maker can then judge if he sees these prices to represent the future he believes will take place or not.

The method for the vulnerable future discovery is described in Bryant and Lempert [START_REF] Bryant | Thinking inside the box: A participatory, computer-assisted approach to scenario discovery[END_REF] and in Kasprzyk et al. [START_REF] Kasprzyk | Many objective robust decision making for complex environmental systems undergoing change[END_REF]. The analysis uses the Patient Rule Induction Method (PRIM) by Friedman and Fisher [START_REF] Friedman | Bump Hunting in High-Dimensional Data[END_REF], and it can be applied by using the R programming language [START_REF] Coreteam | R: A language and environment for statistical computing[END_REF] and SDToolkit [START_REF] Bryant | Package ' sdtoolkit[END_REF]. A tool for Python programming is also available [see 19]. In the discovery process, we first define the performance thresholds for the regret analysis and then find the drivers for the threshold violations (the combinations of parameters causing the vulnerable futures). With the cases passing the performance threshold defined, the PRIM creates "scenario boxes" which describe the values causing violations of the threshold (Figure 2). The PRIM method is interactive and by visualising the results, it helps the user to choose the best scenario boxes and balance them with the three measures of scenario quality: the coverage, density, and interpretability of the scenario box. The coverage quantifies how many of the vulnerable points are captured in the scenario, whereas the density shows how many of the captured points are actually in the vulnerable set [START_REF] Forsström | From scenarios to decisions Supporting decision making with exploratory and robust analysis[END_REF]. The user wants to maximise both the coverage and the density of the scenario box.

Portfolio construction

Often one technology is not enough to supply the whole need for renewable energy in a territory, but rather a portfolio of technologies is needed. In addition, the impact of a technology portfolio can be different than the impact of an individual technology [START_REF] Nock | Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios : New England case study[END_REF]. Thus, technology portfolio evaluation with the methodology proposed is also illustrated in this paper. To construct a technology portfolio we need information on the energy demands in the territory, which is then fulfilled with a combination of technologies. The portfolio construction in our case study is further explained in section 3.2.

Preference scenarios and territorial weighting

In a multi-criteria analysis, the weighting of the various criteria is often applied. Klein and Whalley [START_REF] Klein | Comparing the sustainability of U.S. electricity options through multicriteria decision analysis[END_REF] and Nock and Baker [START_REF] Nock | Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios : New England case study[END_REF] have applied a weighting of multiple criteria with "preference scenarios" describing the decision maker's preferences. For example, one can consider the economic criteria to be more important than the climate criteria, or the other way round, and give weights to the points accordingly. The weighting is often somewhat subjective, and one could argue that the weights can be modified until the results present the initial opinion of the decision maker. However, for example Klein and Whalley [START_REF] Klein | Comparing the sustainability of U.S. electricity options through multicriteria decision analysis[END_REF] show the ranking of the technologies over several decision preference scenarios which allows the decision maker to make a robust choice of a technology, which performs well with different kinds of weighting scenarios, i.e. ranks highest on average.

The weighting "preference scenarios" could also be based on territorial features. In life cycle assessment (LCA) studies this kind of "spatialization" has already taken place. For example Nitschelm [START_REF] Nitschelm | Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: Current practices and method development[END_REF] and Patouillard [START_REF] Patouillard | Critical review and practical recommendations to integrate the spatial dimension into life cycle assessment[END_REF][START_REF] Patouillard | Ready-to-use and advanced methodologies to prioritise the regionalisation effort in LCA[END_REF] have studied the spatialization of LCA and the use of spatialized characterisation or sensitivity factors in impact assessments. This means that when studying the environmental impacts, the local environmental characteristics such as soil quality, slope, watershed conditions, distance to water, etc. are included in the analysis. The spatial resolution naturally varies for different impact categories (e.g., GHG impacts are global, while soil quality impacts are specific to a land area). A similar idea of "sensitivity factors" could be applied for the preference weighting factors in territorial, multi-criteria analyses, based on regional circumstances. A simple example could be that in a region which is poor, isolated, and has high biodiversity values, the weighting of the criteria could illustrate these features. For example, a high weight could be set for economic indicators to emphasise low-cost technologies, a low weight could be set for health indicators as particulate emissions are not so harmful in isolated areas, and a high weight could be set for biodiversity to select technologies with low biodiversity impacts. Some propositions for the "spatialization" of weighting indicators are listed in Table 2. These indicators can be seen as a 

