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Out of equilibrium relaxation processes show aging if they become
slower as time passes. Aging processes are ubiquitous and play a
fundamental role in the physics of glasses and spin glasses and in
other applications (e.g. in algorithms minimizing complex cost/loss
functions).
The theory of aging in the out of equilibrium dynamics of mean-
field spin glass models has achieved a fundamental role, thanks to
the asymptotic analytic solution found by Cugliandolo and Kurchan.
However this solution is based on assumptions (e.g. the weak ergod-
icity breaking hypothesis) which have never been put under a strong
test until now.
In the present work we present the results of an extraordinary large
set of numerical simulations of the prototypical mean-field spin glass
models, namely the Sherrington-Kirkpatrick and the Viana-Bray mod-
els. Thanks to a very intensive use of GPUs, we have been able to
run the latter model for more than 264 spin updates and thus safely
extrapolate the numerical data both in the thermodynamical limit and
in the large times limit.
The measurements of the two-times correlation functions in isother-
mal aging after a quench from a random initial configuration to a tem-
perature T < Tc provides clear evidence that, at large times, such
correlations do not decay to zero as expected by assuming weak er-
godicity breaking.
We conclude that strong ergodicity breaking takes place in mean-
field spin glasses aging dynamics which, asymptotically, takes place
in a confined configurational space. Theoretical models for the aging
dynamics need to be revised accordingly.

Spin Glasses | Phase transitions | Off-equilibrium Dynamics

Aging is a fundamental process in out of equilibrium relax-
ation dynamics. It refers to the observation that relax-

ation or correlation timescales grow without bound in time, so
the system under study looks slower and slower as time goes by.
This phenomenon has been initially discovered experimentally
in structural glasses (1, 2) and spin glasses (3, 4), but since
then it has been found to be a general feature of glassy systems
(5, 6).

The importance of observing and properly describing the
aging phenomena is due to their strong connection to the
energy landscape where the relaxation dynamics takes place.
Understanding the relaxation dynamics in more or less rough
energy landscapes is a very interesting and essentially still
open problem with important applications. Just to highlight
a recent and very active topic: the training of artificial neural
networks — that have recently proven to be so effective — is
performed by minimizing the loss function, i.e. performing a
sort of relaxation dynamics in a very high-dimensional space
(7, 8).

The dimension of the space where the dynamics takes
place is indeed a crucial aspect. While a dynamics relaxing
in a low dimensional space can not be too surprising, when
the dynamics happens in a very high-dimensional space, our
intuition may easily fail in imaging the proper role of entropic
and energetic barriers and thus the description of the out of
equilibrium dynamics becomes very challenging.

Actually, any statistical mechanics model in the ther-
modynamic limit does perform a dynamics in a very high-
dimensional space. In few fortunate cases (e.g., ordered models
undergoing coarsening dynamics (9, 10)) the out of equilib-
rium dynamics can be well described with a reduced number
of parameters. However, in the more general case of disor-
dered models, our understanding is still limited and based
either on numerical simulations or on the analytical solution
of restricted classes of models: mainly trap and mean field
models.

Trap models (11) provide a very simplified description
of aging dynamics in disordered systems by assuming that
the dynamics proceeds by “jumps” between randomly chosen
states. This strong assumption allows for an analytic solution,
but it is not clear to what extent the actual microscopic
dynamics in a generic disordered model does satisfy such a
hypothesis.

In this work we focus on disordered mean field models, in
particular on the well-known Sherrington-Kirkpatrick (SK)
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model (12, 13) defined by the following Hamiltonian

HSK = −
∑

i<j

Jijsisj , [1]

where the N Ising spins si interact pairwise via quenched ran-
dom Gaussian couplings Jij ∼ N (0, 1/N) having zero mean
and variance 1/N . This model is the prototype for disordered
models having a continuous phase transition from a param-
agnetic phase to a phase with long range spin glass order (in
the SK model it takes place at a temperature Tc = 1).

Thanks to the fact that couplings become very weak in the
thermodynamic limit, the off-equilibrium dynamics of mean
field models can be written in terms of two times correlation
and response functions

C(t, t′) = 1
N

N∑

i=1

〈si(t)si(t′)〉 , R(t, t′) = 1
N

N∑

i=1

∂〈si(t)〉
∂hi(t′)

.

The angular brackets represent the average over the dynamical
trajectories and an infinitesimal time-dependent field is added
to the Hamiltonian as −

∑
i
hisi to compute responses.

In the large N limit C(t, t′) and R(t, t′) do satisfy a set
of integro-differential equations (14, 15) and the solution to
these equations provides the typical decay of correlations in
a very large sample of the SK model. Although their exact
solution is unknown, Cugliandolo and Kurchan (CK) found an
ansatz that, under some hypothesis, solves the equations in the
large times limit (16). These equations have been rederived
rigorously in some particular cases (17).

The CK asymptotic solution has become very popular and
its consequences have been investigated in detail (18, 19). It
is also often used as the theoretical basis for the analysis of
numerical data (20–22). Notwithstanding its success, the CK
solution has never been put under a severe numerical test, due
to the difficulties in simulating very large samples of the SK
model. In particular we are not aware of any really stringent
numerical test on the assumptions made to derive it.

