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We show that bringing into proximity two topologically trivial systems can give rise to a topological
phase. More specifically, we study a 1D metallic nanowire proximitized by a 2D superconducting
substrate with a mixed s-wave and p-wave pairing, and we demonstrate both analytically and
numerically that the phase diagram of such a setup can be richer than reported before. Thus,
apart from the two ”expected” well-known phases (i.e., where the substrate and the wire are both
simultaneously trivial or topological), we show that there exist two peculiar phases in which the
nanowire can be in a topological regime while the substrate is trivial, and vice versa.

I. INTRODUCTION

The last decade was marked by numerous propos-
als to realize time-reversal-symmetric (TRS) topological
superconductors1–13 hosting so-called Majorana Kramers
pairs. Despite the fact that all the braiding operations
in such systems are bound to be performed with pairs
rather than with single Majorana quasiparticles, it has
been proposed theoretically that braiding of end states
remains non-Abelian due to the protection by time re-
versal symmetry.8

Certain recipes for creating TRS topological super-
conductivity (SC) are of high relevance to the current
manuscript. First, it is known that a metallic nanowire
(NW) proximitized by a SC becomes superconducting
due to the proximity effect. Moreover, when the sub-
strate is topological, Majorana fermions may form in the
wire.14 Furthermore, as shown in Ref. [15], a NW prox-
imitized by a helical p-wave SC substrate becomes a 1D
TRS topological SC exhibiting triplet pairing and Ma-
jorana Kramers pairs at its ends. It was also demon-
strated in8 that if the SC substrate is characterized by
a mixed singlet-triplet pairing with a dominant triplet
component, then the NW becomes topological.

Second, in a recent paper, Neupert et al. considered a
chain of scalar impurities immersed into a superconduc-
tor with a mixed s-wave and p-wave order parameter.16

Scalar impurities do not give rise to Yu-Shiba-Rusinov
states17–19 in purely s-wave SCs, in accordance with the
Anderson theorem.20 However, in the presence of a p-
wave pairing component, a pair of in-gap bound states is
formed in the presence of a scalar impurity.21–23 Given a
chain of such impurities, the corresponding bound states
hybridize into a so-called ”Shiba band”. As shown in
Ref. [16], such a band can enter a topological regime, sup-
porting Majorana bound states at its ends, even though
the superconductor is in a trivial phase with a dominant
s-wave component.

Furthermore, Hsieh et al. demonstrated that topolog-
ical phases can be induced in trivial systems via cou-

FIG. 1. (Color online) A sketch of the system: a metallic
nanowire (violet) on top of a 2D SC substrate with mixed
singlet and triplet pairing (blue). Red arrows denote the tun-
nelling between the substrate and the wire, and the Majorana
Kramers pairs are drawn as yellow spheres at the ends of the
wire.

pling to topological ones, despite the absence of a local
order parameter in the latter. One of the examples in
their paper24 focuses on how a trivial system coupled
to a Chern insulator in a topological regime with Chern
number −1 becomes topological with an opposite Chern
number, +1. The authors also proposed an analogous ex-
ample with two coupled 1D systems instead of 2D ones.

Motivated by the aforementioned findings, we offer
in this paper another missing piece of the puzzle. In
what follows we show that bringing into proximity two
topologically trivial systems can give rise to a topolog-
ical phase. We exemplify this idea by studying a 1D
metallic NW proximitized by a 2D SC substrate with a
mixed s-wave and p-wave pairing (see Fig. 1). We ob-
tain the phase diagram of the system in Fig. 1 using
both analytical and numerical methods. The analytical
approach is based on integrating out the SC degrees of
freedom and obtaining an effective low-energy Hamilto-
nian for the nanowire, whereas the numerical simulations
are done within a tight-binding model on a square lat-
tice. The phase diagrams are constructed by testing the
formation of Majorana bound states at the ends of the
nanowire.

The resulting phase diagrams recover first the two
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phases that have also been previously reported:8,15 one
in which both the substrate and the nanowire are trivial,
as well as one in which both are topological. However,
they exhibit also two salient unexpected phases which
have never been discussed before. Thus we identify
a phase in which the SC is topological, whereas the
induced superconductivity in the NW is trivial. Also,
most surprisingly, one can achieve a phase in which
the SC substrate is trivial whereas the NW is topological.

II. CONTINUUM MODEL

We start by considering a 1D metallic NW oriented
along the x axis and deposited on top of a 2D TRS SC
with both s-wave and p-wave pairing, lying in the (x, y)
plane. The Hamiltonian of the NW is given by

HNW =

(
p2
x

2m
− µ

)
σ0 ⊗ τz, (1)

and the Hamiltonian of the superconducting substrate
can be written as

HSC =
p2 − p2

F

2M
σ0⊗τz+∆sσ0⊗τx+κ(pyσx−pxσy)⊗τx.

(2)

We use the Nambu bases
{
cpx↑, cpx↓, c

†
−px↓,−c

†
−px↑

}T

where cpx↑ destroys an electron of spin ↑ with momen-

tum px in the NW, and
{

Ψp↑,Ψp↓,Ψ
†
−p↓,−Ψ†−p↑

}T

for

which Ψp↑ destroys an electron of momentum p in the
substrate. The matrices σ and τ are the Pauli matri-
ces acting respectively in the spin and the particle-hole
subspaces. In (1), m is the effective mass of the quasi-
particles in the NW, and µ is their chemical potential.
Similarly, in (2), M and pF embody the effective mass
of quasi-particles in the SC and their Fermi momentum.
The singlet and triplet SC pairings in the substrate are
denoted by ∆s and κ, respectively. We model the cou-
pling between the NW and the SC by means of a tun-
nelling Hamiltonian

HT = ttun

∑
pσ

[
Ψ†pσcpxσ + c†pxσΨpσ

]
, (3)

where σ =↑, ↓, and ttun is the tunnelling amplitude.