Definitions for robust decision-making

The definitions (see Section 2.3) used for the robust decision-making analysis are listed in Table 4.

The parameters within control include the conversion efficiencies and lifetimes of the technologies, which were fixed in the study. The uncertain factors include all the data related to the costs of the technologies, fuels used, and the price given for CO2. Here the CO2 price was applied for fossil fuels, even in domestic use. In addition, the emission indicators were considered as somewhat uncertain, as the biomass used in the plants could come from different biomass sources and over different distances, and as there is always some degree of uncertainty related to LCA results.

The model used in this study is built in Excel and allows the simulation of 5 000 future cases. The 5 000 futures were created by combinations of 5 000 random values of the calculation parameters within their uncertainty ranges (section 3.4). An Excel-based model was used also for the portfolio definition. In further analyses, these models could be replaced with more refined tools. The performance metrics selected for the case study illustrate the economic performance for the levelized cost of energy (LCOE), climate impacts by GHG emissions, health impacts by particulate emissions (PM2.5 and PM10), technical properties by capacity factor (CF), and social impacts from the jobs created. The indicators are limited to 5 to simplify the analysis, but more performance metrics such as biodiversity impacts, water consumption, or more refined social indicators could also be added to the analysis.

The LCOE results were calculated by the equation presented below [START_REF]Couts des énergies renouvelables en France édition[END_REF].

! "# = ∑ % + ' + ( 1 + * + ,- ∑ # 1 + * + ,- 5 
where It = investment expenditures in the year t, Mt = operation and maintenance expenditures in the year t, Ft = fuel expenditures in the year t, Et = energy generation in the year t, r = discount rate (discount rate of 5% was used here), n = lifetime of the system.

The performance metrics are evaluated in terms of varied and fixed costs or emissions (e.g. €/MWh and €/MW or gCO2/kWh and gCO2/kW), as demonstrated by Nock and Baker [START_REF] Nock | Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios : New England case study[END_REF]. For the portfolios, the final performance of the portfolio is the sum of the performance of the different technologies in the portfolio. This sum is calculated by weighting the varied costs/emissions by the share of the technology in portfolio in terms of MWh, and by weighting the fixed costs/emissions by the share of the technology in portfolio in terms of MW. The jobs created are only evaluated in terms of jobs per MWh due to the data available. For the technology comparison, the capacity factor was varied to illustrate the potential peak load hours for each technology. The capacity factor indicator is not included in the portfolio metrics, as it is already fixed in the portfolio construction.

The performance metrics could also be evaluated locally and globally. For example, the fixed GHG emissions related e.g. to the manufacture of solar panels are not produced locally, whereas the particulate emissions of biomass combustion are local. Here we consider the global emissions as the total impacts of the technologies of interest.

Setting the uncertainties for the parameters

Setting the uncertainties for the calculation parameters can be done in co-operation with the specialists and decision makers. Especially, estimations related to the future costs of technology investments, fuel and CO2 prices can vary significantly, depending on who is asked. The robust decision-making process allows all the opinions to be included, as wide uncertainty ranges can be applied. Here the uncertainty ranges are based on the literature and on expert opinions. The CEA experts evaluated the possible variation in the cost of fuels and CO2 in France (Figure 3). The CO2 price was assumed to have a wide uncertainty range, as it has been estimated that in France, the shadow prices of carbon1 could be close to 800€ in 2050 [START_REF] Quinet | La valeur de l ' action pour le climat[END_REF]. The electricity price was estimated not to fall below 50€/MWh, as an important share of the price is formed by distribution costs. The industrial use of natural gas or biomass was estimated to be lower in cost than domestic use. The investment costs were based on ADEME [START_REF]Couts des énergies renouvelables en France édition[END_REF] and Sandvall [START_REF] Sandvall | Cost-efficiency of urban heating strategies -Modelling scale effects of low-energy building heat supply[END_REF].