One of the main hypothesis underlying the CK asymptotic
solution is that one-time quantities converge to their equilib-
rium value. This has been further used as a key assumption
to derive the connection between statics and dynamics (23).
However, this assumption is far from obvious, given the exis-
tence of many mean-field models showing a random first order
transition (RFOT) where it is apparent how that assumption
may be not satisfied: the prototypical model with a RFOT is
the spherical p-spin model where the energy relaxes to a value
far from the equilibrium one if the temperature is below the
dynamical transition temperature (15). At variance to models
with a RFOT, in spin glass models undergoing a continuous
transition the common belief has been to assume convergence
to equilibrium, but even these models have an exponential
number of states at low enough temperatures (24), and it is
not clear why the out of equilibrium dynamics should converge
to equilibrium in this case. We remind the reader that the
dynamics we are studying is obtained by taking the large N
limit first and thus activated processes between states are
suppressed.

We want to put under a stringent test the above hypothesis
and we find convenient from the numerical point of view to
test the so-called weak ergodicity breaking property, stating

that for any finite waiting time tw the correlation eventually
decays to zero in the large time limit

lim
t→∞

C(tw + t, tw) = 0 ∀tw . [2]

The physical meaning of this hypothesis is clear: in an aging
system any configuration reached at a finite time is eventually
forgotten completely, because the dynamics, although slower
and slower, keeps wandering in a large part of the configu-
rations space. A direct consequence of the weak ergodicity
breaking is that an aging system does not keep memory of
what it did at any finite time, and the “finite time regime”
can be eventually integrated out (under a further hypothesis
called weak long term memory: the long-time dynamics wipes
out the response to any small initial external perturbation),
leading to an asymptotic dynamics that is actually decoupled
from the finite times regime. This is a key feature that allows
to get to the CK solution.

However, looking retrospectively at the literature of the
times when the CK solution was derived, one finds that the
numerical and experimental evidence were far from definite.
While experiments do not probe a mean-field model, the nu-
merics showed that the correlation C(tw + t, tw) decays with
time t for each waiting time tw considered, but the range
of correlations explored was very limited, with correlations
always relatively large: C(tw + t, tw) & 0.05 (25, 26) More
recently the Janus collaboration succeeded to probe much
larger time scales and much smaller correlations (27), but only
studying finite dimensional spin glasses for which the mean
field solution is not clear to apply.

In the present work we report the results of an unprece-
dented numerical effort in the study of the out of equilibrium
dynamics in mean field spin glasses to check whether some of
the hypothesis at the basis of currently available solutions are
valid or not.

We started our study by simulating directly the SK model
and found some numerical evidence contrasting with the weak
ergodicity breaking assumption (these results are presented in
detail in the SI). However we soon realized that such a model
would prevent us from reaching sizes and times scales large
enough to support any solid statement. Indeed the simulation
time for such a model scales quadratically with the system
size N and rapidly makes the simulation unfeasible.

We then resorted to a spin glass model defined on a sparse
graph (requiring simulation times scaling linearly with the
system size), similar to the Viana-Bray (VB) model: (28)

HVB = −
∑

(ij)∈E

Jijsisj , [3]

where the edge set E defines the interaction graph and the
couplings do not need to be rescaled with the system size (as
in realistic models). In order to reduce the effects of the spatial
heterogeneity in the HVB Hamiltonian, we simulate the model
on a Random Regular Graph (RRG) of fixed degree 4 and
we use couplings of fixed modulus, i.e. Jij = ±1, with equal
probability. We measure self-averaging quantities, and for the
very large sizes that we simulate there is no visible dependence
on the specific random graph or couplings realization.

One may question whether the out-of-equilibrium dynamics
of the VB model is equivalent to the SK case. The common
belief about their equivalence is based on the observation that
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Fig. 1. Decay of the two-times correlation function C(tw + t, tw) with tw = 4 in
a spin glass defined on a random regular graph of degree 4, initialized in a random
configuration and evolved at T = 0.8Tc. We show data for many different system
sizes (lines are only a guide to the eye), and the extrapolation to infinite size for every
value of t (represented by the series of full symbols at the bottom). It is worth noticing
that we are probing a regime of very large times and extremely small correlations,
C(tw + t, tw) � qEA, never reached before in simulations of mean field models.
The upward curvature in the thermodynamic limit is a strong indication against a power
law decay to zero correlation, i.e. against the weak ergodicity breaking scenario.

they are both mean field approximations of the same spin
glass model. Notice also that the SK model is equivalent
to the large degree limit of the VB model (once couplings
or temperatures are properly rescaled). However one may
also argue instead that the SK and the VB models have a
key difference: only in the former the couplings become very
weak in the thermodynamic limit and this may produce visible
differences in their out-of-equilibrium dynamics. We do not
have strong arguments against this point of view and the only
conclusive answer is to study both as we do in the present
paper and to compare the results. Nonetheless let us argue
that if the out-of-equilibrium dynamics of the SK and VB
were really asymptotically different this would have important
implications, and the VB model should be preferred to the SK
model as a mean field approximation to realistic spin glasses.
This is one additional reason that convinced us to make such
an important numerical effort in understanding the large times
out of equilibrium dynamics of the VB model.

Results and discussion

We have simulated the VB model on a RRG of degree 4 at
temperature T = 0.8Tc, where Tc = 1/ atanh(1/

√
3), starting

from a random initial configuration. We have measured the
correlation function C(tw+t, tw) for tw = 22, 24, 26, 28, 210, 212

and very large times t. Statistical errors have been strongly
reduced averaging over a huge number of samples (see the
Method section and the SI for more details).

