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1. Abstract  19 

Land use change in the Southern Grasslands biome with the introduction of exotic, fast-growing forest 20 

species is a controversial topic, because of the potential effect on water and soil resources. The aim 21 

of this study was to assess the effects of afforesting degraded grassland on streamflow and 22 

sedimentation in subtropical headwater catchments. Two small, headwater catchments were studied, 23 

one planted with Eucalyptus saligna (EC: 0.83 km2) and another with grasslands and extensive 24 

livestock (GC: 1.10 km2). Rainfall, runoff, and sediment discharge were monitored from September 25 

2013 to March 2017. The results show two-fold greater surface runoff and sediment yield occurred 26 

in GC than in EC. Maximum and mean runoff coefficients were, respectively, 45.5 and 10.2% in GC, 27 

and 12.4 and 2.2% in EC; suspended sediment yield was, respectively, 67.9 and 22.4 Mg km-2 in GC 28 

and EC; and bed load sediment yield was only 0.053 and 0.006 Mg km-2. El Niño year with high 29 

rainfall produced the greatest annual sediment yield, with values 4.2 times greater in GC (167.7 Mg 30 

km-2) than in EC (39.9 Mg km-2). Hydrographs/sedimentographs synchronization and hysteresis 31 

patterns suggest faster sediment delivery in GC than in EC, but further studies are needed to conciliate 32 

sediment sources results with sediment fingerprinting. Staggered forest harvest (21% of the planted 33 

eucalyptus) led to sediment yield comparable to the observed during the pre-harvest period, and lower 34 

than in grassland catchment. In conclusion, well‐managed forest plantations, including staggered 35 

forest harvesting and preservation of riparian forest, are less prone to sedimentation than degraded 36 

grassland under intensive grazing. Well-managed afforestation of degraded lands contributes to soil 37 

conservation in the studied region, whereas low ecological performance of degraded grassland calls 38 

for soil and pasture management practices to increase forage offer to grazing animals, while 39 

conserving soil and water resources in the catchments.      40 

  41 

Keywords: Forest hydrology; land use change; runoff; erosion; sediment yield.      42 

 43 

      44 
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2. Introduction 45 

One of the largest complexes of grasslands in South America is referred to as the Río de la 46 

Plata Grasslands (750,000 km²) located in central-east Argentina, southern Brazil, and Uruguay 47 

(Paruelo et al., 2007). In Brazil, the Pampa or Southern Grasslands biome is found in the state of Rio 48 

Grande do Sul (RS), where it covers 63% of the state territory, which corresponds to 2% of the 49 

national territory (MMA, 2018). This biome consists of large extensions of natural grassland, in which 50 

the floristic matrix is composed of forest formations interspersed along watercourses (Boldrini et al., 51 

2010; Andriolo et al., 2017). The Pampa is the least protected biome in Brazil, with only 0.4 % under 52 

strictly protected areas (Jenkins et al., 2015). Livestock production is one of the main economic 53 

activities since the Iberian Colonization, when the Jesuits introduced the cattle around the year 1634 54 

(MMA, 2018).  55 

Continuous, extensive overgrazing on natural grasslands contributes to the low pasture 56 

productivity, which may have deleterious economic (productivity decrease), social (poverty) and 57 

environmental consequences (soil and water degradation). Under extensive livestock production, the 58 

farming system has low productivity per animal and per area because of low forage availability where 59 

livestock is obliged to walk long distances in search of forage and water. The natural soil fragility 60 

combined with overgrazing has led to intense soil degradation by soil erosion (Roesch et al., 2009; 61 

Reichert et al., 2016; Ebling et al., 2020; Ferreto et al., 2020; Valente et al., 2020), and loss of soil 62 

carbon and grassland species diversity (Overbeck et al., 2007). Intense grazing and trampling by cattle 63 

cause soil compaction (Collares et al., 2011; Cecagno et al., 2016; Ambus et al., 2018), through an 64 

increase in the soil bulk density and a decrease in porosity.  65 

Annual crops (soybean) and cultivated forests were increasingly found, from 1995 to 2005, 66 

in Pampa’s territory (Oliveira et al., 2017). In 2017, forestry activities were conducted on 780,900 ha 67 

(i.e. 2.7% of the RS State territory), with 55% of these forests corresponding to eucalyptus, 34% to 68 

pinus, and 11% to acacia plantations (AGEFLOR, 2017). This expansion is a response to the 69 

increased demand for forest-based raw-materials, low prices of land in this region, and currently 70 
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encouraged by carbon offset projects. This change in land use and management of natural resources 71 

consequently raised concerns on environmental sustainability associated with the introduction of 72 

exotic, fast-growing forest species (Andriollo et al., 2017; Mateus and Padilha, 2017; Reichert et al., 73 

2017), requiring conservation methods to reduce soil erosion and sedimentation (Ebling et al., 2020; 74 

Valente et al., 2020), runoff (Ferreto et al., 2020), soil compaction (Holthusen et al., 2018; França et 75 

al., 2021), and water consumption (Ferreto et al., 2021). Similar concerns had been raised in Uruguay, 76 

where the conversion of native grasslands into croplands and exotic forest plantations (Eucalyptus 77 

and Pinus) has fast-tracked during the last two decades (Brazeiro et al., 2020).  78 

Previous catchments studies showed a decrease in streamflow in response to the afforestation 79 

of grasslands (Gush et al., 2002; Andréassian, 2004; Germer et al., 2009;  Silveira et al., 2016). 80 

Among the environmental impacts of afforestation of Pampa, it has been shown that afforestation 81 

increases evapotranspiration and induces flow from the grassland areas into the forest plantation 82 

(Engel et al., 2015), promote secondary salinization in the flooding Pampas under old-unmanaged 83 

plantations (Milione et al., 2020), decrease live plant cover, but increase litter cover (Clavijo et al., 84 

