Flexibility of EV charging: Use-Cases, actors and technologies
Bruno Robisson

To cite this version:
Bruno Robisson. Flexibility of EV charging: Use-Cases, actors and technologies. Neemo Training Session, MCAST, Feb 2021, Saint-Paul Lez Durance, France. cea-03210993

HAL Id: cea-03210993
https://cea.hal.science/cea-03210993
Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
• Panorama of the french full electric vehicles (EV) market

• Charging an EV
 • Modes
 • The plug and socket zoo
 • Wallbox and Charging stations
 • The french charging infrastructure

• Smart charging an EV
 • Use Case 1: Charging stations for employees within the company
 • Smart charging need: max power reduction
 • Principle and setup
 • Use Case 2: Charging commercial vehicles in depots
 • Smart charging need: energy cost reduction
 • Principle and setup
 • Use Case 3: Charging stations at home
 • Smart charging need: Autoconsumption increase
 • Principle and setup
 • Use Case 4: "Opportunistic‘ charging stations

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
Sales of full Electric Vehicles (EV) in France [1]

Sells of full EV cars in France

<table>
<thead>
<tr>
<th>Year</th>
<th>Sells</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>184</td>
</tr>
<tr>
<td>2011</td>
<td>3k</td>
</tr>
<tr>
<td>2012</td>
<td>6k</td>
</tr>
<tr>
<td>2013</td>
<td>9k</td>
</tr>
<tr>
<td>2014</td>
<td>10k</td>
</tr>
<tr>
<td>2015</td>
<td>17k</td>
</tr>
<tr>
<td>2016</td>
<td>22k</td>
</tr>
<tr>
<td>2017</td>
<td>25k</td>
</tr>
<tr>
<td>2018</td>
<td>31k</td>
</tr>
<tr>
<td>2019</td>
<td>42k</td>
</tr>
<tr>
<td>2020</td>
<td>110k</td>
</tr>
</tbody>
</table>

Total: ~ 276485 EV from 2010
TOP TEN SALES – FRANCE 2020

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Capacity</th>
<th>Autonomy</th>
<th>Charging power</th>
<th>#units</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kWh</td>
<td>Km (WLTP)</td>
<td>AC (kW)</td>
<td>DC(kW)</td>
<td></td>
</tr>
<tr>
<td>Renault</td>
<td>Zoé</td>
<td>52</td>
<td>395</td>
<td>22</td>
<td>0-50</td>
<td>37409 (33.7%)</td>
</tr>
<tr>
<td>Peugeot</td>
<td>E-208</td>
<td>46</td>
<td>340</td>
<td>7-11</td>
<td>100</td>
<td>16557 (14,9%)</td>
</tr>
<tr>
<td>Tesla</td>
<td>Model-3</td>
<td>50-75</td>
<td>448-580</td>
<td>11</td>
<td>250</td>
<td>6477 (5,8%)</td>
</tr>
<tr>
<td>Hyundai</td>
<td>Kona</td>
<td>40-64</td>
<td>289-482</td>
<td>7</td>
<td>77</td>
<td>5156 (4,7%)</td>
</tr>
<tr>
<td>Kia</td>
<td>E-Niro</td>
<td>40-64</td>
<td>289-455</td>
<td>7</td>
<td>77</td>
<td>5089 (4,6%)</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>Id3</td>
<td>45 58-77</td>
<td>350 424-549</td>
<td>11 11</td>
<td>50 100-125</td>
<td>4187 (3,8%)</td>
</tr>
<tr>
<td>Nissan</td>
<td>Leaf</td>
<td>40-62</td>
<td>273-385</td>
<td>6</td>
<td>50-100</td>
<td>3395 (3,1%)</td>
</tr>
<tr>
<td>Peugeot</td>
<td>E-2008</td>
<td>46</td>
<td>320</td>
<td>7-11</td>
<td>100</td>
<td>2933 (2,6%)</td>
</tr>
<tr>
<td>DS</td>
<td>DS3</td>
<td>50</td>
<td>320</td>
<td>7-11</td>
<td>100</td>
<td>2710 (2,4%)</td>
</tr>
<tr>
<td>Mini</td>
<td>Cooper</td>
<td>33</td>
<td>234</td>
<td>11</td>
<td>50</td>
<td>2481 (2,2%)</td>
</tr>
</tbody>
</table>

Total: 110900 EV (6.7%)
Source: [1]
AGENDA

- Panorama of the french full electric vehicles (EV) market
- **Charging an EV**
 - Modes
 - The plug and socket zoo
 - Wallbox and Charging stations
 - The french charging infrastructure
- **Smart charging an EV**
 - Use Case 1: Charging stations for employees within the company
 - Smart charging need: max power reduction
 - Principle and setup
 - Use Case 2: Charging commercial vehicles in depots
 - Smart charging need: energy cost reduction
 - Principle and setup
 - Use Case 3: Charging stations at home
 - Smart charging need: Autoconsumption increase
 - Principle and setup
 - Use Case 4: "Opportunist’ charging stations
On board charging, also called « **AC charging** »
From 3kW to 22kW (and even 43kW for Zoé first generation)

Off-board charging, also called « **DC charging** »
From 20kW to 150kW (and even 350kW)

MODE 4: DC connexion to dedicated Electric Vehicle Supply Equipment (EVSE)

Source: [2]
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484

AC CHARGING MODE: MODE 1, 2

MODE 1: AC Direct connection to standardized residential power outlets

MODE 2: AC Connection to standardized residential power outlets via In-cable Control and Protective Device (IC-CPD)

Source: [2]
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484.