The COP for heat pumps stands for 'coefficient of performance' and shows the ratio of useful heating or cooling provided for work required, i.e. the electricity consumed by the pump. The higher the COP, the more efficient the heat pump (Figure 4).

Here the typical timeframe for defining the cost estimations is around 20 years. However, as the method allows a large variation of the parameters, it is possible to include a range that presents the possible price development on any wanted time scale. The GHG emissions for bioenergy options were taken from the EU Renewable Energy Directive 2 [START_REF]the European Parliament and of the Council on the promotion of the use of energy from renewable sources[END_REF], where the default emission factors are given for various types of biofuels. The Ecoinvent database was used to estimate the rest of the GHG emissions, as well as particulate emissions [START_REF] Ecoinvent | Ecoinvent Database 3.5[END_REF]. The capacity factors were evaluated based on S2Biom [START_REF] S2biom | Tools for biomass chains[END_REF], ADEME (2016) and Klein & Whalley [START_REF] Klein | Comparing the sustainability of U.S. electricity options through multicriteria decision analysis[END_REF]. Data on jobs was based on the ADEME study on the jobs created by various renewable energy technologies in France [START_REF]Marchés & emplois dans le domaine des énergies renouvelables[END_REF], and the study by Klein & Whalley [START_REF] Klein | Comparing the sustainability of U.S. electricity options through multicriteria decision analysis[END_REF]. These assumptions are presented in Appendix A.

Portfolios

For the purpose of testing the proposed methodology for portfolio analyses, we used a simplified method to create the technology portfolios. We studied the heating technologies that could be attached to a district-heating network, so that a portfolio then illustrates a territorial energy system. The technologies selected for the analysis were a biomass-plant, central heat pumps and central solar heating solutions. We assumed that if the territory is interested in bioenergy production, it would build one larger bio-plant for the district heating network, and then produce the rest of the heating needed with the other technologies. No heat storages were included to simplify the analysis. Five different technology combinations were studied: We searched for solutions where the heat currently produced by natural gas is replaced by renewable energy. This is because we roughly estimated that households that are connected to the natural gas supply network exist in areas where it could be feasible to connect to the district heating system, i.e. they have a sufficiently high linear heat density. For a more detailed analysis, the heat demand should be evaluated based on high-resolution geospatial data [START_REF] Möller | Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas[END_REF]. We used the statistical data on natural gas consumption, which was available separately for heating and sanitary water [START_REF] Oreges | OREGES Auvergne-Rhône-Alpes[END_REF]. To build the heat load curve, the monthly data on local temperatures for the region was used [START_REF]Données publiques[END_REF], and we assumed that heating was needed in months when the average temperature was less than 15˚C. Heating for sanitary water is needed all year round. This allowed us to roughly estimate the form of the heat load curve for the territory (Figure 5). To estimate the potential for solar heat production, we used the regional average solar radiation data for the years 2007-2016 from JRC [START_REF]Photovoltaic geographical information system[END_REF], and made a cautious estimation of 40% for the thermal solar panels' efficiency. To build a technology portfolio, we added the production technologies to the load curve. First, we assumed that if solar heating was included in the portfolio, the number of panels would correspond to the capacity that could produce the required heating for sanitary water during the summer months (any extra panels above this would produce waste heat during the summer, as no storage were included). The other technologies then produced the rest of the heat needed. We tested different shares of the other technologies, which were added to the load curve, unit by unit, first "baseload technology", then possible "peak load technology" (Figure 5). By varying the share of the technologies, the economically optimal portfolio for each technology combination was found. This way, the final share of each technology in MWh and MW was defined, and the characteristics of the portfolios are illustrated in Figure 6 and in Table 5. 