2005), and reduce the taxonomic biodiversity of birds in adult forests, but with no reduction in 85 

functional diversity (Jacoboski and Hartz, 2020). Moreover, afforestation promotes changes in the 86 

local productive, economic, and social dynamics (Matte and Waquil, 2020). 87 

Land use changes impact erosion processes and sediment loads vary significantly throughout 88 

the year (Vercruysse et al., 2017). Temporal variability in suspended sediment concentration in 89 

function of streamflow can be expressed as hysteresis patterns (Vercruysse et al., 2017), which 90 

provide useful insights into the occurrence of feedback mechanisms and thresholds controlling 91 

suspended sediment transport (Eder et al., 2010; Krueger et al., 2009; Marttila and Klove, 2010). 92 

Moreover, different approaches are used to describe the dynamics of sediment mobilization and 93 

transport at the basin scale; for example, the sediment source identifications (fingerprinting approach) 94 

to identify the main sediment supplier to the stream network (e.g., Minella et al., 2009; Le Gall et al., 95 
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2016; Tiecher et al., 2017; Rodrigues et al., 2018; Valente et al., 2020), and to model erosion in the 96 

catchment scale (Bonumá et al., 2014; Rodrigues et al., 2014; Fu et al., 2019; Ebling et al., 2020).  97 

Erosion is a size-selective process during the supply, transport and deposition stages of 98 

sediment movement (Koiter et al., 2013; Zhang et al., 2020). The total sediment load in rivers consists 99 

of suspended sediment and bed load, where the suspended sediment contribution is significantly 100 

greater (up to 95%) than that of bed load (Morgan, 2005; Carvalho, 2008). However, in some 101 

catchments, the bed load discharge can reach up to 30% of the total sediment export (Carvalho, 2008; 102 

Cantalice et al., 2014; Lenzi et al., 2016).  103 

Understanding the hydrosedimentological dynamics and differences in sediment yield in 104 

response to land use changes is essential for improving our comprehension of transport mechanisms. 105 

This knowledge is also necessary to identify vulnerable land, define best management practices, and 106 

allocate limited financial resources to conservation projects in the most threatened areas (Minella et 107 

al., 2007, 2009a,b; Valente et al., 2020). To the best of our knowledge, few studies used sediment 108 

yield to analyze the effects of intensive forest plantation management in Pampas grasslands of 109 

southern South America. A review by Modernel et al. (2016) showed land use change and 110 

overgrazing led to increased soil erosion, but little quantitative information was found in the literature 111 

on water provision and sedimentation control in these environments.  Forest plantation management 112 

influences the impacts of afforestation on hydrosedimentology; for instance, clear-cut harvest exposes 113 

soil thereby encouraging erosion and sediment transport to streams (Rodrigues et al., 2019; Cassiano 114 

et al., 2020), and thus staggered harvesting may be an alternative to regulate streamflow and reduce 115 

sedimentation.  116 

We hypothesized that converting degraded grassland to eucalyptus plantation reduces 117 

surface runoff and sedimentation. The aim of this study was to assess the effects of afforesting 118 

degraded grassland on streamflow and sedimentation in subtropical headwater catchments. The study 119 

covers about four years of monitoring two catchments with eucalyptus plantation and degraded 120 

grasslands, that included the harvest of 21% of the planted eucalyptus, which allows us to evaluate 121 
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the effect of the strategy of partial harvest on sediment load, in the Southern Grasslands biome. The 122 

novelty is bridging the processes of streamflow and sedimentation to forest management in the 123 

understudied region. Specific needs for implementing appropriate management and effective 124 

conservation measures are then discussed.  125 

 126 

3. Materials and methods 127 

3.1      Catchment characterization 128 

The study was conducted in two paired catchments, one covered with eucalyptus plantation 129 

(Eucalyptus saligna) referred to as eucalyptus catchment (EC), and the other occupied with natural 130 

and exotic grasses, used for livestock farming and referred to as grassland catchment (GC) (Fig. 1; 131 

Supplementary material A). These catchments are located in the Rio Grande do Sul State, southern 132 

Brazil, and flow into the Vacacaí and Vacacaí-Mirim river basins (SEMA, 2017), which are sub-133 

basins of the Jacuí river basin, which is the main water supply to the metropolitan region of the state 134 

(Porto Alegre) with more than 4 million of inhabitants.  135 

Climate is Cfa, humid subtropical with no drought, according to the Köppen climate 136 

classification, with an average annual temperature of 18.6 °C and average annual precipitation of 137 

1,356 mm (Alvares et al., 2013). The soils in both catchments are Ultisols, Inceptisols and Entisols 138 

in Soil Taxonomy (USDA, 1999), with area coverage Ultisols >> Cambisols > Entisols (Peláez, 139 

2014). These soils are physically-fragile, and of low natural fertility and agricultural potential 140 

(Ramgrab et al., 2004). 141 

The main watercourses in both catchments are second-order creeks (Strahler, 1957). Mean 142 

elevation in EC is 272 m and mean slope is 7.7% (Fig. 2A), whereas in GC the mean elevation is 273 143 

m, and the slope is 3.1% (Fig. 2B). Drainage area is 1.10 km², perimeter is 4.32 km, and time of 144 

concentration is 107 minutes in GC, whereas in EC these values amount to 0.83 km², 4.17 km, and 145 

172 minutes (Reichert et al., 2017). 146 
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Main land uses in the EC correspond to plantations of Eucalyptus saligna (61% in total, with 147 

40% planted in 2006 and 21% in 2014 after harvest operations), grassland with brush weeds (22.1%), 148 

riparian vegetation (7.9%), unpaved roads (5.8%), and rock outcrops (2.6%) (Fig. 2C). Before 149 

afforestation, the catchment was used as pasture, with similar management as our studied GC. 150 