AC CHARGING MODE: MODE 3

MODE 3-B: AC connexion to dedicated Electric Vehicle Supply Equipment (EVSE)

MODE 3-C: AC connexion to dedicated Electric Vehicle Supply Equipment (EVSE)

Source: [2]
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
THE PLUG AND SOCKET ZOO – MODE 4

Tesla plug

CHAdEOMO (DC only)

Combo 2: Combined Charge System CCS (DC+type 2)

Source: [2,3]
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484.
FRENCH VEHICLE CHARGING INFRASTRUCTURE DEFINITION

Number of station: 1
Number of Charging Points : 5
2*22 kW AC Type 2
+ 50 kW DC CHAdeMo
+ 50 kW DC CCS2
+ 43 kW AC Type2
Installed Power (sum (on each charging point) of the max power): 187 kW

106 Avenue de Compiègne 02200 Soissons

Source: [5]
Public charging points

<table>
<thead>
<tr>
<th>InstalledPowerCPO MW</th>
<th>NumberOfStation Units</th>
<th>NumberOfCP Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>533.91</td>
<td>9260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Own classification</th>
<th>Slow 0-4</th>
<th>Standard 4-14</th>
<th>Accelerated 14-24</th>
<th>Fast 24-51</th>
<th>Veryfast 51-151</th>
<th>Ultrafast >151</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>1886</td>
<td>348</td>
<td>16431</td>
<td>1438</td>
<td>28</td>
<td>344</td>
<td>20475</td>
</tr>
<tr>
<td>%</td>
<td>9.21</td>
<td>1.70</td>
<td>80.25</td>
<td>7.02</td>
<td>0.14</td>
<td>1.68</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avere classification</th>
<th>Normal 0-14</th>
<th>Accelerated 14-24</th>
<th>Fast 24-51</th>
<th>Very fast</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>2234</td>
<td>16431</td>
<td>1438</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>In pourcents</td>
<td>10.91</td>
<td>80.25</td>
<td>7.02</td>
<td>1.82</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avere Data</th>
<th>Units</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7093</td>
<td>24.52</td>
</tr>
<tr>
<td></td>
<td>19959</td>
<td>69.00</td>
</tr>
<tr>
<td></td>
<td>1102</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td>774</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td>28928</td>
<td></td>
</tr>
</tbody>
</table>

*Without Tesla charging points ~500 DC very fast chargers

Predominance of “accelerated” charging points (i.e. 22kW AC)
Few fast, very fast and ultra fast charging points
AGENDA

- Panorama of the french full electric vehicles (EV) market
- Charging an EV
 - Modes
 - The plug and socket zoo
 - Wallbox and Charging stations
 - The french charging infrastructure
- Smart charging an EV
 - Use Case 1: Charging stations for employees within the company
 - Smart charging need: max power reduction
 - Principle and setup
 - Use Case 2: Charging commercial vehicles in depots
 - Smart charging need: energy cost reduction
 - Principle and setup
 - Use Case 3: Charging stations at home
 - Smart charging need: Autoconsumption increase
 - Principle and setup
 - Use Case 4: "Opportunist’ charging stations
USE - CASE 1 - CHARGING STATIONS FOR EMPLOYEES WITHIN THE COMPANY [7]

- The charging points are used, during the working hours, for the vehicles of employees which commutes.
- The charging points are generally "normal" or “accelerated” and located in the company parking lot.

Examples:
SAP Labs / Mougins Sophia-Antipolis + Caen + Paris
85 CP @ AC
2 CP @ 50 kW DC
1 CP @ 150 kW DC
~250 EV users [8]

CEA / Marcoule + Saclay + Cadarache
22 CP @ 3kW AC
40 CP @ 7kW AC
16 CP @ 11kW AC
80 CP @ 22kW AC
~400 EV users

source [8]
How to reduce the max power bill due to the EV charging?

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484.
Without max power management: 13 EV Max @ 22kW charging during 8:00 and 10:00

2 hours @22kW ~40kWh
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484

USE - CASE 1 – SMART CHARGING 1 – MAX POWER REDUCTION – PRINCIPLE

With max power management:
13 EV @ 7.4kW during 8:00 and 14:00

200kW → savings ~ 8000€/year
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484.
• The charging points are used, the night, for the fleets of utility vehicles (used by delivery people, postmen, repairers, bus drivers, etc.) providing their service during the day.