In what follows we integrate out the SC degrees of
freedom (see Appendix C) and we obtain an effective
retarded Green’s function for the proximitized NW:

[
Geff

NW (ω, px)
]−1

= (GNW)
−1 −

∫
dpy
2π
H†TGSCHT (4)

where we defined GNW ≡ (ω + i0−HNW)
−1

, and GSC ≡
(ω + i0−HSC)

−1
. The effective Green’s function given

by Eq. (4) yields an effective low-energy Hamiltonian de-
scribing the NW (see, e.g., Ref.15):

Heff
NW ≡ −

(
Geff

NW

)−1 |ω=0 , (5)

where we keep all the terms up to those linear in px. It
is worth mentioning that setting the frequency to zero
in Eq. (5) is an approximation that allows us to extract
a qualitative effective Hamiltonian for the NW. More
accurate results can be obtained from an exact diagonal-
ization of the full lattice model, however, as we will show
in what follows, the two methods yield consistent results.

Results. We leave the detailed presentation of the te-
dious calculations for Appendix C, and we present here
the first result of this paper – an effective low-energy
Hamiltonian for the NW:

Heff
NW =

(
p2
x

2m
− µind

)
σ0 ⊗ τz − λind pxσy ⊗ τz+

+∆ind
s σ0 ⊗ τx − κind pxσy ⊗ τx. (6)

As a result of the interplay between the s-wave and p-
wave pairing, an effective Rashba-like spin-orbit coupling
arises in the NW. We note that for a pure p-wave or pure
s-wave coupling no such term is generated, provided there
is no spin-orbit coupling in the substrate. The induced
parameters in Eq. (6) are defined as follows:

∆ind
s ≡ t2tun

πvF

∑
σ=±

Re

[
sgn ∆σ − iσκ̃

1 + κ̃2
arctg

−|pε|+ zσ√
p2
ε − z2

σ

]

κind ≡ t2tun

πvF

∑
σ=±

Re

[
−σ sgn ∆σ + iκ̃

1 + κ̃2

1

zσ
arctg

−|pε|+ zσ√
p2
ε − z2

σ

]

λind ≡ t2tun

πvF

∑
σ=±

Im

[
−σ + iκ̃ sgn ∆σ

1 + κ̃2

1

zσ
arctg

−|pε|+ zσ√
p2
ε − z2

σ

]

µind ≡ t2tun

πvF

∑
σ=±

Im

[
iσκ̃ sgn ∆σ − 1

1 + κ̃2
arctg

−|pε|+ zσ√
p2
ε − z2

σ

]
+

+ µ+
t2tun

πvF

ln 2Λ

1 + κ̃2
, (7)

where ∆σ ≡ ∆s + σκpF , κ̃ ≡ κ/vF , while pε and Λ
are the IR and UV momentum cutoffs, respectively,
unavoidable in an effective low-energy theory. Finally,
we have zσ = [σκ∆s − pF v2

F + ivF |∆σ|][v2
F + κ2]−1. We

note that the induced chemical potential depends weakly
on the UV momentum cutoff Λ, however, this term can
be absorbed into a redefinition of the initial chemical
potential µ of the NW. Our results are fully consistent
with calculations performed in Ref. [15] in the limit
∆s = 0, namely when the substrate is a purely triplet SC.

To find the induced SC gap for the Hamiltonian in
Eq. (6) we linearize its spectrum around the two different
Fermi momenta emerging due to the non-zero induced
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spin-orbit coupling. We thus obtain25:

∆ind
eff = min

σ=±

∣∣∣∣∆ind
s −mκind

(
λind − σ

√
(λind)2 + 2µind

m

)∣∣∣∣√
1 + (κind)2

(λind)2+ 2µind

m

.

(8)

To test the formation of a topological phase in
the NW we check first that the induced effective gap
value ∆ind

eff is non-zero, and second, that the Hamil-
tonian (6) has a localized zero-energy solution. The
underlying superconductor is topological when ∆s <
κpF 26 and the NW if |∆ind

s | < |κindpind
σ0
| with pind

σ0
=

m

(
λind − σ0

√
(λind)2 + 2µind

m

)
is the corresponding ef-

fective Fermi momentum in the wire, obtained by tak-
ing into account also non-zero Rashba spin-orbit coupling
λind and the corresponding split in the band structure.
σ0 is the value of σ that minimizes the induced gap ∆ind

eff .
As we will show below, the most important factor in

obtaining different topological phases in the wire and in
the substrate is the difference between |pind

σ0
| and pF . The

former depends only weakly on pF (see Fig. A1 in Ap-
pendix A), but very strongly on µ, which can thus be
used as a ”topological knob”.

The induced chemical potential of the NW µind is also
affected by the substrate, and depends linearly on the
initial chemical potential of the NW µ (see Eq. (7)).

To understand the mechanisms behind the induced
phase transition, in Fig. 2, we plot |∆ind

s |/|κind| as a func-
tion of ∆s in the substrate, normalized in units of κ in
the substrate. The substrate topological phase transition
takes place at ∆s/κ = pF , the Fermi momentum of the
substrate, marked by the vertical black dashed line in the
plot. Note the interesting discontinuity at ∆s/κ = pF ,
we are going to discuss it in more detail in what follows.

The critical ∆s in the substrate corresponding to the
topological phase transition in the NW can be deter-
mined by finding the points on this graph for which
|∆ind

s |/|κind| = |pind
σ0
|. The dependence of |pind

σ0
| on ∆s

in the substrate is depicted in Fig. 2 by the dashed red
lines corresponding to three different chemical potentials
in the NW. Note that |pind

σ0
| is almost independent of ∆s,

except for small jump at κpF , its main variation is with
µ. The critical values at which the NW becomes topo-
logical are obtained by taking the intersection points of
the two graphs, |∆ind

s |/|κind| and |pind
σ0
| (see Fig. 2). We

see that by varying µ in the NW we can tune the in-
tersection points and thus the critical ∆s for which the
NW becomes topological and make it smaller or larger
than the one in the substrate. A very interesting point
to make is that for values of µ yielding an intersection
point inside the discontinuity, the two critical ∆s’s, for
the NW and the substrate, are identical.