•

Results and discussion

The results can be presented step-by-step, i.e. one metric after another before combining them. Each performance metric can be presented following the scheme presented below: comparing the performance of the technologies by regret analysis, assessing their robustness and vulnerabilities, then comparing the portfolios. Finally, the performance metrics can be combined, and weighting can be applied. This step-by-step approach is useful to help decision makers acknowledge, reinforce, or change their vision of the potential new territorial energy system. Here the economic performance is used as an example. 

LCOE results and vulnerabilities for technologies

The absolute LCOE results for the technology comparison are shown in Figure 7. The figure shows the variation due to the uncertainties applied and the average LCOE value. The regret analysis according to equation 1 shows relative results comparing the technologies to each other. Economically speaking, and with the assumptions and uncertainty ranges applied in this study, the central and domestic heat pumps are the most interesting options, as they have the lowest regret in most of the cases. The sorted LCOE regret results (€/MWh) in Figure 8 show that the central heat pumps perform the best in almost all of the 5 000 futures simulated, and do so with most of the combinations of the varying calculation parameters. This illustrates that economically they are the most robust technologies when considering the future uncertainties. In addition, the large biomass-plant, modern domestic biomass and central solar heating perform well. None of the futures simulated made the domestic solar heating system successful due to its high investment cost. Additionally, the currently widely-used natural gas heating performed badly in all the futures. We then continued to the PRIM analysis to determine the economic conditions which could make these best performing technologies vulnerable. We compared the central heat pumps to a 20MW biomass-plant by calculating the regret results again between just these two options, and selected the worst 10% of the results as a threshold limit for the PRIM algorithm. To be able to recognise significant parameters, we fixed the peak load time of both technologies to be equal. The analysis provided us with parameters which had the most significant effect on the vulnerability of the technology, and the trade-off values with which these vulnerable futures could be experienced. The most significant parameters affecting the two technologies were the cost of electricity, the cost of biomass and the COP. For example, central heat pumps are vulnerable in conditions where the cost of electricity is > 108 €/MWh, and the cost of biomass is < 45 €/MWh. For the large biomass-plant these values are < 129 €/MWh and > 60 €/MWh, respectively. These vulnerable areas are illustrated in Figure 9. The decision maker's role is then to judge (with experts), which of these future conditions can be considered the most probable in the investigated region. For example, if there are easily exploitable, low-cost biomass sources available in the region, but the future national electricity price is expected to rise significantly, the future conditions may be closer to those where the heat pumps are vulnerable and biomass-plant succeeds (or the other way round in opposite conditions). 

LCOE results and vulnerabilities for portfolios

We conducted the regret analysis similarly for the portfolios. The sorted LCOE regret results in Figure 10 show that Portfolios 1 and 4 have the lowest regret in most of the cases, thus being the most robust solutions in economic terms. The PRIMS analysis was made for all the portfolios, again with the threshold limit of 10% of the worst LCOE results. The conditions making each portfolio vulnerable are given in Table 6. The cost of electricity and biomass and the COP of the heat pumps were the most significant parameters leading to vulnerability, the cost of biomass being the most significant parameter for all of the portfolios. At the same time, one can see that the other parameters, such as the investment costs, are less significant to the vulnerability of the results. Figure 11 illustrates the vulnerable areas for the two most promising portfolios, Portfolio 1 and Portfolio 4. Portfolio 1 relying only on biomass-plant is vulnerable when the price of electricity falls under 120€/MWh and the COP of the heat pumps is high (i.e. the heat pumps would perform efficiently). Portfolio 1 is vulnerable also, when the cost of biomass rises above 60€/MWh. Portfolio 4 relying on heat pumps becomes vulnerable when the price of biomass falls below 49 €/MWh, the COP is lower than 3, and the price of electricity rises above 100€/MWh. Again, it should then be judged, which conditions seem the most probable for the future in the region studied. 