Eucalyptus stands had 3.0 m × 3.3 m spacing, and the stand planted in 2006 had an average diameter 151 

at breast height of 0.17 m and an average height of 25 m. The grassland is composed of grasses and 152 

shrubs, in which Aloysia gratissima (Verbenaceae) and Heterothalamus alienus (Asteraceae) were 153 

the most abundant species. The riparian vegetation is composed by an arboreal stratum of native 154 

species, with individuals of 6–8 m in height, including Sebastiania commersoniana, Rollinia 155 

salicifolia, Styrax leprosus, Eugenia uniflora, Luehea divaricata, Casearia decandra, Diospyros 156 

inconstans, Myrcianthes pungens and Ocotea spp. (Peláez, 2014). 157 

In the GC, the main land uses are degraded native grassland (61.7%), exotic perennial grass 158 

(Avena strigosa) (31.1%), eucalyptus patches and isolated individuals (3.3%), riparian vegetation 159 

(2.1%), reservoir (1.7%), and farm buildings (0.1%) (Fig. 2D). The degraded native grassland is 160 

composed of Saccharum angustifolium, Aristida laevis, Baccharis riograndensis, Andropogon 161 

lateralis and Eryngium pandanifolium, whereas the lower vegetation stratum consisted of Paspalum 162 

spp., Axonopus affinis and Fimbristylis autumnalis (Peláez, 2014). The degraded native grassland 163 

produces a low vegetation cover of the soil, because of intensive grazing and low vegetation growth 164 

in poor soils. Overgrazing and trampling further exposes the soil to erosion processes. The exotic 165 

perennial grass (black oat) is sown between April and May, after lime application and after plowing 166 

the soil.  167 

 168 

3.2 Hydrosedimentological monitoring and analysis 169 

Monitoring was conducted from September 2013 to March 2017 in gauge stations, one in 170 

each catchment, equipped with concrete weir, water pressure sensor to measure water level 171 

(limnigraph), turbidimeter, pluviograph, and sediment samplers installed to collected both suspended 172 
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and bed load sediment (see Supplementary material B for details). The automatic equipment recorded 173 

data at 10-minute intervals. The rate curve between water level and water discharge (streamflow) was 174 

determined for the ranges of values measured up to a maximum vertical height of 1.0 and 0.8 m, 175 

respectively for GC and EC, which correspond to maximum water discharges of 8,131 and 2,711 L 176 

s-1. Of the 150 monitored events, in 51 of them a direct comparison of streamflow data in both 177 

catchments (EC and GC) were compared. 178 

Sampling of water-sediment was conducted manually during rainfall events with a USDH-179 

48 sampler (Supplementary material B) to measure suspended sediment concentration (SSC). 180 

However, due to the need of continuous SSC records, automatic turbidity measurements were used 181 

to establish a continuum.  Table 1 shows the sampling frequency of suspended sediment for distinct 182 

flow discharge ranges. During the study period, 15 rainfall-runoff events were monitored 183 

simultaneously in both catchments (Supplementary material C). 184 

Suspended sediment concentration (mg L-1) was estimated from turbidity (NTU) based on a 185 

two-step analysis: (i) calibration with standard solutions and (ii) calibration with SSC values obtained 186 

during the events (Minella et al., 2008; Merten et al., 2014). The first method used polymer calibration 187 

solutions at seven concentration levels: 0 (distilled water), 20, 50, 100, 400, 1000 and 3000 NTU. 188 

The second method established the relationship between NTU and sediment concentrations in 189 

samples collected during the events (Fig. 3). The suspended sediment concentration was determined 190 

by the evaporation method (Shreve and Downs, 2005). Suspended sediment concentration was 191 

determined using the sediment concentration and flow data from the monitoring sections (Eq. 1):  192 

𝑆𝑌 = ∑ 𝑘(𝑆𝑆𝐶 ∗ 𝑄𝑖)
𝑛
𝑖=1             (1) 193 

Where: SY is the sediment yield (Mg); SSC is the sediment concentration (g L-1); Qi is the flow (L s-194 

1); k is a unit conversion factor; n is the number of instantaneous measurements of SSC and Q 195 

performed at a given time i. 196 

Bed load was monitored using a BLH-84 sampler, following the method proposed by 197 

Edward and Glysson (1999). After drying, samples were passed through a sieve with a mesh opening 198 
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of 0.063 and 2 mm for the measurement of the corresponding weight of fine (<0.063 mm) and coarse 199 

sediment (0.063-2 mm), respectively. Grain size distribution of sediment samples was analyzed with 200 

a laser granulometer, after oxidation of organic matter with H2O2 and dispersion with NaOH (Muggler 201 

et al., 1997). The bottom sediment discharge was cumulated with the suspended sediment discharge 202 

during the events to obtain the total sediment yield for the monitoring period. The values of the bed 203 

sediment discharge were determined by using Eq. 2, established by Gray (2005): 204 

𝑄𝑏𝑙 = ∑ (
𝑚

(𝑤∗𝑡)
) ∗ 𝑏 ∗ 0.0864𝑛

𝑖            (2) 205 

Where: Qbl is the bed load discharge (Mg day-1); m is the sediment mass (g); w is the nozzle section 206 

(m); t is the sampling time (s); b is the bed width (m); 0.0864 is a unit conversion factor for Mg day-207 