Thus, we can see that by tuning µ in the NW we
can tune the transition such that we obtain a topolog-
ical phase in the NW, associated with a trivial phase in

μ = 0.25

μ = 0.75

μ = 1.5

0.6 0.8 Δs1/κ<pF Δs2/κ=pF Δs3/κ>pF 1.4 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Δs/κ

|Δ
si
n
d
/κ
in
d
|

FIG. 2. (Color online) The ratio of induced pairing parame-
ters |∆ind

s /κind|, as a function of ∆s/κ (blue lines). The black
dashed vertical line marks the topological phase transition in
the substrate. The red dashed lines describe the dependence
of |pind

σ0 | on ∆s for three different values of the chemical po-
tential in the NW. For each value of µ we have indicated the
intersection points corresponding to the values of the critical
∆s in the substrate which would yield a topological phase
transition in the NW. Note that the critical ∆s of the NW
can be smaller, larger or equal to that of the substrate. We
have set M = 1.5,κ = 2.5, pF = 1.1, and ttun = 0.5.

the SC. From the above discussion we can conclude that
obtaining such a phase is quite a generic feature as long
as, in the first place, one can tune pind

σ0
independently of

pF . Moreover, pind
σ0

depends quite strongly on the chem-
ical potential in the NW, and for our chosen parameters

we can approximate |pind
σ0
| ∝

√
µind ∝ √µ. Thus, except

for the very peculiar and most likely improbable situa-
tion in which |∆ind

s |/|κind| = ∆s/κ, and pind
σ0

= pF , one
would be able to generate the unusual phases with differ-
ent topological properties for the NW and the substrate.

As mentioned above, the second necessary ingredient
to obtain different topological phases in the NW and the
substrate is that the discontinuity in the |∆ind

s |/|κind|
does not cover the entire range of achievable physical val-
ues for pind

σ0
. Unfortunately it is hard to predict its exact

dependence on the parameters of the system analytically,
but a simple numerical analysis using Eq. (7) from the
main text allows to extract its asymptotic behavior. We
have found that the absolute value of the jump is almost
exactly given by 2/κ, with the larger κ, the more precise
the estimation. Thus increasing the triplet pairing in the
substrate may also increase the range in which the NW
is topological while the substrate is not.

An interesting note to make is that, by examining
Fig. 2, we can see that when the substrate is in a topo-
logical regime (i.e. on the left side of the dashed line),
none of the pairings in the NW is favored (mathemat-
ically speaking, |∆ind

s /κind| ≈ ∆s/κ). However, in the
trivial regime (i.e. on the right side of the dashed line)
we can infer from the slope of the curve that inducing
singlet pairing is more favorable than triplet one, and
thus we would intuitively expect a trivial phase in the
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SC NW
δ = +2 trivial topological
δ = +1 trivial trivial
δ = −1 topological topological
δ = −2 topological trivial

TABLE I. The four possible topological phases for the NW-SC
system.

wire in this range. However, as it turns out, pind
σ0

, and

not |∆ind
s /κind| is the most important knob for tuning

the phase transition of the NW, and it is its variation
that allows us to obtain the non-trivial combination of
phases discussed above.

In what follows we construct a phase diagram captur-
ing the topological character of both the SC and the NW.
We emphasise that we do not study topological proper-
ties of the system ”substrate + nanowire” as a whole,
but we study them separately, showing both simultane-
ously on the phase diagrams. This can be achieved by
combining the Z2 topological index for the NW and the
Z2 index for the substrate into a global topological index
δ as follows. The topological character of each system is
considered separately, by means of a standard criterion
mentioned above, i.e. the sign of ∆s − κpF shows the
nature of a given phase. We combine two criteria into
one by summing them up and introducing factors 3/2 for
the substrate and 1/2 for the wire, solely for convenience,
to distinguish the case of topological substrate and triv-
ial nanowire from that of trivial substrate and topological
nanowire (otherwise the sum of topological indices would
give 0 in both cases). This combined index δ allows to
discriminate between all four different combinations of
phases we can possibly expect in our setup, and is thus
given by:

δ =
3

2
sgn (∆s − κpF ) +

1

2
sgn

(
|κindpind

σ0
| − |∆ind

s |
)
. (9)

δ can take four different values, corresponding to the four
possible phases of the NW-SC systems; these values and
the corresponding phases are summarized in Table I. The
most exciting phase corresponds to δ = +2, for which a
NW can attain a topological phase when proximitized by
a trivial SC.

In Fig. 3 we plot the value of the topological index
δ as a function of ∆s (more precisely as a function of
∆s

κ − pF ), and of µ, when all the other parameters of
the model are fixed. We note the formation of all the
four possible phases that could be realized in this setup.
First two combinations were known and studied before:
”trivial substrate + trivial nanowire” (the yellow phase
with δ = +1 in Fig. 3) and ”topological substrate +
topological nanowire” (the light blue phase with δ = −1
in Fig. 3). The main observable signature of the lat-
ter combination is the local density of states due to the

δ=-2 δ=-1 δ=+1 δ=+2

FIG. 3. (Color online) The phase diagram of a 1D metallic
NW deposited on top of a 2D SC substrate. We plot the value
of the topological index δ defined in Eq. (9) as a function
of ∆s

κ − pF in the substrate, and of µ in the NW. We note
that all the four possible phases corresponding to δ = ±1,±2
can form. The region with δ = +2 (denoted in red) is the
most interesting, and corresponds to a topological phase of
the NW induced via the proximity of a trivial SC. The black
dashed line marks the bulk topological phase transition for
the substrate. We have set pF = 1.1,M = m = 1.5,κ = 2.5,
and ttun = 0.5.

formation of Majorana zero modes at the ends of the
nanowire and at the boundary of the substrate. The
other two combinations that we discovered and described
in our paper correspond to having ”topological substrate
+ trivial nanowire” (deep blue phase with δ = −2 in
Fig. 3) and ”trivial substrate + topological nanowire”
(red phase with δ = +2 in Fig. 3). In the former case
Majorana bound states will appear solely at the bound-
ary of the substrate, whereas in the latter combination
they will form only at the ends of the nanowire. For any
set of parameters corresponding to this phase, we can
demonstrate that there is a doubly-degenerate localized
zero-energy solution, confirming the topological charac-
ter of the NW. Due to the presence of TRS these Majo-
rana bound states form protected Kramers pairs which
are robust to non-magnetic disorder.