Total points with all performance metrics

When the total points from all performance metrics are calculated (equation 3) and sorted for the technology comparison, we see the results in Figure 12. The highest total points in most of the 5 000 cases are gained by the large biomass-plants. This means that this technology is the most robust in terms of all the performance metrics analysed, in various future conditions. Additionally, the smaller biomass-plants and heat pumps perform well. Figure 13 shows how the average total points are formed from the different performance metrics. This shows the differences between the technologies. Additionally, on average, the big biomassplants and heat pump solutions performed the best. The worst results are for natural gas due to low points from GHG impacts, domestic solar heating due to low points from economic indicators, and for traditional biomass due low points from the health indicator (PM10,2.5). It should be kept in mind, that the results are still dependent on the assumptions made concerning the uncertainty ranges, and more work is needed, for example, to define more reliably the job indicator. Figure 14 shows the corresponding results for the portfolios. Portfolio 4 has the highest total points in almost all 5 000 cases. This is because it performs the best for several indicators: particulate emissions, GHG emissions and often also the LCOE. The PRIM analysis can be continued to study the vulnerabilities created by the various performance metrics, some individual metrics of interest, or different combinations of portfolios or technologies.

It is up to the decision makers and analysts to decide which comparisons they consider the most useful for the studied situation.

Preference scenarios and territorial weighting

If the decision makers wish to use weighting for the different performance metrics, one option is to use territorial features to do this, as described in Section 2.6. Figure 15 The example shows that the results can vary significantly between the weighting scenarios. For example, the domestic solar technology becomes significantly more interesting if a high weight is given only to climate and health impacts, instead of economic indicators.

Conclusions

This article presents a simple decision-making framework that can be used by territorial or other decision makers who need to consider multiple-criteria when deciding on future renewable energy investments under uncertainty. It searches for the technologies that are most robust in various future conditions, as well as for trade-offs between different parameters affecting the success of the renewable energy technologies. The proposed framework is flexible and it can be used with different simulation or optimisation models, as long as they allow running thousands of simulations. The case study on future heating solutions gives guidance on how the analysis can be performed. It also shows that the currently widely-used natural gas heating performs badly in all simulated future conditions compared to renewable technologies. According to the study, heating solutions with heat pumps or central biomass plants are most robust in various future conditions.

The benefit of the method used is that it helps decision makers to recognise the most significant parameters creating vulnerabilities (or successful conditions) for the studied technologies. Thus, further efforts can be made to even better evaluate these particular parameters. The method shows the actual threshold values creating the vulnerable conditions for different technologies. Recognising and visualising these conditions and their trade-offs can help the decision makers to make concrete evaluations on the performance of the technologies, and to judge how well they would perform in future conditions foreseen in their region.

There are some limitations to the proposed decision-making framework to be tackled in future studies. For example, the uncertainty range was not applied for some of the parameters, e.g. here for operation and maintenance costs or for the discount rate. However, a change in these costs would affect the result. On the other hand, if too many uncertain parameters are included in the analysis, it can be difficult to find any clear vulnerable conditions with the PRIM analysis. Thus, a balanced approach is needed. In addition, even though the uncertainty range given for the parameters is wide, modifying it in one or another direction can affect the results. This can lead to subjectivity but also provides a more accurate vision of the uncertainties through iteration loops that can be made in cooperation with decision makers. Thus, further real-world test studies are needed.