1. 208 

The Q and SSC patterns were assessed through the hysteresis analysis, using the methodology 209 

proposed by Lawler et al. (2006). The events were classified based on shape, direction, and index of 210 

hysteresis loop (Eq. 3-5). If the hysteresis curve has a clockwise direction, the hysteresis index (HI) 211 

is positive (Eq. 3), whereas if the hysteresis curve has a counter-clockwise direction, the hysteresis 212 

index (HI) is negative (Eq. 4). 213 

𝐻𝐼 =  (
𝑆𝑆𝐶 𝑅𝐿

𝑆𝑆𝐶 𝐹𝐿
) − 1            (3) 214 

𝐻𝐼 = (
−1 

(
𝑆𝑆𝐶 𝑅𝐿

𝑆𝑆𝐶 𝐹𝐿
)
) + 1            (4) 215 

Values of suspended sediment concentration in the rising limb (SSC RL) and in the falling 216 

limb (SSC FL) can be obtained by interpolation between the points for which SSC and Q 217 

measurements are available. The values of SSC RL and SSC FL are obtained from the central value 218 

(Qcen) of streamflow (hysteresis graph), where Qcen is the central value between the maximum and 219 

minimum flow of the rising limb of the event.  220 

To analyze the difference between the studied catchments, we tested the values of 221 

hydrosedimentology parameters for the null hypothesis that data from both catchments are samples 222 

from continuous distributions with equal medians. We used the rank sum function of Matlab to 223 
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perform the nonparametric Wilcoxon-Mann-Whitney at 5% probability. We did not test the normality 224 

of the dataset since the Wilcoxon Rank Sum Test does not assume normal or any known distribution. 225 

 226 

4. Results  227 

4.1 Rainfall and runoff      228 

Annual rainfall (1823 mm) was greatest in 2015-2016. In 2014-2016, the Rio Grande do Sul 229 

State was strongly affected by the El Niño phenomenon, which contributed to a rainfall increase of 230 

25% compared with the historical annual rainfall average. The mean annual rainfall for the study 231 

period was 1736 mm, while for the last 30 years (1986-2016) this mean was 1530 mm for the 232 

municipality of São Gabriel (HIDROWEB, 2020). 233 

Total rainfall per event ranged between 4.6 and 154.5 mm, with a mean of 31.2 mm 234 

(Supplementary material D) and the maximum rainfall intensity observed reached 54.1 mm h− 1. Five 235 

rainfall events  presented rainfall intensity greater than 40 mm h-1  (events of 01/13/2014, 03/03/2014, 236 

07/04/2014, 09/22/2015 and 12/18/2015). As the study period was affected by the El Niño 237 

phenomenon, the analysis of high-volume events is important, since they have a significant impact 238 

of crop growth and development (Goulart et al., 2021), and their frequency has been increasing during 239 

the last years,  Furthermore, rainfall in the study area is well distributed throughout the year, the types 240 

of precipitation (frontal vs. convective rainfall) and temperature vary throughout the year. The 241 

analysis of the results by season could indicate seasonal patterns of flow generation, particularly if 242 

more years were available for analysis. Therefore, we will continue collecting data to be able, in the 243 

future, to separate the analysis in dry and wet seasons. 244 

For the 51 monitored events that allow a direct comparison of sediment yield in both 245 

catchments (EC and GC), the mean rainfall was 21 mm and the mean rainfall intensity was 15.8 mm 246 

h-1. The minimum, maximum and mean values of discharge peak, runoff, and runoff coefficient were 247 

greater in GC than in EC (Table 2; Fig. 4). The medians were statistically different between the 248 
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catchments for all these variables by the Wilcoxon-Mann-Whitney test at a significant level of 5% 249 

(Supplementary material E). Stream discharge exceeded 500 L s−1 in thirty-seven events presented 250 

during the monitoring period in GC, compared with only seven events in EC (Supplementary material 251 

D). Events with rainfall lower than 30 mm had a mean runoff coefficient of 6.62% in GC compared 252 

with 1.33% in EC.  253 

Streamflow exceedance for each monitored year is depicted in Fig. 5. The 5% time 254 

streamflow (Q5) over the entire study period (2013–2017) varied from 65 to 90 L s−1 km−2 in GC,      255 

and from 20 to 45 L s−1 km−2 in EC. The Q5 during the wettest year (2015-2016) was approximately 256 

double (90 L s−1 km−2) in GC than in EC (45 L s−1 km−2), and approximately 40% greater in EC and 257 

26% in GC compared with the other drier years. The 50% time streamflow (Q50) was approximately 258 

60% greater in GC (10 L s−1 km−2) than in EC (4 L s−1 km−2) in 2013-2014, 33% in 2014-2015, 36% 259 

in 2015-2016, and 25%in 2016-2017. The 75% time streamflow (Q75) was similar between GC and 260 

EC (values around 3 and 8 L s−1 km−2). Finally, the 95% time streamflow (Q95) was greater in EC 261 

than in GC (values around 1 and 4 L s−1 km−2). The results in Fig. 5A show greater water availability 262 

in EC during low streamflow compared with GC.  263 

                                           264 

4.2 Sedimentation 265 

Streamflow and suspended sediment concentration dynamics during the events resulted in 266 

hydrographs and sedimentographs that were rarely synchronized in time. The sedimentographs 267 

demonstrate the occurrence of maximum suspended sediment concentrations before the streamflow 268 

peak in GC, and after this peak in EC (Fig. 6). The streamflow peak in GC was 3.3 to 10.6 times 269 

greater than in EC, depending on rainfall volume and intensity. Consequently, sediment yield was 12 270 

times greater in GC compared with EC, as illustrated during events that took place on 03/29/2015 and 271 

04/25/2016 (Fig. 6D, H), with very-steep rising and falling hydrograph limbs.  272 

Some low rainfall events in GC (Fig. 6H, J) had small magnitude hydrographs, but with high 273 

sedimentographs magnitude. For the events on 07/04/2014, 10/14/2015 and 04/25/2016 (Fig. 6B, G, 274 
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K), a streamflow increase did not provide a similar increase in suspended sediment concentration. 275 