III. LATTICE MODEL

Hereinafter, we consider a tight-binding model for the
system described above. Thus we model the SC substrate
as a square lattice of size Wx×Wy, and the NW as a wire
of length L lying on top of it, and having the same lattice
constant. The electrons can tunnel between each site of
the NW and the corresponding site in the SC substrate
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δ=-2 δ=-1 δ=+1 δ=+2

FIG. 4. (Color online) The phase diagram of a 1D NW of
length L = 151 deposited on top of a 201 × 51 2D SC sub-
strate. We plot the combined topological index δ, as defined
in Table I, as a function of ∆s and µNW (in units of t, which
we set to 1). The topological character of the NW is obtained
by calculating the MP of the lowest-energy states (with a
cutoff at 0.9). The dashed line at ∆s ∼ 0.86t marks the bulk
topological phase transition. We set µSC = 3,∆t = 0.5 and
ttun = 2 .

(see Fig. 1). The tight-binding Hamiltonian is given by

HTB =
∑

r∈SC,σ
−µSCΨ†rσΨrσ + σ∆sΨrσΨr,−σ

− t
∑

r∈SC,σ

(
Ψ†rσΨr+x,σ + Ψ†rσΨr+y,σ

)
+ ∆t

∑
r∈SC,σ

ΨrσΨr+x,σ + iσΨrσΨr+y,σ

+
∑

x∈NW,σ
−µNWc

†
xσcxσ − tc†xσcx+1,σ

+ ttun

∑
x∈NW,σ

Ψ†x,y=0,σcx,σ + H.c. (10)

Here ∆s and ∆t stand for the singlet and triplet pairing
amplitudes in the substrate respectively, σ =↑, ↓, x and
y are the unit vectors of the 2D SC lattice, and the lattice
constant a is set to unity. The chemical potentials in the
substrate and in the wire are denoted as µSC and µNW,
t is the hopping parameter assumed to be the same in
the SC and NW, and ttun is the tunnelling amplitude
between the SC and the NW.

We explore the phase diagram of this system by per-
forming a numerical diagonalization using the MatQ
code27 (see Fig. 4). Same as before, we plot a combined
topological index describing the global character of the
system (see Table I). We test the topological character
of the NW and the formation of Majorana fermions in
the NW using the Majorana polarization (MP).28–32 The
topological character of the bulk SC is also calculated

numerically and the corresponding bulk phase transition
is indicated by a vertical line at ∆s ∼ 0.86t. First we
note that the resulting phase diagram agrees qualitatively
with the one obtained using the continuum model in the
previous section (see Fig. 3). As before, the sought-for
interesting phase is the one for which the NW is topologi-
cal, whereas the substrate is trivial (δ = 2). Such a phase
can be identified here also (depicted in red). Moreover,
we recover a region in which the NW is trivial while the
bulk SC is topological (δ = −2, depicted in blue).

It is also important to mention that there are upper
and lower boundary values of the chemical potential lim-
iting the existence of the topological regions (such as
µ = 2 for ∆s = 0 in Fig. 4). Such boundaries are the
natural consequence of the finite bandwidth of the lattice
model, and cannot be present for the continuum model
studied above.

Note that numerical errors and a significant amount of
noise may occur close to the bulk phase transition line
at ∆s ∼ 0.86t due to the fact that the SC gap value
becomes very small, and therefore the localization length
of Majorana modes becomes comparable to the size of
the wire L in this regime.

IV. THE EFFECTS OF SPIN-ORBIT
COUPLING IN THE SUBSTRATE

Another important aspect of our proposal that needs
to be taken into account is the fact that triplet-pairing
SCs are likely to also exhibit a strong spin-orbit (SO) cou-
pling. Thus it is worth discussing its effects on the topo-
logical phase diagrams. Intuitively, increasing the SO
coupling is expected to decrease the localization length
of Majorana bound states, and thus increase the size of
the induced NW topological regions.

In Fig. 5 we show how the phase diagram presented in
Fig. 4 changes when the substrate has a finite Rashba
spin-orbit coupling. We introduce the latter into our
model Hamiltonian in Eq. (10) as follows

HTB =
∑

r∈SC,σ
−µSCΨ†rσΨrσ + σ∆sΨrσΨr,−σ

− t
∑

r∈SC,σ

(
Ψ†rσΨr+x,σ + Ψ†rσΨr+y,σ

)
+ λSC

∑
r∈SC,σ

[
−σ
(

Ψ†rσΨr+x,−σ −ΨrσΨ†r+x,−σ

)
+i
(

Ψ†rσΨr+y,−σ −ΨrσΨ†r+y,−σ

)]
+ ∆t

∑
r∈SC,σ

ΨrσΨr+x,σ + iσΨrσΨr+y,σ

+
∑

x∈NW,σ
−µNWc

†
xσcxσ − tc†xσcx+1,σ

+ ttun

∑
x∈NW,σ

Ψ†x,y=0,σcx,σ + H.c.,

where we introduced the spin-orbit coupling constant
λSC. In Fig. 5, λSC is set to 0 on the upper panel, and to
0.2 and 0.4 in the middle and lower panels respectively.
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FIG. 5. (Color online) The phase diagrams of a 1D metal-
lic NW deposited on top of a 2D SC substrate with a finite
Rashba SO coupling (λ = 0.2 and λ = 0.4 in the middle
and lower panels respectively) and in its absence (the upper
panel). We plot the MP as a function of ∆s and the chemical
potential µNW of the NW (in units of the hopping parame-
ter t which we set to 1 in our simulations). A MP value of
1 corresponds to the formation of Majorana Kramers pairs
at the ends of the wire, and 0 to a trivial phase. The black
dashed lines at ∆s ∼ 0.86t (upper), ∆s ∼ 0.74t (middle) and
∆s ∼ 0.63t (lower) mark the bulk topological phase transi-
tion. We set µSC = 3,∆t = 0.5 and ttun = 2.