The framework based on the robust decision-making method can offer interesting possibilities for creating data that can help territorial decision makers to make more comprehensively analysed decisions, with better understanding of various possible future conditions. In real life, it is not always possible to implement the most economically or environmentally optimal energy production system, as the future conditions are per se uncertain, or some other limitations such as economic resources, public opinion, or policy developments cannot be entirely modelled in particular in the long term (20 years or more). Thus, one option for the decision makers is to aim towards solutions which are the most robust in various future conditions. The framework proposed provides insight, among other methods, to make choices for the territorial energy transition. 
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 1 Figure 1. Illustration of the proposed decision-making framework with examples for performance metrics and uncertain factors. The box numbers illustrate the order of the process.

  performance index of the performance metric in question (e.g. €/MWh or gCO2/MJ), pm = performance metric j = strategy (e.g. technology or portfolio), f = future.

Figure 2 .

 2 Figure 2. Principle of the PRIM analysis (Figure adapted from Kasprzyk et al. 2013).
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 3 Figure 3. The variation of costs in the robust decision-making analysis based on expert opinion.
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 4 Figure 4. The variation of investment costs and technical details based on [45,47].

Portfolio 1 :

 1 Biomass-plant alone • Portfolio 2: Biomass-plant + central heat pumps • Portfolio 3: Biomass-plant + central solar heating • Portfolio 4: Central heat pumps + central solar heating • Portfolio 5: Biomass-plant + central heat pumps + central solar heating
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 5 Figure 5 a) The annual load curve illustrating the monthly heat consumption and b) an example of a sorted load curve used to define the shares of the production of the technologies.

Figure 6 .

 6 Figure 6. Shares of technologies in portfolios defined a) by heat production (MWh) and b) by capacity (MW). HP = heat pump.
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 7 Figure 7. The absolute LCOE average values and uncertainty ranges.

Figure 8 .

 8 Figure 8. Sorted regret for LCOE for 5 000 cases. The technology with the lowest regret in most of the cases is the most robust in various future conditions, in economic terms.
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 9 Figure 9. Example economic conditions in which the best performing technologies are the most vulnerable.

Figure 10 .

 10 Figure 10. Sorted regret for LCOE in 5 000 cases. The portfolio with the lowest regret in most of the cases is the most robust in economic terms, in various future conditions.

Figure 11 .

 11 Figure 11. Example conditions in which the best performing portfolios are the most vulnerable: a) trade-off with COP and electricity cost, b) trade-off with biomass and electricity cost

Figure 12 .

 12 Figure 12. Sorted total points in 5 000 cases for the technology comparison. The technology with the highest total points in most of the cases is the most robust in terms of all performance indicators.

Figure 13 .

 13 Figure 13. Average total points for the technologies.

Figure 14 .

 14 Figure 14. Sorted (a) and average (b) total points for the portfolios.

  illustrates an example of different weighting results for the total points, based on different preferences. If for example the region studied is poor and has a high unemployment rate, it may wish to emphasise the low costs of the technology and job creation, and a higher weight can be assigned to the LCOE and job indicator (e.g. a weight of 0.45 for economic and social indicators and 0.033 for other indicators). If the region wants to emphasise climate and health indicators, a higher weight is given to these indicators. A result with equal weight for all indicators is presented for comparison (weight of 0.2 for all indicators).

Figure 15 .

 15 Figure 15. Example illustration of applying weighting factors for the performance metrics.

Table 1 . Comparison of MCDM methods and RDM.
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Table 3 . Technology selection and key parameters.
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	Identification Technology	Output	Input	Example	Conversion	Panels	Life	O&M costs
			capacity		capacity	efficiency	installed	time
					MW	GJ/GJ	m 2	y	% of investment
	Technology 1	2MW, forest	Heat	Forest	2	0.85		25	4%
		biomass	(2 MWth)	residues				
	Technology 2	20MW, forest	Heat	Forest	20	0.85		25	4%
		biomass	(20 MWth)	residues				
	Technology 3	Central	Heat	Forest	0.15	0.85		20	4%
		heating	(0.15MWth)	residues				
		biomass						
	Technology 4	Domestic	Heat	Wood	0.01	0.75		15	6%
		biomass,	(0.010	logs				
		traditional	MWth)					
	Technology 5	Domestic	Heat	Pellets	0.01	0.90		15	6%
		biomass,	(0.010					
		modern	MWth)					
	Technology 6	Domestic	Heat	Solar	0.0035		5	20	2%
		solar heating	(0.0035	radiation				
			MWth)					
	Technology 7	Central solar	Heat	Solar	0.15		214	25	2%
		heating	(0,15 MWth)	radiation				
	Technology 8	Domestic	Heat	Electricity	0.01			15	3%
		heat pumps	(0.010					
			MWth)					
	Technology 9	Central heat	Heat	Electricity	0.15			20	3%
		pumps	(0.10 MWth)					
	Technology 10	2MW, natural	Heat	Natural	2	0.9		20	2%
		gas	(2 MWth)	gas				
	Technology 11	Domestic	Heat	Natural	0.01	0.9		20	6%
		natural gas	(0.015	gas				
			MWth)					