We show in Figure 1 the decay of the correlation function
C(tw + t, tw) as a function of t for tw = 4 and a number
of different system sizes. The reader should appreciate that
we are working in the regime C(t, t′) � qEA ' 0.285 which

has never been reached before in any study of the out-of-
equilibrium dynamics of mean field spin glass models (the
approximate value for qEA is obtained via the replica symmetric
cavity method). The plot is in a double logarithmic scale, so
an upward curvature is a clear indication that correlation is
either decaying slower than a power law or not decaying to
zero at all.

Let us start discussing equilibration effects. For small
enough N we expect the system to thermalize and the cor-
relation function to decay to the equilibrium value C = 0.
The thermalization time teq(N) is strongly dependent on the
system size N and in Figure 1 it is signalled by the shoulder
clearly visible in the data for 212 ≤ N ≤ 215 and partially in
the data for N = 216. Willing to study the out of equilibrium
regime we must impose times to be much smaller than teq.
For N ≥ 218 such a thermalization effect is absent for the
times we are probing and we can safely consider the data as
representative of the out of equilibrium regime.

Figure 1 shows that finite size effects become apparent when
measuring very small correlations. Such finite size corrections
are otherwise negligibly small at the correlation scale C ∼ 0.1
which has been the mostly probed one in the past. It is worth
noticing that the clear identification of these finite size effects
has been possible thanks to the very small uncertainties that
we have reached by averaging over a very large number of
samples (see the SI for details on simulation parameters) and
over a geometrically growing time window: in practice the
measurement at time t is the average over the time interval
[t/21/4, t].

In order to reach any definite conclusion in the analysis
of the out-of-equilibrium dynamics, it is mandatory to take
into account these finite size effects accurately in the attempt
of extrapolating correlation data to the thermodynamic limit.
Indeed, as shown in Figure 1, off-equilibrium correlations
measured in a system of smaller size decay asymptotically
slower than those measured in a larger system. Then, without
taking properly the thermodynamic limit, one can not argue
too much about the large time limit of correlation functions.
This is the reason why the data we initially got for the SK
model, although pointing to the same conclusion we will draw
from VB model simulations, were considered not conclusive.

We are interested in the limit of very large times taken after
the thermodynamic limit. In this limit we are probing the
aging dynamics where activated processes do not play any role.
For each fixed time we extrapolate the data shown in Figure 1
to the thermodynamic limit, following the procedure explained
in the SI, and we get the curve shown with label “N → ∞”
in Figure 1. It is evident that a strong upward curvature
remains in the thermodynamical limit, thus suggesting that a
power law decay to zero is very unlikely and would require an
unnatural very small value of the power law exponent.

Hereafter we concentrate only on the analysis of data al-
ready extrapolated to the large N limit. We aim at understand-
ing what is the most likely behavior of the thermodynamic
correlation in the limit of large times. We are aware that
solely from numerical measurements taken at very large but
finite times we cannot make an unassailable statement and
one could always claim that on larger times the decay could
change. Notwithstanding we believe (and we assume in our
analysis) that for the very large times we have reached in our
numerical simulations the asymptotic behavior already set in.

et al. PNAS | June 27, 2019 | vol. XXX | no. XX | 3
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Fig. 2. The correlation functions C(tw + t, tw) extrapolated in the thermodynamic
limit as a function of time t, for all the waiting times tw studied. We report only data
which are safely in the aging regime C(tw + t, tw) < qEA/2. Straight lines through
data points are best fits to functional form in Eq. [4] on the time window t ∈ [217, 225].
The dashed curve is a best fit to a logarithmic decay extrapolating to zero correlation.

Thus the results of the analysis should be stable if we change
the time window over which the analysis is carried out (always
in a way such that t� tw and thus C(tw + t, tw)� qEA).

In Figure 2 we present the results of the asymptotic analysis
that we find most stable and thus most likely, according to the
above prescription. The data for the correlations C(tw + t, tw)
extrapolated in the large N limit are shown as a function of an
inverse power of the time for different waiting times, ranging
from tw = 4 to tw = 4096. We immediately notice that all
data follow a nice linear behavior in this scale; the only data
departing from the linear behavior are those at very short
times, that violate the condition tw � t. The good agreement
with the linear behavior — the lines are fits to data points in
t ∈ [217, 225] — implies that a fit to the form

C(tw + t, tw) = A(tw) exp
[
B(tw)t−γexp

]
[4]

is very stable upon changing the time window (mind the log
scale on the y axis). A joint fit to all tw data with a tw-
independent exponent gives the value γexp ' 0.17, a weakly
tw-dependent coefficient B(tw) and definitely a non-null ex-
trapolations to infinite time A(tw) = limt→∞ C(tw + t, tw).
For a quick reference we may call ‘exponential’ the fit above,
although the asymptotic decay is like A+AB t−γexp .

In order to test the null hypothesis, that is the weak er-
godicity breaking scenario where limt→∞ C(tw + t, tw) = 0
for any finite tw, we tried to fit the data extrapolated in the
large N limit to a function compatible with this limit. Given
the upward curvature of the correlation function in a double
logarithmic scale (see Figure 1) one may propose a very slow
decay according to an inverse power of log(t). It turns out that
a fit to a logarithmic decay C(tw + t, tw) = C(tw) log (t)−γlog ,
implying a null limiting correlation, yields a value of the sum
of squared residuals per degree of freedom one order of mag-
nitude larger than the fit in Eq. [4]. Moreover the values of

the fitting exponents are also very strongly dependent on the
fitting window (see below and the SI).