This behavior could be associated with sediment available for transport in GC, where less suspended 276 

sediment is transported even with a high amount of runoff. In contrast, for the same events in EC, the 277 

streamflow peak was accompanied by greater suspended sediment concentration, which possibly 278 

indicates greater transport capacity and/or greater availability of sediment. 279 

For the 51 monitored events that allow a direct comparison of sediment yield in both 280 

catchments (EC and GC), the minimum, maximum and mean values of maximum concentration and 281 

yield suspended sediment (SSCmax; SSY), and hysteresis loop index (HI) of the events were greater 282 

in GC than in EC (Table 2). The medians were statistically different between the catchments for all 283 

these variables (Wilcoxon-Mann-Whitney test at a significant level of 5%). Sediment yield was 284 

greatest on 07/04/2014, after 77 mm (53.1 mm h−1) of cumulative rainfall, which resulted in greater 285 

streamflow peak (6,206.0 and 1,513.6 L s-1, respectively, in GC and EC), suspended sediment 286 

concentration (2,290.2 and 1,046.8 mg L-1, respectively) and total sediment yield (26.8 and 11.8 Mg 287 

km-2, respectively) (Fig. 6;  Supplementary material D). This event occurred a few weeks after 288 

eucalyptus harvesting in 21% of the catchment area, followed by soil tillage and new planting. 289 

Therefore, even under these potentially highly erosive conditions, the sediment yield in EC was lower 290 

than in GC.  291 

The staggered forest harvest led to a similar sediment yield which remained comparable to 292 

that observed during the pre-harvest period. For this event, sediment yield corresponded to 65 and 293 

83% of the total annual yield recorded in 2013-2014 in GC and EC catchments, respectively. 294 

Considering the surface runoff coefficient, the GC lost much more water than EC, with respective 295 

values of 45% and 11%. Moreover, even after the partial harvesting and subsequent soil tillage 296 

between March and May of 2014, greater streamflow and sediment yield were recorded in GC 297 

(Supplementary material F).  298 

Sediment yield was similar between catchments on 04/25/2016 (Fig. 6), although the 299 

maximum discharge for EC was five times lower than for GC (1,513.6 and 5,169.0 L s-1, respectively). 300 
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Consequently, the suspended sediment concentration peak was lower in EC (692.6 mg L-1) compared 301 

with GC (829.6 mg L-1). The granulometric characteristics (sand, silt and clay percentages) of a 302 

selection of sediment samples collected in their respective study areas are shown in Table 3. The 303 

granulometric characteristics were similar in both catchments, covered with similar soil types.  304 

Bed load was only recorded during high magnitude events, and more frequently observed in 305 

GC (Fig. 4E) than in EC, which may reflect the greater sensitivity of GC to this type of sediment 306 

transport. For the five events with measurements, bead load mean, maximum and minimum were, 307 

respectively, 0.019, 0.053, and 0.002 Mg km-2 in GC and 0.002, 0.006, and 0.000 Mg km-2 in EC, 308 

without statistical differences between the catchments (Wilcoxon-Mann-Whitney test at a significant 309 

level of 5%). Thus, bed load was one order magnitude greater in GC compared with EC, but bed load 310 

represented only a small fraction of the total solid discharge, with less than 1% of the total sediment 311 

yield. By contrast, the maximum suspended sediment concentration was three times greater in GC 312 

than in EC. 313 

Annual sediment yield (Fig. 7) was greatest for the year of 2015-2016 in both catchments 314 

with 39.9 Mg km-2 for EC and 167.7 Mg km-2 for GC. During this year, there were many successive 315 

rainfall events with a high volume of precipitation (Supplementary material C). Nonetheless, when 316 

the maximum values of streamflow and suspended sediment concentration were compared among 317 

years, the greatest values were found in 2013-2014, due to a particularly intense event that occurred 318 

on 04/07/2014.  319 

Linear regressions between rainfall, runoff and erosive variables considering all events to 320 

demonstrate the distinct behavior between the catchments are presented in Fig. 8. For all the 321 

relationships, the dependent variables (SSC, sediment yield, and bed load) were more sensitive to the 322 

independent variables (streamflow) in GC than in EC. 323 

 324 
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4.3 Hysteresis analysis 325 

Table 4 summarizes the hysteresis analyses, and Fig. 9 shows the hysteresis loops of the 326 

monitored events. In GC, most of the hysteresis patterns were clockwise (CW), i.e. the      327 

sedimentograph is advanced in relation to the hydrograph, which indicates fast delivery of sediment 328 

sources at hillslopes with high connectivity (possibly because of animal trails) or from erosion in 329 

fluvial channel. Bank collapses were visually observed in both catchments, although they were more 330 

frequently found in GC.  331 

Hysteresis had counter-clockwise (ACw) shape in EC, which could mean the eroded 332 

sediment is mainly supplied by remote sources, although sediment deposits were observed in the 333 

stream channel (Supplementary material A). Hysteresis loop index (HI) ranged from -2.5 to 9.2 and 334 

-1.4 to 1.2 for GC and EC, respectively (more information in Supplementary Material D), and Table 335 

2 shows the hysteresis loop index was different for GC (0.67) than for EC (-0.32) for the 51 events 336 

with complete data. 337 

  338 

5. Discussion 339 

5.1 Runoff 340 

The lower streamflow and runoff coefficient observed in EC compared with GC can be 341 

attributed to the greater capacity of rainwater interception by the eucalyptus canopy, which was 342 

estimated to approximately 13% of rainfall (Peláez, 2014). Furthermore, our results confirm those of 343 