Table 4 . The definitions needed for robust decision-making for the case study.
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	Within control (C):	Uncertain factors (U):
	• Technology selection	• Cost of investment
	• Conversion efficiencies	• Cost of biomass
	• Portfolio construction	• Cost of natural gas
		• Cost of CO2
		• Cost of electricity
		• Peak load times
		• Solar production
		• GHG emissions
		• PM emissions
		• Number of jobs
	Models (M):	Performance metrics (P):
	• Excel-based model to analyse the	• Economic: LCOE
	technologies, 5 000 futures simulated	• Climate: GHG
	• Excel-based model to construct the	• Health: PM2.5 and PM10
	portfolios, 5 000 futures simulated	• Technical: capacity factor (used only for
		the comparison of individual technologies)
		• Social: Jobs

Table 5 . Portfolio characteristics
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		Solar			Biomass-plant			Heat pumps		
					peak load time			peak load time		
		m 2	MW	GWh	average	MW	GWh	average	MW	GWh
	Portfolio 1	0	0.0	0.00	3793	20	76			
	Portfolio 2	0	0.0	0.00	3892	19	74	1002	2.1	2
	Portfolio 3	9089	7.2	5.86	3510	20	70			
	Portfolio 4	9089	7.2	5.86				3519	20.0	70
	Portfolio 5	9089	7.2	5.86	3784	16	61	1608	6.0	10

Table 6 . Vulnerable combinations of parameters for Portfolios. HP = heat pump.
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	Investment bio Investment HP Investment solar Solar production COP	Cost electricity Cost biomass
	€/kW	€/kW	€/kW	kWh/m 2 /a	€/MWh	€/MWh
	Portfolio 1	< 1378		>2.25	< 119	> 60
	Portfolio 2			> 2.55	< 128	> 67
	Portfolio 3	< 1380		> 2.55	< 137	> 62
	Portfolio 4			< 3.05	> 93	< 49
	Portfolio 5			>2.25	< 120	> 65