The most stricking consequence of the analysis shown in
Figure 2 is that, for finite tw values, in the t→∞ limit the
correlation C(tw + t, tw) does not decay to zero. This is a
very surprising result as it implies — at variance with the
widely diffused common belief — that an aging spin glass can
asymptotically remember, to some extent, the configurations it
reached at finite times. This positive long term correlation con-
futes the weak ergodicity breaking assumptions and implies a
much stronger ergodicity breaking. The present result requires
to rethink the asymptotic solutions for the aging dynamics in
mean-field spin glass models.

We show now some numerical evidence of why we consider
the strong ergodicity breaking as the most likely scenario. In
order to test the stability of the fitting procedure with respect
to the choice of the time interval, we perform the analysis
on intervals t ∈ [2n−k, 2n] with fixed k = 6 and n running
on all the time series. A fit to the function C(tw + t, tw) =
C(tw) log(t)−γlog(tw) with tw-dependent parameters returns
values of γlog that strongly depend on n, i.e., on the position
of the fitting window (see SI for details). Thus, fit results are
very dependent on the time t, implying strong corrections to
the asymptotic scaling. Again we can not completely exclude
this scenario, but it is very unlikely under the hypothesis that
corrections to scaling are weak at the very large times we
reached at the end of our simulations.

The asymptotic scaling for the correlation decay which
has been mostly used until now is an inverse power law of
time. Thus we have also fitted our data in the time window
t ∈ [2n−k, 2n] according to low order polynomials in t−γ ,

PM (tw + t, t) = AM (tw) +
M∑

m=1

D
(m)
M (tw) t−mγM (tw) , [5]

with exponents and coefficients depending on both tw and M .
Please note that for D(m)

M (tw) = AM (tw)BM (tw)m the
polynomial in Eq. [5] is nothing but the M -th order Taylor
expansion of the function in Eq. [4] with AM (tw) = A(tw)
and BM (tw) = B(tw). It turns out that the identification
D = ABm is necessary in order to obtain numerically stable
results. Moreover assuming such a relation we reduce the
number of free parameters and improve correlations among
them. At large times, where corrections to the asymptotic
scaling should be negligible, the low order polynomials should
yield results in agreement with those of the analysis made with
the form in Eq. [4]. Any deviation would give a measure of
the systematic error introduced by ignoring some corrections
terms in the asymptotic behavior.

We report in Fig. 3 the best fitting parameters according
to fitting functions in Eq. [4] and in Eq. [5] with M = 2 and
assuming D(m)

M = AM BmM . Results are shown as a function
of the upper limit of the time window [t/26, t] where the fit is
performed. It is clear that the resulting best fit parameters
are very stable, i.e. weakly dependent on the position of the
fitting window, and this is a strong indication that we are
probing the asymptotic regime with a functional form suffering
only tiny finite time corrections. We also notice that the two
estimates of the decay exponent γexp and γM=2, shown in the
upper and mid panels, become compatible at large times. The
asymptotic value for the correlation function C(∞, tw), shown

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX et al.
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time on the abscissa t = 2n is the upper limit of the fitting range t ∈ [2n−6, 2n].
We notice that the results of these fitting procedure are very stable, i.e. vary little
moving the fitting time window, at variance to fits assuming weak ergodicity breaking.

in the lower panel, is very stable too and clearly different from
zero.

Analogous fits to any functional form assuming weak er-
godicity breaking, that is C(∞, tw) = 0, return best fitting
parameters strongly dependent on the position of the fitting
window, and a sum of squared residuals per degree of freedom∗

which is typically one order of magnitude larger than the fits
discussed above and illustrated in Fig. 3.

In conclusion the most likely scenario, which is fully sup-
ported by our data, is the one where the limiting value for
the correlation function C(∞, tw) is strictly positive for any
waiting time tw. In Figure 4 we report the estimates of
C(∞, tw) = AM (tw) obtained from the last fitting window,
t ∈ [217, 225], via the polynomial in Eq. [5] with M = 1 and
M = 2, together with the values of A(tw) obtained via the fit
to Eq. [4]. The three estimates are compatible within errors. In
the inset of Figure 4 we report the best estimates for the decay
exponent obtained from the same fits. The exponent is weakly
dependent on tw, and systematic errors are more evident, indi-
cating that we are far from a regime in which the decay to the
residual correlation can be described by a single power law.
Notwithstanding this, different models with different decay
exponents agree both qualitatively and quantitatively with a

∗Since we are dealing with strongly correlated data, constructing a proper χ2 estimator is a chal-
lenging task, but the sum of the squared residuals can give anyhow an indication of the relative
goodness of different interpolating functions.
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non-null value for the asymptotic correlation.
Computing the value of C(∞, tw) in the large tw limit is

out of scope with present data and would require new and
longer simulations with larger tw values. However, given
that we are working in the aging regime under the condition
C(tw+t, tw) < qEA, it is easy to get a conservative upper bound
to that limiting correlation, that is limtw→∞ C(∞, tw) < qEA.
Moreover, noticing that the plot in Figure 4 is in double
logarithmic scale and that we still do not see any downward
curvature, even if correlation values are not far from qEA, we
may conjecture that the upper bound is saturated, that is

lim
tw→∞

C(∞, tw) = qEA . [6]

The validity of the above conjecture would lead to the un-
expected scenario where the out-of-equilibrium relaxation
asymptotically gets trapped in an equilibrium state, which is
randomly chosen depending on the initial condition and the
dynamics at finite times.