Reichert et al. (2017) showing that the high values of streamflow reflect lower infiltration and greater 344 

surface runoff in GC. Baumhardt (2014) also observed greater peak flows in a catchment covered 345 

with grassland than in eucalyptus stands in the Pampa biome, whereas Almeida et al. (2014) observed 346 

greater water infiltration under eucalyptus plantations compared with grazing areas. Even during the 347 

periods with the greatest amount of rainfall (in September 2015 and in August 2016) when a large 348 

number of consecutive rainfall events occurred, less runoff and lower sediment yields were recorded 349 

in EC.  350 
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Forest canopy acts as a barrier against rainfall energy and reduces the volume that reaches the 351 

ground given the partial interception of rainfall by tree canopy, trunk and litter. These processes 352 

reduce the amount of precipitation and redistribute it to the ground (Chang, 2012). Although the soil 353 

surface is more protected under forest plantations than under cropland or grassland, soil degradation 354 

may also occur during tillage operations implemented during tree plantation, harvest and road 355 

construction and maintenance (Sheridan et al., 2006; Ferreira et al., 2008; Oliveira et al., 2014). In 356 

areas with extensive livestock, soil compaction and animal trampling may limit infiltration and 357 

accelerate runoff and erosion (Holt et al., 1996; Müller et al., 2001). In the grassland catchment, we 358 

observed many cattle trails were observed in the field and towards the creek. Although not quantified, 359 

these trails might increase hydraulic connectivity from the slope to the creek, potentially increasing 360 

runoff and sedimentation. 361 

 362 

5.2 Sedimentation 363 

Forest harvesting of 21% of the catchment area and subsequent replanting did not lead to 364 

major changes in sediment yield in EC. This observation demonstrates that the staggered forest 365 

harvest may provide a sustainable option to manage tree plantations. Almeida et al. (2016) suggested 366 

that the partial harvest of eucalyptus plantations reduces the impact on streamflow compared with 367 

clear cutting the entire catchment area. Furthermore, unpaved roads in forests may provide a major 368 

sediment source in forested catchments (Croke et al., 1999; Croke and Mockler, 2001; Hairsine et al., 369 

2002). Unpaved roads were shown to contribute more than 90% of the sediment yield (Grace et al. 370 

1998; Madej 2001). High values of runoff (coefficients of 44%) and soil loss (22 Mg ha-1) were 371 

observed on forest unpaved roads by Oliveira et al. (2014).  372 

In forestry sites, the effects of weathering, groundwater seepage, geotechnical instability, and 373 

erosion conditions on local bank collapse are not well understood, and this topic requires further 374 

research (Martilla and Klove, 2010). Besides being a significant source of sediment, bank erosion can 375 
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cause structural damage because particles eroded from the bank cannot be replaced. In larger stream 376 

systems bank sediment can account for over 50% of the total sediment input (Knighton, 1998).   377 

 378 

5.3 Hysteresis 379 

Counter-clockwise hysteresis as the most frequent pattern in EC suggests lack of sediment 380 

available for resuspension in the channel (Martilla and Klove, 2010), and thus sediments should be 381 

mobilized from remote sources (Minella et al., 2011; Seeger et al., 2004). Furthermore, lower bed 382 

load transport was observed in EC compared with GC, although lag widespread deposits were 383 

observed in the stream channel of GC. For this same catchment, using fingerprinting techniques 384 

Valente et al. (2020) found 63% of the sediment derived from stream channel and only 30 % from 385 

eucalyptus stands.  Rodrigues et al. (2018) also identified stream channel as the main sediment source 386 

in forested catchments with stream bank collapse.  387 

Clockwise hysteresis, most frequent in GC, is generally attributed to rapid delivery of 388 

sediment from channel banks or sources located in the outlet vicinity (Smith and Dragovich, 2009), 389 

whereas sediment deposited into the channel is easily available to transport during events by 390 

resuspension (Martilla and Klove, 2010). Bank collapse was visually observed in both catchments, 391 

although more frequently in GC, in line with the hysteresis findings. Channel bank erosion in GC was 392 

accelerated by the cattle access and passage in these areas, which led to the formation of trails. 393 

Furthermore, trampling and vegetation grazing led to the removal of the protective vegetation cover 394 

in these areas. Using fingerprinting techniques, Valente et al. (2020) found only 14% of the sediment 395 

derived from stream channel in the forested catchment, compacted with 84 % in the degraded 396 

grasslands. 397 

 398 

5.4 Land use and management implications for the Pampa biome 399 

The study region is located within the Pampa biome or Southern Grasslands. This biome 400 

corresponds to 750,000 km2 in South America and 176,496 km2 in Brazil, concentrated in the 401 
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southernmost state of Rio Grande do Sul (RS), corresponding to 63% of the state territory and 90% 402 

of the state rangelands (Roesch et al., 2009; Brasil, 2016). The biome is rich in biodiversity and 403 

traditionally used for cattle raising (Boldrini et al., 2010), but this scenario has been changing with 404 

the introduction of annual crops and forest plantations.  405 

Forest plantations impact the environment (Andriollo et al., 2017; Reichert et al., 2017; 406 

Cavalli et al., 2020); for instance, eucalyptus have high water consumption than grasslands and 407 

consequently decrease the soil moisture, streamflow and groundwater, with more significant effect in 408 

regions with low rainfall (Jackson et al., 2005). The effect of forest plantations on water resources is 409 

usually significant in small watersheds, but not in large ones (Van Dijk, 2007). Changes in hydrology 410 

affect soil production potential, water quality and downstream water supply, and cause conflicts 411 

among water uses (Calder, 2007; Vanclay, 2009). Forest harvesting might increase streamflow in dry 412 

seasons, but may increase the risk of flooding during rainy seasons (Hamilton, 2008). Therefore, 413 

long-term studies are needed to evaluate the effect of multiple rotations on the sustainability of soil 414 

productive potential, including soil fertility and biodiversity, and water use by commercial forests, 415 

such as eucalyptus monocropping in the Pampa biome.  416 

By shifting the comparison between commercial forests and native grasslands towards an 417 

enlarged focus on green-blue pools and flows such as soil water and stream discharge, rather than 418 

concentrating on stream discharge, water management will be rainfall-based, including land use as 419 

an important variable and seeking catchment environmental resilience and ecosystem roles 420 