Table A1 . Assumptions on emissions, capacity factor and jobs

 A1 

	Tech9	Central heat	0,21	0,90	ADEME 2016		0.37		1.60	Klein & Whalley 2015
		pumps									
	Identifica Tech10	Technology 2MW, natural GHG emissions 0,46	0,86	ADEME 2016		0.24	PM 10 & 2.5 1.76	Klein & Whalley 2015
	tion	gas							emissions	
	Tech11	VARIED Domestic	0,26	0,91	FIXED ADEME 2016		0.24	VARIED 1.76	FIXED Klein & Whalley 2015
		gCO2/ natural gas	gCO2/					mg/k	mg/k	
			kWh	kWh					Wh	Wh	
			min	max	Source	min max	Unit	Source	min	max	m	max Unit	Source
											in
	Tech1	2MW, forest	21	64	RED2				4	40		ADEME,
		biomass										2018
	Tech2	20MW, forest	21	64	RED2				4	40		ADEME,
		biomass										2018
	Tech3	Central	21	64	RED2				4	40		ADEME,
		heating										2018
		biomass									
	Tech4	Domestic	24	72	RED2				139	2390		ADEME,
		biomass,										2018
		traditional									
	Tech5	Domestic	64	172	RED2				4	139		ADEME,
		biomass,										2018
		modern									
	Tech6	Domestic				137	kgCO2/	Ecoinvent			0 0.34 kgCO2/	Ecoinvent
		solar heating					m 2	3.4				m 2	3.4
	Tech7	Central solar				137	kgCO2/	Ecoinvent			0 0.34 kgCO2/	Ecoinvent
		heating					m 2	3.4				m 2	3.4
	Tech8	Domestic	100		More&Lon	54	kgCO2eg	Ecoinvent	0.65	51	0 0.15 kg/kW	Ecoinvent
		heat pumps			za 2018		/kW	3.4				3.4
	Tech9	Central heat	100		More&Lon	54	kgCO2eg	Ecoinvent	0.65	51	0 0.15 kg/kW	Ecoinvent
		pumps			za 2018		/kW	3.4				3.4
	Tech10 2MW,	221	243	Statistics				0.02	19		Ecoinvent
		natural gas			Finland							3.4
	Tech11 Domestic	221	243	Statistics				0.04	78		Ecoinvent
		natural gas			Finland							3.4
	Identification Technology	Capacity factor			Jobs			
								jobs/GWh			
				min	max	Source		min		max	Source
	Tech1	2MW, forest	0,46	0,86	S2Biom, ADEME 2016	0.18		2.40	ADEME 2017, Klein & Whalley
		biomass									2015
	Tech2	20MW, forest	0,51	0,97	S2Biom, ADEME 2016	0.18		2.40	ADEME 2017, Klein & Whalley
		biomass									2015
	Tech3	Central		0,34	0,86	S2Biom, ADEME 2016	0.18		2.40	ADEME 2017, Klein & Whalley
		heating									2015
		biomass									
	Tech4	Domestic	0,26	0,91	S2Biom, ADEME 2016	0.16		2.40	ADEME 2017, Klein & Whalley
		biomass,								2015
		traditional								
	Tech5	Domestic	0,26	0,91	S2Biom, ADEME 2016	0.19		2.40	ADEME 2017, Klein & Whalley
		biomass,								2015
		modern									
	Tech6	Domestic solar	0,18	0,28	Klein & Whalley 2015	0.86		2.43	Klein & Whalley 2015
		heating									
	Tech7	Central solar	0,18	0,28	Klein & Whalley 2015	0.86		2.43	Klein & Whalley 2015
		heating									
	Tech8	Domestic heat	0,17	0,90	ADEME 2016		0.37		1.60	Klein & Whalley 2015
		pumps									

A generic definition can be found in[START_REF] Drèze | Policy reform, shadow prices, and market prices[END_REF] [START_REF] Drèze | Policy reform, shadow prices, and market prices[END_REF]: "The shadow prices are the social opportunity costs of the resources used (and correspondingly for outputs generated)". In Quinet (2019), the shadow price is the value of an avoided CO2 tonne through a mechanism including CO2 externalities into public economic computations.
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structural, territorial initial check that could be used during the analytical process to help the decision makers. 

Case study

We illustrate the use of the method presented in Section 3 in a case study considering a mediumsized community in the Isère region in France (based on the characteristics of the Fontaine community of around 22 000 habitats). The study follows the framework presented in Figure 1.

Technology selection

The heating technologies studied and their main characteristics are listed in Table 3. The data on technologies is from European and French studies [START_REF] S2biom | Tools for biomass chains[END_REF][START_REF]Couts des énergies renouvelables en France édition[END_REF][START_REF] Souletie | Documents de Travail de la DG Trésor[END_REF]. The large biomass heat plants as well as all the central solutions (central heat pumps and solar heating) are assumed to be attached to a district-heating system. Therefore, the costs of construction of the distribution network are also considered for these technologies. Natural gas heating is included as a fossil reference, representing the current practice.