The physical picture that emerges from the above strong
ergodicity breaking scenario corresponds to a system that,
while relaxing in a complex energy landscape, remains confined
in regions of the configurations space becoming smaller and
smaller during the evolution. Whether this is a single state,
a finite set of states or a marginal manifold extending over
just a finite fraction of the configurations space is not possible
to deduce from our data and further studies will be needed.
Nonetheless if this strong ergodicity breaking scenario turns
out to be the correct one (as our data strongly suggest) we
have to abandon the physical idea of aging as a dynamical
process exploring a marginal manifold extending all over the
configurations space. The latter scenario can be still perfectly
valid for models defined on finite dimensional topologies (e.g.
regular lattices) because in that case barriers are not diverging
exponentially with the system size and so it is less likely to
have a confining potential for the out-of-equilibrium dynamics
on finite timescales.

Recently the study of the out-of-equilibrium dynamics in
a different mean field spin glass model, namely the spherical
mixed p-spin, has shown — via analytical solutions — a similar
phenomenon (29): depending on the initial condition the
asymptotic aging dynamics may take place in a restricted
part of the configurations space, and the correlation with
configurations at finite times remain strictly positive. This
result corroborates those presented in the present work and

et al. PNAS | June 27, 2019 | vol. XXX | no. XX | 5



strongly suggests that, in mean field spin glasses, the most
general off-equilibrium relaxation is not the one we had in
mind until now (a slow and unbounded wandering in the entire
configurational space), but a slow evolution in a confined
subspace, determined by the initial condition and the early
times dynamics.

In conclusion we have put under a severe test one of the most
widely assumed hypothesis in the aging dynamics of mean-field
glassy models, namely the weak ergodicity breaking scenario.
Our results are clearly in favour of a strong ergodicity breaking
scenario, where the two-times correlation function does not
decay to zero in the limit of large times. We have been able
to achieve such unexpected result, thanks to (i) the use of
sparse mean-field spin glass models, (ii) a new careful analysis
taking care of both finite size and finite time effects and (iii)
an extraordinary numerical effort based on very optimized
codes running on latest generation GPUs.

It is fun to notice that the number of spin flips we performed
on the largest simulated systems is of the order of 264, the
same number of wheat grains asked by Sessa, the inventor of
chess, to sell his invention. Such an incredibly large number,
that determined the destiny of Sessa, allows now to uncover
unexpected physics!

Methods

We simulated many samples of the VB model with sizes in
the range 210 ≤ N ≤ 228 for times up to 225 Monte Carlo
sweeps (MCS). We report all details and parameters of the
simulations in the SI. Every simulation starts from a random
initial configuration and evolves using the Metropolis algorithm
at temperature T = 0.8Tc = 0.8/ atanh

(
1/
√

3
)
' 0.42 (30).

This temperature is a good trade-off because it is not too
low (and thus the evolution is not too slow), while being
in the low temperature phase and thus having an Edwards-
Anderson order parameter qEA sensibly different from zero.
We remind that the aging dynamics takes place in the large
times limit only under the condition C(t, t′) < qEA. The
thermodynamical properties of typical samples of the VB
model can be computed via the cavity method: although
for T < Tc the exact solution would require to break the
replica symmetry in a continuous way, we can get a reasonable
approximation to the value of qEA via the replica symmetric
solution providing qEA(T = 0.8Tc) ' 0.285.

For simulating huge systems for long times it is necessary to
resort to parallel processing. To that purpose we implemented
the VB model on a random regular bipartite graph (RRBG)
making possible to exploit the features of GPU accelerators
despite of the very irregular memory access pattern (see SI).
We have checked on intermediate sizes that results obtained
on RRG and RRBG are statistically equivalent (see results in
the SI). The theoretical argument supporting the statistical
equivalence of the VB model defined on RRG and RRBG goes
as follows: RRG may have loops of any length, while RRBG
only have even length loops; since in the VB model with
symmetrically distributed couplings (we use Jij = ±1) every
loop can be frustrated with probability 1/2 independently of
its length, we do not expect any difference between the two
graph ensembles in the thermodynamic limit, where loops
become long. To speed up further the numerical simulations,
we resorted to multispin coding techniques where copies evolve
in parallel on the same graph, but with different couplings
and different initial configurations.

Extrapolations to the thermodynamical limit is an impor-
tant technical aspect of the present work: we dedicate to it a
SI section. The result presented here have been obtained by
fitting to a quadratic function C(N =∞) +AN−ν +BN−2ν

with ν = 2/3. The value of the exponent has been fixed
according to well-known results in the literature (31–33).
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1. The Sherrington-Kirkpatrick model