• The charging points are generally slow and located in the company depot.

Enedis:
1880 EV [10]

EDF / Bugey nuclear plant:
276 charging points
110 EV (Renault Zoé) [11]

La Poste:
300 establishments
7000 light commercial EV (mostly Renault Kangoo) [12]
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
USE - CASE 2 – SMART CHARGING 2 – ENERGY COST REDUCTION - PRINCIPLE

Postman’ round from 6AM to 12AM: 120km / day / EV (~20kWh / day / EV)

<table>
<thead>
<tr>
<th>Time</th>
<th>EV arrival</th>
<th>EV departure</th>
<th>Charge without management</th>
<th>Charge with management</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
<td>3€</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td>3€</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td>2€</td>
<td></td>
</tr>
<tr>
<td>24:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charging cost:
- Charge without management: 3€
- Charge with management: 2€

Potential Savings with peak / off-peak hours option:
Price(peak)-Price(off-peak) ~5 c€/kWh
i.e. 1 € / day /EV
For 20 EV working 260 days/Years -> ~5000€/year

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
USE - CASE 3 - CHARGING STATIONS AT HOME [7]

- The charging points are used for recharging the EV used for commuting during the working week.
- The charging points are generally slow or accelerated and located in the garage, next to the house or in the parking lot of a collective dwelling.
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484.
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484

Cost Price (network) ~15 c€/kWh
Cost Price (PV) ~10c€/kWh
Sell Price (PV surplus) ~ 10c€/kWh
PV production : 24kW
Consumption without EV: 20kWh

<table>
<thead>
<tr>
<th>Period</th>
<th>kWh</th>
<th>Price (c€/kWh)</th>
<th>Cost c€</th>
<th>Sell c€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>MidDay</td>
<td>8</td>
<td>10</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>MidDay (Surplus)</td>
<td>16</td>
<td>10</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Evening</td>
<td>8</td>
<td>15</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>420</td>
<td>160</td>
</tr>
</tbody>
</table>

Cost Price (network) ~15 c€/kWh
Cost Price (PV) ~10c€/kWh
Sell Price (PV surplus) ~ 10c€/kWh
PV production : 24kW
Consumption without EV: 20kWh
USE - CASE 3 – SMART CHARGING 3 – ENERGY COST REDUCTION - PRINCIPLE

Consumption of EV:
50 km/day → 10kWh/day

<table>
<thead>
<tr>
<th>Period</th>
<th>kWh</th>
<th>Price (c€/kWh)</th>
<th>Cost c€</th>
<th>Sell c€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>MidDay</td>
<td>8</td>
<td>10</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>MidDay (Surplus)</td>
<td>16</td>
<td>10</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Evening</td>
<td>8 +10</td>
<td>15</td>
<td>120 +150</td>
<td></td>
</tr>
</tbody>
</table>

With EV Charging Without smart charging

- 4kWh @15c€/kWh
- 8kWh @10c€/kWh
- 16kWh @-10c€/kWh
- 18kWh @15c€/kWh

+increase subscription ~6kW

Total c€: 260 +150=410
USE - CASE 3 – SMART CHARGING 3 – ENERGY COST REDUCTION - PRINCIPLE

<table>
<thead>
<tr>
<th>Period</th>
<th>kWh</th>
<th>Price (c€/kWh)</th>
<th>Cost c€</th>
<th>Sell c€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>MidDay</td>
<td>8 +10</td>
<td>10</td>
<td>80 +100</td>
<td></td>
</tr>
<tr>
<td>MidDay (Surplus)</td>
<td>16-10</td>
<td>10</td>
<td>160-100</td>
<td>160-100</td>
</tr>
<tr>
<td>Evening</td>
<td>8</td>
<td>15</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>420</td>
<td>60</td>
</tr>
</tbody>
</table>

Total kWh: 360

Expected savings:
Subscription 9+3=12kW instead of 9+6=15kW ~30€ /year
If 1 EV used 250 days/years : 3/5 of solar charge -> ~75€/year

~100€ /year

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
USE - CASE 4 - "OPPORTUNISTIC" USE [7]

- These stations are used on an “ad hoc” and “opportunistic” basis by passing electric vehicles.
- These charging stations are normal, accelerated or fast and are installed on public roads, in car parks of shops or shopping centers or on motorway service areas.

Owners: shops
Lidl: 900 charging points

Owners: territorial collectivity
LaRecharge (Aix-Marseille Metropole)
174 charging points (22kW AC)

Owners: charge point operator
Ioniity: 350 charging points (>50kW DC)
• Nowadays, various smart charging solutions can be setup with commercial equipments and solutions

• There exist cheap solutions but also very expensive ones

• Other « smarter » solutions exist, based on complex information systems and off-site control of the EV charges.
 • For example, smart charging of EVs @ CEA Cadarache

• To setup smart charging solutions, the charging needs of the users have to be precisely studied
REFERENCES / SOURCES

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857484

Thank you for your attention