First, we note that the phase in which the NW is topolog-
ical while the SC is trivial is achieved for a wider interval
of parameters. In particular, Majorana Kramers pairs
can form for lower values of the chemical potential µNW

of the NW. This can be intuitively understood by noting

that larger spin-orbit couplings shorten the localization
lengths for Majorana bound states and thus make them
more stable.

We note also that the critical ∆s associated with the
bulk phase transition (the black dashed lines in Fig. 5)
is reduced in the presence of a finite SO coupling. To
illustrate qualitatively this fact, we write the supercon-
ducting gap closing conditions established in Ref. [26] in
the following form:

[−µSC − 2t (cos p0x + cos p0y)]
2

= λ2
SC

(
sin2 p0x + sin2 p0y

)
∆2
t

(
sin2 p0x + sin2 p0y

)
= ∆2

s,

where (p0x, p0y) is a set of points in the Brillouin zone
where the SC gap closes. The first equation above defines
the Fermi surface, whereas the second one is responsible
for the gap closing. With a simple substitution we arrive
at:

∆2
t [−µSC − 2t (cos p0x + cos p0y)]

2
= λ2

SC∆2
s

One can easily see that to achieve a gap closing point we
need a smaller ∆s in the presence of a finite SO coupling.

V. THE EFFECTS OF DISORDER

Another important issue to address is disorder. While
reasonable amounts of potential disorder are not mod-
ifying considerably any key properties of conventional
superconductors,20 they may become important in un-
conventional superconductors not least due to formation
of Shiba states and Shiba bands.21 The latter might lead
to a significant gap renormalization in the substrate pro-
vided disorder potential is sufficiently strong, namely,
greater than the hopping parameter t. However, in case
of weak disorder impurity-induced states form very close
to the superconducting gap edge,22 and thus modify it
only slightly while forming impurity-induced bands. Dis-
order could be considered along the same lines as e.g. in
Refs. [31],[32]. In this paper we model it as a random
variation of the values of the chemical potentials µNW
and µSC with an intensity of 2% around their average
values, both in the substrate and in the nanowire. We
present the corresponding disordered phase diagram in
Fig. 6. As expected, the phase diagram is noisier than
its disorder-free analog in the upper panel of Fig. 5, in
other words, there are more regions with Majorana po-
larization smaller than 1. Provided the system size is
fixed, stronger disorder introduces too much noise into
the phase diagram, eventually destroying the boundaries
of topological phases. This happens due to the fact that
it becomes easier for Majorana bound states to hybridize
with each other in the presence of disorder.

VI. DISCUSSION

In order to realize our proposal, we need a SC substrate
with a mixed s+p-wave order parameter. Although there
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FIG. 6. (Color online) The same phase diagram as in the
upper panel of Fig. 5 in the presence of disorder. The values
of parameters are the same as in Fig. 4.

are some indirect evidences of a mixed order parameter
in certain 2D TRS Pb-based superconductors,33,34 a 2D
substrate with such property has not yet been fully es-
tablished. Other options include SC doped topological
materials35 or certain materials like Sr2RuO4 which are
believed to be triplet paired SCs.36,37 Recent experimen-
tal advances38,39 offer yet another possible route to re-
alize mixed even and odd parity superconductivity via
s-wave SC – 3D topological insulator heterostructures.

As discussed above, in order to observe different topo-
logical phases in the NW and in the substrate the most
important condition is to generate a Fermi momentum
mismatch. This can be achieved by tuning independently
the chemical potentials in the wire and in the substrate.
However, this can be experimentally challenging. Fortu-
nately, a similar result can be obtained also by tuning

a common chemical potential, if the band structure of
the NW and the substrate are different, e.g. by choosing
materials with very different effective masses, as shown
in Fig. A2 of Appendix A.

In this work we have focused on the case of a TRS
p-wave, also known as helical p-wave. However, our
proposal may apply also to a TRS-breaking p-wave SC,
often referred to as ”chiral p-wave”. The latter gives
rise to similar topological phase diagrams (see Appendix
B). There is nevertheless, an important difference in
this case – the Majorana bound states pairs are not
protected by TRS. However, we can establish that a
magnetic mirror symmetry,40–42 a weaker crystalline
symmetry, can protect the Majorana Kramers pairs.

VII. CONCLUSION

We have demonstrated that a 1D nanowire proxim-
itized by a 2D superconductor with mixed singlet and
triplet pairing can enter a topological phase supporting
Majorana Kramers pairs, even when the superconduct-
ing substrate is topologically trivial. More generally, we
have shown that the topological phase diagram for the
coupled system exhibits four different phases, such that
both the SC substrate and the NW can be independently
tuned in either a topological or a trivial phase.

Although we focus on a specific system, our findings
are quite general and should be applicable also to var-
ious other configurations and dimensionalities. This is
because the underlying physical mechanism relies on in-
ducing an effective Fermi momentum in the wire different
from that in the substrate.
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FIG. A2. (Color online) The phase diagram of a 1D metallic NW deposited on top of a 2D SC substrate. We plot the value of
the topological index δ defined in Eq. (9) of the main text as a function of ∆s, and of the chemical potential µ, which is taken
to be the same for the NW and the substrate. We note that all the four possible phases corresponding to δ = ±1,±2 can form
due to the Fermi momenta mismatch occurring because of different masses of quasiparticles in the SC and the NW. We have
set M = 1.5,m = 9,κ = 2.5, and ttun = 0.5.