Our interest in the asymptotic off-equilibrium dynamics stems
from the phenomenon of remanent magnetization of spin
glasses. We recall that the equations of dynamics of mean
field models have been studied in detail in the hypothesis of
both weak ergodicity breaking and weak long term memory
(see main text) (1, 2). If a very strong constant magnetic field
is applied to a spin glass, the individual spins align along this
magnetic field. If afterward this magnetic field is switched off,
the spin glass relaxes very slowly towards a state of non-zero
remanent magnetization, with some excess internal energy rel-
ative to the internal energy at equilibrium. This phenomenon
has been the object of detailed experimental studies (3–5). On
the theoretical side this phenomenon has been studied in mod-
els, mostly by dynamical Monte Carlo simulations. If some
numerical results have been obtained (6, 7) for the finite dimen-
sional Edwards Anderson Ising model (8), most simulations
have been done (6, 7, 9–11) for the infinite range Sherrington-
Kirkpatrick model (12, 13). These numerical results have been
obtained for small systems (N ≤ 1024 in (9, 10), N ≤ 2048
in (6), N ≤ 2016 in (7), but N ≤ 18432 in (11), where N is
the number of spins) using either binary distributed quenched
random couplings, or Gaussian distributed quenched random
couplings.

These pioneering simulations remain however inconclu-
sive, and we decided to revisit the case of the Sherrington-
Kirkpatrick model with larger systems (with up to N = 215 =
32768 spins, quite a large number by fully connected models
standards), a larger time window, and a better statistics. We
study the relaxation of the system following the Metropolis dy-
namics starting from a configuration where all spins are aligned
(for this model this is also a disordered T =∞ configuration).
From a numerical point of view this is a rare blessed situation
for a Sherrington-Kirkpatrick model simulation, where one is
not restricted to a very small number of spins, since there is
neither the need to perform the lengthy equilibration of the
system (and to make sure that equilibrium is indeed reached),
nor the need to perform a satisfactory sampling of the phase
space in the subsequent measurement phase of the simulation.

We simulated the Sherrington-Kirkpatrick spin glass (model
[1] in the main text) with binary distributed quenched cou-
plings, for temperatures T = 0.4, 0.5 and 0.6 (Tc = 1 in
this model). The use of binary distributed couplings allows
a faster computer code, due to the multispin coding (14, 15)
technique to compute the force acting on a given spin (the
computation of the force is the bottleneck of the code). Away
from T = 0, the choice of binary distributed couplings is
believed to have little effect on the physics. Two clones are
simulated in parallel. The number of instances (i.e. disorder
coupling samples) is Ndis = 224/N . This scaling of Ndis with
N ensures roughly N independent statistical errors. The num-
ber of iterations (N single spin updates, performed in a fixed
order) is 219. We lump together the data for the same value
of bln((t+ tw)/4)/(0.5 ln(2))c where b· · · c is the floor function
(tritone logarithmic intervals for large times) and treat them
as a data for the average value of t+ tw inside the lump (e.g.
we lump together the t + tw = {4, 5} data, to be treated as
the data for t+ tw = 4.5 in what follows).
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Fig. S1. Convergence of the two-times correlation function C(tw + t, tw) as a
function of 1/N2/3, for T = 0.5 and three representative values of t.

We compute the two times correlation C(tw, t+ tw) as

C(tw + t, tw) = 1
N

N∑

i=1

〈σi(tw + t)σi(tw)〉 [1]

with a very small waiting time (we take tw = 3, we later
realized that a larger value would have given a better signal,
see the main text). Angular brackets represent the average
over the disorder and the two clones.

In this setting, the analysis of the large t behavior of the
data turns out to be a quite difficult task, due to a very limited
range of values of N together with the very weak t behavior of
the correlation, and the smallness of its t =∞ limiting value.

We first extrapolate the data to the thermodynamic limit
assuming a leading 1/N2/3 behavior. This is done with a
linear χ2 fit of the data with N ≥ 2048. This extrapolation
is shown in figure S1 for T = 0.5 and three representative
values of t. The quality of the data deteriorates as t grows,
but remains acceptable. The slowness of the convergence
to N = ∞ is a well known feature of this model and clear
subleading corrections are present for small systems, whose
sign turns out to depend on T . We notice that for all three
temperatures the finite size corrections become very small for
the largest values of t.

We next try to determine the large t behavior of (the infinite
volume limit) C(tw, t+ tw). Our preferred fit of the data has
the form A + B/tγ with some very small γ and a non zero
A but the value of γ is unstable against details of the fitting
procedure, like the range of values of N used in the N →∞
extrapolation, and the range of t used to determine γ. This
is to be expected since the range of values of N and t are
limited due to the full connectivity of the model. Note that a
logarithmic decay C +D/ ln(t)β is also possible.

To make the case for a non zero limiting behavior we show
in Fig S2 a plot of C(tw, t+ tw) as a function of 1/t0.3T . There
is a clear collapse of the data for an intermediate range of t.
We interpret the collapse breakdown at larger values of t as
a finite size effect. This is however not a solid case and this
motivated us to perform the simulation of the sparse model
presented in the main paper. Such a system allows to simulate
much larger systems, for a longer time, with better statistics.
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2. Spin glass on a bipartite random regular graph: sim-
ulations and extrapolations

We simulated instances (or samples) of a spin glass with binary
coupling on a bipartite random regular graphs of degree z = 4
(model [5] in the main text) and number of vertexes N = 2K
with K = 10 − 16, 18, 20, 22, 24, 25, 27, 28. We followed the
evolution of any instance starting from a completely random
initial spin configuration applying the classic single spin flip
Metropolis algorithm, at fixed temperature T = 0.8Tc, up
to time t = 225, taking the update of the whole graph as
unit of time. All samples had independent random coupling
configurations. In a straightforward multispin coding simula-
tion the distinct bits of a data word represent the spins on
a single vertex of 64 independent samples, which must then
share the same connectivity matrix. We simulated a number
of different graphs ranging between 3 for N = 228 and 8192
for N = 210 − 214. We performed simulations of samples with
the smaller sizes (K = 10 up to 16 and K = 18) on Intel
CPUs with 64 bit data words (i.e. 64 independent random
coupling configurations for each random graph realization);
simulations of larger sizes have been accelerated by running a
carefully coded program on Graphics Processing Units with
64 bit data words (see Section 3 below). Then the number of
simulated samples ranges between 192 for N = 228 to 524288
for N = 210 − 214 (see Table S1).