(Falkenmark and Rockström, 2010). Soil and forest/grassland management should be oriented 421 

towards protecting or restoring soil moisture and manage the green water flux for increased water 422 

productivity. An improved soil structure allows for increased infiltration and retention in the soil      423 

(Cavalli et al., 2020; Ferreto et al., 2020).  424 

In the areas with forest plantations, the post-harvest period and the earlier stages of 425 

eucalyptus plantation are the ones with the greatest attention in terms of soil loss, since the soil is 426 

uncovered (Oliveira et al., 2013). Limiting the size of clear-cut harvest areas and interrupted the 427 
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linkage between harvest areas and drainage network are classic approaches to mitigate erosion and 428 

sedimentation processes in streams post-harvesting (Gimenez et al., 2019). The retention of harvest 429 

residue also reduced soil loss and water runoff the first years of plantation establishment (Nambiar et 430 

al., 2000). These approaches were observed in the studied area, since only 21% of the planted area 431 

was harvested and the riparian vegetation is preserved, as required by Brazilian law. Therefore, the 432 

adopted forest management contribute to making sediment yield comparable to the observed during 433 

the pre-harvest period. 434 

Although the current local management systems for eucalyptus and grasslands, in our study, 435 

favor the former in terms of regulating streamflow and decreasing sedimentation, there are many 436 

opportunities to improve degraded grassland watersheds. The management of the Pampa’s natural 437 

grasslands to pastures usually included overgrazing, low productivity, low technology and low 438 

economic results (Nabinger et al., 2009). Practices to increase the resilience and functions of degraded 439 

grasslands catchments include improving forage availability and quality for grazing, improve soil 440 

fertility, adjusting the number of animals per hectare, controlling weeds, and grazing deferral 441 

(Nabinger et al., 2009), along with reducing compaction from cattle trampling (Collares et al., 2011), 442 

augmenting water infiltration by runoff reduction and soil structure amelioration, and increasing and 443 

protecting riparian vegetation, among others.  444 

 445 

6. Conclusions 446 

Streamflow, suspended sediment concentration, and sediment yield were greater in degraded 447 

grassland (GC) than in eucalyptus catchment (EC), as hypothesized, particularly during El Niño year. 448 

Most sediment was lost in suspension, whereas bed load was recorded only during high magnitude 449 

events, represented only a small fraction (less than 1%) of the total sediment yield.   450 

 Staggered forest-harvesting (21% of the EC) led to sediment yield comparable to the observed 451 

during the pre-harvest period. Even after partial harvesting and subsequent soil tillage, greater 452 

streamflow and sediment yield were lower than the recorded in GC. Thus, well‐managed forest 453 
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plantations may be less prone to sedimentation than degraded grassland under intensive grazing, and 454 

contribute for increased land use sustainability in terms of soil erosion and degradation. 455 

Hydrographs/sedimentographs synchronization and hysteresis patterns suggest faster 456 

sediment delivery in GC than in EC, signifying sediment sources in the former are hillslopes with 457 

high connectivity and/or erosion in fluvial channels, whereas in the latter the eroded sediment is 458 

mainly supplied by remote sources. However, further studies are needed to conciliate sediment 459 

sources results with sediment fingerprinting.  460 

Well‐managed forest plantations, including staggered forest harvesting and preservation of 461 

riparian forest, are less prone to sedimentation than degraded grassland under intensive grazing. 462 

Moreover, the low ecological performance of the degraded grassland catchment calls for soil and 463 

pasture management practices to increase forage offer to grazing animals, while conserving soil and 464 

water resources. Along with long-term studies to ameliorate degraded grasslands and on multiple 465 

forest rotations, further evaluations are recommended to estimate the contribution of sediment 466 

deposition in the channel from runoff, cattle trampling in grassland catchment and collapse of channel 467 

banks in      eucalyptus catchment, and of hydraulic connectivity for fast-delivery of sediment from 468 

the landscape to the stream channel.       469 
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Table 1 773 

Sampling frequency of the mixture water and sediments, based on discharge, in the grassland (GC) 774 

and eucalyptus catchments (EC), during the study period (Sep/2013–Mar/2017). 775 

Discharge interval (L s-1) 

Frequency of sampling (%) 

Fine sediment Coarse sediment 

GC EC GC EC 

0-100 39 91 4 54 

101-200 25 15 4 21 

201-300 4 18 13 8 

301-400 3 5 4 13 

401-500 9 4 13 0 

501-600 2 0 4 4 

601-700 2 0 4 0 

701-800 2 0 0 0 

801-900 0 0 9 0 

901-1000 3 0 17 0 

1001-2501 6 0 13 0 

2501-4501 3 - 13 0 

4501-6500 1 - 0 0 

6501-8500 1 - 0 0 

 776 



Table 2 

Minimum, maximum and mean value of studied runoff and sedimentation variables in grassland (GC) and eucalyptus watersheds (EC) for the 51 events 

with complete data. 

 

 

* Medians for EC and GC are different when compared with the Wilcoxon-Mann-Whitney test at 5% probability. 

(1) Only for five events. No significant difference. 