Appendix B: Non-TRS p-wave

As we have already discussed in the main text, not only time-reversal-symmetric (TRS) s + p–mixtures in the
substrate may induce Majorana pairs at the ends of a proximitized NW. Below we consider a metallic nanowire on
top of a substrate with a TRS-breaking s+ p–wave pairing described by the following Hamiltonian:

HTB =
∑

r∈SC,σ
−µSCΨ†rσΨrσ + σ∆sΨrσΨr,−σ − t

∑
r∈SC,σ

(
Ψ†rσΨr+x,σ + Ψ†rσΨr+y,σ

)
−∆t

∑
r∈SC,σ

(iΨrσΨr+x,−σ + ΨrσΨr+y,−σ) +
∑

x∈NW,σ
−µNWc

†
xσcxσ − tc†xσcx+1,σ + ttun

∑
x∈NW,σ

Ψ†x,y=0,σcx,σ + H.c. (B1)

We demonstrate in Fig. A3 that even when the time reversal symmetry is broken in the substrate in the presence of
chiral p-wave pairing, Majorana pairs still form at the ends of the wire, and a phase diagram similar to that presented
in Fig. 4 of the main text can be constructed. For a non-TRS p-wave SC these pairs cannot anymore be referred
to as Kramers pairs, since it is no longer the TRS that protects them. However, they are protected by a different
symmetry denoted ’magnetic mirror symmetry’ (a weaker crystalline symmetry). For details we refer the reader to
Refs. [40–42].

Appendix C: Derivation of the effective Hamiltonian for the nanowire obtained by integrating out the
s+ p-wave substrate

1. Model

We consider a 1D nanowire (NW) with Rashba spin-orbit coupling on top of an s+p-wave 2D superconductor (SC).

Writing the modified Bogoliubov-de Gennes Hamiltonian for the SC in the Nambu basis
{

Ψp↑,Ψp↓,Ψ
†
−p↓,−Ψ†−p↑

}T

we get:

HSC =

 ξp 0 ∆s iκp−
0 ξp −iκp+ ∆s

∆s iκp− −ξp 0
−iκp+ ∆s 0 −ξp

 , ξp =
p2

2M
− p2

F

2M
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FIG. A3. The phase diagram of a 1D metallic NW deposited on top of a 2D SC substrate with a mixed s-wave and TRS-
breaking p-wave pairing. Axes and color codes are the same as in Fig. 5. The black dashed line at ∆s ∼ 0.86t marks the bulk
topological phase transition. We set µSC = 3,∆t = 0.5 and ttun = 2.

where pF is the Fermi momentum, p± = px ± ipy, Ψpσ creates an electron with momentum p and spin σ =↑, ↓. The
singlet order parameter is denoted ∆s, whereas the triplet pairing is denoted κ. We write the Hamiltonian of the NW

in a similar Nambu basis
{
cpx↑, cpx↓, c

†
−px↓,−c

†
−px↑

}T

:

HNW =

ηpx 0 0 0
0 ηpx 0 0
0 0 −ηpx 0
0 0 0 −ηpx

 , ηpx =
p2
x

2m
− µ

where µ is the chemical potential. We assume that tunnelling between the NW and the SC is allowed, and that the
momentum along x axis is conserved. The corresponding Hamiltonian is given by

HT = ttun

∑
σ

∫
dp

(2π)2

[
Ψ†pσcpxσ + c†pxσΨpσ

]
In what follows we study how the interplay between different types of pairing in the SC affects the induced super-

conductivity in the NW.

2. Path integral approach

We start by writing the partition function in terms of the path integral:

Z =

∫
Dc†pxDcpx

∫
DΨ†pDΨp e

i(S0
NW+S0

SC+ST), (C1)

where S0
NW,S0

SC and ST are the actions for the NW, SC and respectively for the NW-SC tunneling:

S0
SC =

1

2

∫
dp

(2π)2

dω

2π
Ψ†p
[
G0

SC

]−1
Ψp

S0
NW =

1

2

∫
dpx
2π

dω

2π
c†px
[
G0

NW

]−1
cpx

ST =
1

2

∫
dp

(2π)2

dω

2π

[
Ψ†pHTcpx + c†pxH

†
TΨp

]
.

We use a notation similar to the previous subsection, however here we keep in mind that cpx ≡(
cpx↑, cpx↓, c

†
−px↓,−c

†
−px↑

)T

and Ψp ≡
(

Ψp↑,Ψp↓,Ψ
†
−p↓,−Ψ†−p↑

)T

. The bare Green’s functions in energy-momentum
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space can be written as

G0
SC(ω,p) = [ω + i0−HSC(p)]

−1
, G0

NW(ω, px) = [ω + i0−HNW(px)]
−1
.

Hereinafter we integrate out the superconducting degrees of freedom and we obtain an effective action for the NW,
as well as its effective Green’s function.

First, we rewrite the path integral in Eq. (C1) as

Z =

∫
Dc†pxDcpxe

iS0
NW

∫
DΨ†pDΨp e

i(S0
SC+ST),

and then we perform the inner integration over the Grassmann variables Ψ†p and Ψp:∫
DΨ†pDΨp e

i(SSC+ST) ≡
∫
DΨ†pDΨp exp

{
1

2

∫
dp

(2π)2

dω

2π
Ψ†p
[
G0

SC

]−1
Ψp +

[
Ψ†pHTcpx + c†pxH

†
TΨp

]}
It is known that for a given complex-valued matrix A and Grassmann vectors ζ and ξ† the integral∫

Dη†Dη exp
[
η†Aη + η†ζ + ξ†η

]
= detA · exp

[
−ξ†A−1ζ

]
.