Bipartition is mandatory in order to enforce parallelism in
the Monte Carlo update (see Section 3). This does not change
the graph property of being locally tree like for large N and
then of approximating results on a Bethe lattice in the N →∞
limit. Still, bipartition changes the distribution of lengths of
cycles and then possibly changes finite-size corrections to the
behavior of the system in the limit of the Bethe lattice (16). We
verified that bipartition is statistically irrelevant to our results
with the available numerical precision, on the smaller system
sizes already, by comparison with numerical simulations of the
same model on non bipartite random regular graphs. Figure S3
show data of the autocorrelation function C(tw + t, tw) for
tw = 4 and system sizes N = 214 and N = 222 comparing
results of averages over the bipartite samples to averages over
non bipartite samples. Even at the smaller system sizes we do
not observe any statistically significant difference in any time
regime.
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Extrapolation to large sizes and large times. Hereafter, we de-
scribe firstly how we performed the limit to large sizes and
then to large times.

We improved the signal to noise ratio by averaging the
time series of the measured C(tw + t, tw) values, for each
given waiting time tw and system size N , over minor thirds
logarithmic intervals tw + t ∈ [tm, tm+1], with tm+1/tm = 21/4.

The extrapolation to large sizes at fixed times tw and t is
at the core of our analysis. In order to take into account for
finite size corrections, we fitted data to both a linear function
and a second order polynomial in some power of the inverse
system size 1/Nν . We tried both ν = 1 and ν = 2/3, the latter
being supported by the behavior of finite size corrections in
the spin glass phase of mean field models (16–18).

In the top panel of figure S4 we report a comparison of the
four functional forms in describing large-N data for tw = 4,
tw + t = 222. Among the functional forms we employed, the
quadratic fit with either ν = 1 or ν = 2/3 works equally well
on almost all the tw, t range, providing smooth extrapolations
to infinite sizes. By imposing ν = 2/3 we obtain a coefficient
of the leading term of order ∼ O(1), whereas imposing ν = 1
results in a two orders of magnitude larger value (see the
bottom panel of figure S4), suggesting that the latter choice
brings to a subestimation of finite size corrections.

We then performed extrapolations to large observation
times (at fixed tw) of the values of the infinite size extrapo-
lations of C(tw + t, tw). After noting the linear behavior of
correlation data as a function of some power γ in a log-linear
plot (see Figure 2 and discussion in the main text), we tried
to fit data to an inverse Fréchet exponential:

G(t) = Aexp(tw) exp
[
Bexp(tw)t−γexp

]
, [2]

where the parameters Aexp, Bexp and γexp do in principle
depend on the waiting time. Results for the parameters are
very stable when moving the fitting window t ∈ [2n−k, 2n]
with k = 8 by changing n (see also Figure 3 and discussion in
the main text). Results are also stable when changing k over a
reasonable range (smaller k values imply noisy results, larger
values return too few data points as we have 12 octaves between
our largest tw and the total time length of the simulation).
The exponent γexp has a very weak dependence on the tw.
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at tw = 4.

In each window, and for any given value of γexp, we compute
the optimal values of Aexp, Bexp. We record the sum of squared
residuals as a function of γexp, the minimum of which is taken
as the optimum value of γexp. Since we deal with correlated
data, obtaining a χ2 estimator and uncertainties of parameters
directly by the fitting procedure is both involved and prone
to noise. The sum of squared residuals at the optimum γexp
value is still an useful metrics in assessing relative accuracy
of different models. To extract an estimation of uncertainties,
we divide our database in three subsamples and compute its
maximum error.

One usually describes the large time off-equilibrium decay
of the correlation function with power laws. In order to test
and quantify higher order corrections to the asymptotic scaling
we considered low order polynomials in the variable t−γ :

PM (tw + t, t) = AM (tw) +
M∑

m=1

AMB
m
M (tw)t−mγM (tw) , [3]

With that choice of the parametrization, the M -th order poly-
nomial is the Taylor expansion to order M of an exponential
(Equation 2). Such parametrization is also necessary to sta-
bilize the fitting procedure above described and reduce the
parameter correlation, even forM = 1. This provides a further
confirmation that the ‘exponential’ decay works very well in
all the large time regime. The parameters Aexp and AM in the
last time window [217, 225] are our estimation of the residual
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terms in the M = 3 polynomials Equation 3 and the coefficient Aexp of the exponen-
tial function Equation 2, by fitting the models on the time window t ∈ [217, 225].

correlation. The parameters AM , BM and γM depend, in
principle, on the waiting time and on M . Also in this case
the exponent γM turns out having a very weak tw dependence.
The dependence of γM on M is significant (see inset in Figure
4 in the main text), signalling strong subleading corrections
to the asymptotic, large time, behavior but the finite-time
systematic error on AM is comparable to the uncertainty (see
also main panel in Figure 4 in the main text). M = 3 data
are already indistinguishable from results of the exponential
analysis, as shown in Figure S5.