 

Variable Unit Minimum Maximum Mean 

GC EC GC EC GC EC 

Maximum streamflow* L s-1 105.0 9.0 6206.0 1282.0 2908.0 209.1 

Streamflow* mm 1.0 1.0 15.0 9.0 5.5 3.0 

Runoff coefficient* % 6.0 1.0 22.0 3.0 13.5 1.4 

Maximum suspended sediment concentration* mg L-1 17.3 10.1 2290.2 1046.8 253.0 141.8 

Bed load (1) kg km-2 2.0 0.0 53.0 30.0 0.02 0.00 

Sediment yield* kg km-2 0.0 20.0 26700.0 11830.0 1.9 0.6 

Hysteresis loop index*  -1.0 -0.8 2.7 1.3 0.67 -0.32 



 

 

Table 3 

Percentage of sand, silt and clay in the different types of sediment samples (including suspended 

matter and lag deposits) collected in the eucalyptus (EC) and grassland (GC) catchments, during the 

study period (Sep/2013–Mar/2017). 

Sediment (yy.mm.dd) 

Eucalyptus catchment Grassland catchment 

Sand Silt Clay Sand Silt Clay 

% % 

Event - 14/07/04 8.2 73.6 18.2 7.5 76.0 16.5 

Event - 14/10/30 0 91.5 8.5 5.6 81.4 13.0 

Event - 14/12/21 0.8 81.6 17.6 5.9 81.5 12.7 

Event - 15/10/08 7.9 75.7 16.4 6.3 81.2 12.5 

Event - 16/10/07 5.8 74.5 19.7 5.6 77.3 17.1 

Event - 16/10/19 12.7 71.7 15.7 7.0 80.5 12.5 

Lag deposit - 14/07/05 24.6 70.0 5.4 17.7 75.6 6.7 

Lag deposit - 14/08/20 17.2 75.1 7.6 13.5 78.9 7.6 

Lag deposit - 14/09/20 26.0 69.2 4.9 - - - 

Lag deposit - 14/12/20 23.2 71.5 5.3 - - - 

Lag deposit - 15/03/12 22.4 72.1 5.5 - - - 

Lag deposit - 15/06/18 22.0 72.1 5.9 18.4 73.9 7.7 

Lag deposit - 15/10/15 23.5 71.1 5.3 - - - 

Lag deposit - 15/12/03 25.6 69.3 5.1 18.7 73.1 8.1 

Lag deposit - 16/02/03 15.3 76.5 8.2 10.2 78.8 11.0 

Lag deposit - 16/06/23 25.3 69.5 5.2 - - - 

Lag deposit - 16/09/03 9.8 82.0 8.2 - - - 

Lag deposit - 16/10/16 22.7 71.6 5.7 - - - 

Lag deposit - 16/11/15 24.3 70.3 5.4 - - - 

Trap - 14/02/12 7.7 76.2 16.2 - - - 

Trap - 15/07/17 2.6 89.6 7.8 6.5 83.3 10.2 

Trap - 16/03/31 5.1 83.8 11.1 6.9 79.8 13.3 

Trap - 16/10/12 7.6 81.6 10.8 8.2 77.1 14.8 

Mean Event 5.9 78.1 16.0 6.3 79.7 14.0 

Mean Lag deposit 21.7 72.3 6.0 15.7 76.1 8.2 

Mean Trap 5.7 82.8 11.5 7.2 80.1 12.7 
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Table 4 

Summary of SSC-Q hysteresis patterns monitored at the outlet of both grassland and eucalyptus 

catchments, during the study period (Sep/2013–Mar/2017). 

Hysteresis pattern 
Number of 

flow peaks 

Mean peak 

discharge  

(L-1 s-1 km-2) 

Mean peak suspended 

sediment (mg L-1) 

Mean event 

rainfall (mm) 

Mean rainfall 

intensity (mm h-1) 

Grassland catchment 

Counter-clockwise 23 265.9 153.6 23.3 13.0 

Clockwise 61 558.4 246.2 31.7 15.4 

Eucalyptus catchment 

Counter-clockwise 67 175.7 169.2 38.7 18.3 

Clockwise 7 185.6 185.9 44.6 23.1 
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Fig. 1. Location of the municipality of São Gabriel-RS, Brazil, and delineation of the study 

catchments covered with eucalyptus and grassland. 



 

Fig. 2. Maps of slope for eucalyptus (a) and grassland catchment (b), and land use for eucalyptus (c) and grassland catchment (d).



 

 

Fig. 3. Relationship between suspended sediment concentrations (SSC) and turbidity in the study 

catchments covered with eucalyptus and grassland. 
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Fig. 4. Box-plot of hydrosedimentologic variables: maximum streamflow (a), runoff or streamflow 

(b), maximum suspended sediment concentration (c), suspended sediment yield (d), and bed load (e) 

of the events monitored in the grassland and eucalyptus catchments. As shown in Table 2, medians 

of the different runoff and hydrology parameters were different, except for bed load, when comparing 

GC and EC with the Wilcoxon-Mann-Whitney test at 5% probability.   



3 

 
 

Fig. 5. Exceedance probability curves for streamflow in the grassland (GC) and eucalyptus 

catchments (EC), during the study period (Sep/2013–Mar/2017).   
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Fig. 6. Time series for events with different water flow (Q), suspended sediment concentration (SSC) 

and rainfall, selected to represent the typical peak events in the grassland (GC) eucalyptus catchments 

(EC).  
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Fig. 7. Annual suspended sediment yield (SSY), streamflow or runoff (R) and rainfall were selected 

to represent the typical peak events in the eucalyptus and grassland catchments, during the study 

period (Sep/2013–Mar/2017). *Year 4 corresponds to a half-year, i.e. from Sep/2016 to Mar/2017.  



 

 

Fig. 8. Relationship between mean of suspended sediment concentration (SSCm) and mean discharge (Qm) (a), suspended sediment yield (SSY) with 

product of runoff and peak discharge (b), and bed load and discharge (c) in grassland (GC) eucalyptus catchments (EC).



 

 

Fig. 9. Hysteresis loops of events in the grassland and eucalyptus catchments. 