To obtain a similar expression we denote A ≡ i
2

[
G0

SC

]−1
and ζ = i

2HTcpnx , ξ
† = i

2c
†
pnx
H†T, and we get:

? = det

[
i

2

(
G0

SC

)−1
]
· exp

{(
− i

2
c†pnxH

†
T

)(
2

i
G0

SC

)(
i

2
HTcpnx

)}
=

= det

[
i

2

(
G0

SC

)−1
]
· exp

{
− i

2
c†pnxH

†
TG

0
SCHTcpnx

}
Before inserting this expression back into the partition function, we employ the fact that the functional determinant
is absorbed into the measure. Thus we have

Z ∝
∫
Dc†pxDcpxe

iS0
NW · exp

{
i

∫
dpx
2π

dω

2π
c†pnx

[
−1

2

∫
dpy
2π
H†TG

0
SCHT

]
cpnx

}
Finally, the effective action and Green’s function for the NW can be written as

SNW = S0
NW +

∫
dpx
2π

dω

2π
c†pnx

[
−1

2

∫
dpy
2π
H†TG

0
SCHT

]
cpnx

and

G−1
NW =

(
G0

NW

)−1 −
∫
dpy
2π
H†TG

0
SCHT

3. Effective Green’s function for the nanowire

As we have just demonstrated above, within the path integral formalism, integrating out the superconducting degrees
of freedom is equivalent to integrating the retarded Green’s function of the superconductor over py – the momentum
along the direction perpendicular to the axis of the NW. Therefore, we can write the ”perturbed” retarded Green’s
function of the NW in the following form:

GNW(ω, px) =

ω + i0−HNW(px)− t2tun

∑
py

G0
SC(ω, px, py)

−1

,

where we defined

G0
SC(ω, px, py) = [ω + i0−HSC(px, py)]

−1
.
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We start by rewriting the retarded Green’s function of the SC as G0
SC = 1

2

∑
σ=±

Gσ0 , where

Gσ0 (ω,p) = − 1

ξ2
p + (∆s + σκp)2 − ω2

(
1 iσe−iφp

−iσeiφp 1

)
⊗
(

ω + ξp ∆s + σκp
∆s + σκp ω − ξp

)
,

with p ≡
√
p2
y + p2

x and eisφp ≡ px+ispy
p (s = ±1). To integrate this function over py we linearize ξp around the Fermi

energy ξp = vF (p − pF ), where vF ≡ pF /m is the Fermi velocity. There are four different integrations to perform,
namely

Xσ
0 = −

∫
dpy
2π

1

ξ2
p + (∆s + σκp)2 − ω2

Xσ
1 = −

∫
dpy
2π

ξp
ξ2
p + (∆s + σκp)2 − ω2

Xσ
2 = −

∫
dpy
2π

eisφp

ξ2
p + (∆s + σκp)2 − ω2

Xσ
3 = −

∫
dpy
2π

ξp e
isφp

ξ2
p + (∆s + σκp)2 − ω2

We start by considering the case of px 6= 0 and we modify the integrand

−
∫
dpy
2π

(•)
ξ2
p + (∆s + σκp)2 − ω2

=

∣∣∣∣∣py = px sh q

∣∣∣∣∣ = − 1

v2
F + κ2

1

|px|

∫
dq

2π

ch q

(ch q +Aσ)2 + Ω2
σ

(•),

where

Aσ ≡
σκ∆s − pF v2

F

(v2
F + κ2)|px|

, Ωσ ≡

√
(∆σ

eff)
2 − ω2

|px|
√
v2
F + κ2

, ∆σ
eff ≡

|∆s + σκpF |√
1 + κ2/v2

F

(•) = 1, (•) = vF (|px| ch q − pF ), (•) =
px
|px|

1 + is sh q

ch q
, (•) = vF (|px| ch q − pF )

px
|px|

1 + is sh q

ch q

for X0, X1, X2 and X3 correspondingly. For the sake of simplicity, in what follows we consider only in-gap energies,
i.e. |ω| < ∆σ

eff , and we compute the zeroth integral

Xσ
0 =

1

v2
F + κ2

1

|px|
2

πΩσ
Im

[
Aσ + iΩσ√

1− (Aσ + iΩσ)2
arctg

−1 +Aσ + iΩσ√
1− (Aσ + iΩσ)2

]
.

We proceed with the 1st integral and we note that

Xσ
1 = −pF vFXσ

0 −
vF

v2
F + κ2

∫
dq

2π

ch2 q

(ch q +Aσ)2 + Ω2
σ

,

where the last integral has a logarithmic UV divergence. To calculate it we introduce a cutoff in the following way∫
dq

2π

ch2 q

(ch q +Aσ)2 + Ω2
σ

= lim
Λ→+∞

∫
dq

2π

ch2 q

(ch q +Aσ)2 + Ω2
σ

· Λ2

(ch q +Aσ)2 + Λ2
.

The integral can be done straightforwardly, and we obtain∫
dq

2π

ch2 q

(ch q +Aσ)2 + Ω2
σ

· Λ2

(ch q +Aσ)2 + Λ2
=

− 2

π

Λ2

Λ2 − Ω2
σ

{
1

Λ
Im

[
(Aσ + iΛ)2√

1− (Aσ + iΛ)2
arctg

−1 +Aσ + iΛ√
1− (Aσ + iΛ)2

]
−

− 1

Ωσ
Im

[
(Aσ + iΩσ)2√

1− (Aσ + iΩσ)2
arctg

−1 +Aσ + iΩσ√
1− (Aσ + iΩσ)2

]}
= ?
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We expand the expression above keeping only the leading terms in 1/Λ:

? =
2

πΩσ
Im

[
(Aσ + iΩσ)2√

1− (Aσ + iΩσ)2
arctg

−1 +Aσ + iΩσ√
1− (Aσ + iΩσ)2

]
+

1

π
ln 2Λ +O

(
1

Λ

)
Along similar lines we compute the second integral

Xσ
2 = − 1

v2
F + κ2

1

px

2

πΩσ
Im

[
1√

1− (Aσ + iΩσ)2
arctg

−1 +Aσ + iΩσ√
1− (Aσ + iΩσ)2

]
.