A very slow logarithmic decay

L(tw + t, tw) = C(tw) [log(t)]−γlog [4]

can not in principle be ruled out. Yet we do not obtain
encouraging results when performing the fitting procedure on
moving windows described above. As shown in Figure S6,
results are much more dependent on the fitting windows, and
as a compensation for relatively quickly converging data, the
decay exponent takes much larger values than in the previous
cases.

3. Simulations of the Bethe Lattice on GPUs

Graphics Processing Units (GPU) provide a very good trade-
off among four crucial goals of any modern computing platform:
performance, price, power consumption and ease of software
development. As a matter of fact, although originally designed
to accelerate graphics rendering, GPU are, by now, widely
used in many other applications of high performance comput-
ing. The micro-architecture of a GPU is massively parallel,
with thousands of simple cores designed for simultaneous, in-
dependent, not necessarily identical, computations on multiple
data inputs. For our work we resorted to NVIDIA GPUs
programmed by using the CUDA software framework.

From a hardware standpoint, an NVIDIA GPU is an array
of Streaming Multiprocessors (SMs); each SM contains a certain
number of CUDA cores. Each function executed on the GPU
on behalf of the CPU is called kernel. To attain a significant
fraction of the theoretical peak performance, occupancy (i.e.,
the fraction of active computing elements at a given time) must
be consistently kept high, hence thousands of threads must be
ready to be scheduled at any time. Threads are executed in
groups of 32 units called warps, and performance is significantly
improved if threads in the same warp execute the same code
with no divergence and access memory according to patterns
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that privilege threads locality, i.e., if threads belonging to
the same warp access consecutive memory locations (memory
coalescing in CUDA jargon). This is the most critical issue in
the simulation of the Ising Bethe lattice on a GPU since the
neighbours of each spin are, apparently, in random positions
with no regularity in the memory access pattern. As a matter
of fact, the only certainty is that each spin interact with a
fixed number (4) of other spins and that all of them are in
the same half of the lattice since the graph describing the
connectivity among spins is a bipartite graph.

We highlight that the property of being a bipartite graph is
a fundamental requirement to update in parallel spins during
the simulation (it can be seen as a variation/extension of the
classic checkerboard decomposition used in the parallel up-
date of spins having nearest-neighbour interactions on regular
lattices). As a consequence of this lack of regularity, the mem-
ory access is not completely coalesced o, more precisely, it is
perfectly coalesced when reading the vector of the interaction
J and writing the updated spins whereas it is not coalesced
reading the interacting spins. Despite of this limitation, the
performance of the GPU remains extremely good because the
kernel in charge of the update uses just 32 registers so that
up to 2048 threads per SM can be active (each SM has 65536
registers). Having many threads active allows to alleviate the
problems due to the lack of memory coalescing. Warps alter-
nate each other in the execution (while waiting data coming
from the memory) at zero cost, keeping the cores always busy.
The final result is that the update of a single spin take ∼ 15
picoseconds on a P100 GPU. Actually that time can be further
reduced by using more than one GPU.

Each half of the bipartite graph can be split between two

or more GPUs with each GPU updating a subset of spins.
The idea is similar to what we presented in Ref. (19) with the
difference that in the present case each GPU must keep a full
copy of the spins due to the irregular connectivity. This means
that much more data must be exchanged among the GPUs
(basically there is an all-to-all communication exchanging the
whole dataset of spins at each iteration). However, leveraging
asynchronous memory copy operations and CUDA streams it
is possible to overlap communication and update of the spins
achieving a pretty good efficiency, at least with few GPUs
(e.g., 75% on 4 GPU). In the present study we were more
interested in running many simulations on a wide set of lattice
sizes rather than running a long lasting single simulation on
a lattice of fixed size so we did not use extensively the multi-
GPU variant of the code but for other case studies it can
significantly reduce the time-to-solution. A different form
of overlap that we, on the contrary, extensively used is that
between the update of the spins and the evaluation of the
observables. For taking measures we use the CPU that would
be otherwise completely idle during the simulation. When
the measure must be carried out, we copy the current spin
configuration from the GPU to the CPU and then spawn a
CPU thread that executes the function which computes energy
and correlations and saves the results in an output file. In
this way the GPU can continue the simulation while the CPU
computes the observables.

The time required to copy the spin configuration from
the GPU to the CPU is approximately the same as the time
required for the update of the whole set of spins (obviously
both depends on the size of the system but they scale in
the same way) whereas the time required to compute the
correlations is much higher since several spin configurations
must be considered. So, in the end, there is a significant
time-saving in using the CPU to that purpose.

Table S1. Number of simulated samples of size N = 2K . Nsamples
is the total number of independent random coupling configurations,
while Nrrg is the number of different instances of the random regular
graph. On each graph instance we generate 64 different random
coupling configurations (which is the size of the data word in the
multipsin coding implementation).

bipartite non bipartite
K Nsamples Nbit Nsamples Nrrg

10 − 13 524288 8192
14 524288 8192 370176 5784
15 99264 1551
16 75712 1183
18 33280 520
20 8192 256
22 8256 129 2560 40
23 2048 32
25 256 4
27 192 3
28 192 3
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