Note, that there is no dependence on the sign of s, even though it is present in the definition. The third integral can
be expressed in terms of the zeroth and the second ones:

Xσ
3 = vF (pxX

σ
0 − pFXσ

2 )

To obtain the integrals computed above in the limit of px = 0, we take the limit lim
px→0

(it is not difficult to see that

those limits exist). Finally, we write the retarded Green’s function integrated over py in terms of all the integrals
computed above:∫

dpy
2π

Gσ0 (ω,p) =

=

 ωXσ
0 +Xσ

1 iσ(ωXσ
2 +Xσ

3 ) ∆σX
σ
0 + σκ̃Xσ

1 iσ (∆σX
σ
2 + σκ̃Xσ

3 )
−iσ(ωXσ

2 +Xσ
3 ) ωXσ

0 +Xσ
1 −iσ (∆σX

σ
2 + σκ̃Xσ

3 ) ∆σX
σ
0 + σκ̃Xσ

1

∆σX
σ
0 + σκ̃Xσ

1 iσ (∆σX
σ
2 + σκ̃Xσ

3 ) ωXσ
0 −Xσ

1 iσ(ωXσ
2 −Xσ

3 )
−iσ (∆σX

σ
2 + σκ̃Xσ

3 ) ∆σX
σ
0 + σκ̃Xσ

1 −iσ(ωXσ
2 −Xσ

3 ) ωXσ
0 −Xσ

1

 ≡

≡ Xσ
0 σ0 ⊗ (ωτ0 + ∆στx) +Xσ

1 σ0 ⊗ (τz + σκ̃τx)− σXσ
2 σy ⊗ (ωτ0 + ∆στx)−Xσ

3 σy ⊗ (στz + κ̃τx). (C2)

where we denoted κ̃ = κ/vF and ∆σ ≡ ∆s + σκpF (not to confuse with ∆σ
eff).

Bringing together all the expressions calculated above we have:

Xσ
0 =

1

v2
F + κ2

2

πΩ̃σ
Im

 Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2



Xσ
1 = −pF vFXσ

0 −
vF

v2
F + κ2

 2

πΩ̃σ
Im

 (Ãσ + iΩ̃σ)2√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2

+
1

π
ln 2Λ



Xσ
2 = − 1

v2
F + κ2

2

πΩ̃σ
· px · Im

 1√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2


Xσ

3 = vF (pxX
σ
0 − pFXσ

2 ) ,

where tildes mean that the corresponding functions are taken at px = 1, i.e. Ãσ = Aσ(px = 1) and Ω̃σ = Ωσ(px = 1).

4. Studying the induced pairing

We now study the low-energy approximation for the NW. Following Ref. [15] we assume that its effective Hamiltonian
can be found as

Heff
NW = − [GNW(ω = 0, px)]

−1
,
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where we keep all the terms up to those linear in px. The induced singlet pairing is given by
(
Heff

NW

)
13

, whereas the

induced triplet pairing is defined by
(
Heff

NW

)
14

. It is easy to check that the corresponding symmetries are respected,
i.e. the singlet pairing term is even in px, whereas the triplet pairing term is odd.

We substitute all the functions in Eq. (C2) to obtain an effective low-energy Hamiltonian. The induced pairing
terms can be found as

∆ind
s =

t2tun

πvF
lim
px→0

∑
σ

1

|∆σ|
Im

∆σ − iσκ̃|∆σ|
1 + κ̃2

Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2


κind =

t2tun

πvF
lim
px→0

∑
σ

−σ
|∆σ|

Im

∆σ − iσκ̃|∆σ|
1 + κ̃2

1√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2


λind =

t2tun

πvF
lim
px→0

∑
σ

σ

|∆σ|
Re

 |∆σ| − iσκ̃∆σ

1 + κ̃2

1√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2



Note that the functions in square brackets are not analytical at px = 0, and therefore we must keep the limit sign and
we cannot just set px = 0. Numerically it means that we evaluate these functions for a very small non-zero value of
px. We define also a renormalized chemical potential

µind = µ− t2tun

2
lim
px→0

∑
σ

Xσ
1 =

= µ+
t2tun

πvF

 ln 2Λ

1 + κ̃2
+ lim
px→0

∑
σ

1

|∆σ|
Re

 |∆σ| − iσκ̃∆σ

1 + κ̃2

Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2

arctg
−|px|+ Ãσ + iΩ̃σ√
p2
x − (Ãσ + iΩ̃σ)2


In terms of the constants defined above we write an effective low-energy Hamiltonian for the NW:

Heff
NW =


p2x
2m − µ

ind iλindpx ∆ind
s iκindpx

−iλindpx
p2x
2m − µ

ind −iκindpx ∆ind
s

∆ind
s iκindpx −

(
p2x
2m − µ

ind
)

−iλindpx

−iκindpx ∆ind
s iλindpx −

(
p2x
2m − µ

ind
)

 , (C3)

or equivalently

Heff
NW =

(
p2
x

2m
− µind

)
σ0 ⊗ τz − λind pxσy ⊗ τz + ∆ind

s σ0 ⊗ τx − κind pxσy ⊗ τx.

To find the gap for the Hamiltonian in Eq. (C3) we linearize its spectrum around two different Fermi momenta
emerging due to non-zero induced spin-orbit coupling value:

∆ind
eff = min

σ

∣∣∣∆ind
s −mκind

(
λind − σ

√
(λind)2 + 2µind/m

)∣∣∣√
1 + (κind)2

(λind)2+2µind/m
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