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CEA CNRS, Orme des Merisiers, 91190 Gif-sur-Yvette Cedex, France
(Dated: November 26, 2018)

We provide here a new and exact formalism to describe the formation of end, edge or surface states
through the evolution of impurity-induced states. We propose a general algorithm that consists of
finding the impurity states via the T-matrix formalism and showing that they evolve into boundary
modes when the impurity potential goes to infinity. We apply this technique to obtain Majorana
states in 1D and 2D systems described by the Kitaev model with point-like and respectively line-like
impurities. We confirm our exact analytical results by a numerical tight-binding approach. We argue
that our formalism can be applied to other topological models, as well as to any model exhibiting
edge states.

The discovery of quantum physics in the beginning
of the twentieth century significantly accelerated the
progress in solid state physics. One of the oldest and
challenging problems in this field is taking into account
the presence of boundaries. As Pauli once said, ”God
made the bulk; surfaces were invented by the devil” [1].

Various methods were developed to treat boundaries.
One of the most common techniques is the numerical di-
agonalization of a tight-binding Hamiltonian with open
boundary conditions [2, 3]. Analytically, however, the
formation of boundary modes is usually studied by solv-
ing the Schrödinger equation with specific boundary con-
ditions [4]. The latter is sometimes cumbersome and of-
tentimes requires making specific approximations which
decrease the generality of the obtained wavefunctions of
the boundary modes. Less common techniques rely on
the use of boundary Green’s function [5–7] and the bulk-
boundary correspondence [8].

Here we propose a completely novel, general and exact
technique to obtain the energies and the wavefunctions of
boundary modes in systems of arbitrary dimensions. In-
stead of solving the problem of a finite-size system with a
desired boundary, we suggest to consider an infinite sys-
tem with a localized impurity which follows the shape of
the boundary. We subsequently obtain the correspond-
ing impurity-induced states using the T-matrix formal-
ism [9]. As intuitively expected, we show that by taking
the impurity potential to infinity we recover the forma-
tion of end, edge or surface states, depending on the di-
mension of the system.

For the sake of clarity, we exemplify our proposal by
focusing on the formation of Majorana end modes in a Ki-
taev chain [10] and of Majorana chiral edge states in a 2D
system described by the spinless Kitaev model [11–13];
we show that the analytical T-matrix formalism is en-
tirely consistent with a numerical tight-binding calcula-
tion. However, our technique can as well be applied other
systems supporting both topological and trivial bound-
ary modes, such as models combining s-wave supercon-

1D - small impurity: bound state

1D - large impurity: two disconnected systems with end states

2D - large impurity: two disconnected systems  
with edge states

Figure 1. A simple exemplification of a 1D system with a lo-
calized impurity: when the impurity potential goes to infinity
this is equivalent to two disconnected semi-infinite wires. Sim-
ilarly, a 2D infinite system with a line-like infinite-potential
impurity is equivalent to two disconnected half-planes.

ductivity, spin-orbit coupling and a Zeeman field [14, 15],
topological insulators [16, 17], graphene [18] and Weyl
and Dirac materials [19, 20]; we have also checked the
validity of our formalism for these systems [21]. Our re-
sults are in agreement with previous work [22] proposing
impurities as local probes of topology in band insulators.

We thus suggest the following four-step algorithm for
finding end (edge, surface) states:

1. Take an infinite 1D (2D, 3D) system

2. Introduce a point-like (line-like, plane-like) scalar
impurity described by a delta-function potential

3. Use the T-matrix formalism to find the energies
and wavefunctions of the impurity-bound states

4. Formally set the impurity potential to infinity to
recover the formation of boundary modes.
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T-matrix formalism. We start by presenting briefly
the theoretical framework required to implement this al-
gorithm. We denote the momentum-space Hamiltonian
of a given system Hp, and we define the unperturbed
Matsubara Green’s function as follows: G0(p, iωn) ≡
(iωn −Hp)

−1
, where ωn denote Matsubara frequencies.

In the presence of an impurity Vimp(r) the latter is mod-
ified to

G(p1,p2, iωn) = G0(p1, iωn)δ(p1 − p2) (1)

+ G0(p1, iωn)T (p1,p2, iωn)G0(p2, iωn),

where the T-matrix T (p1,p2, iωn) describes the cumu-
lated effect of all-order impurity-scattering processes
[9, 23]. For the particular case of a delta-function im-
purity Vimp(r) = V δ(x), the form of the T-matrix in 1D
is momentum independent and can be written as [9, 24–
27]:

T (p1, p2, iωn) = [I− V ·
∫

dp

2π
G0(p, iωn)]−1 · V (2)

while in 2D we have

T (p1x, p1y, p2x, p2y, iωn) = (3)

= δ(p1y − p2y)[I− V ·
∫
dpx
2π

G0(px, p1y, iωn)]−1 · V

Note that this is independent of p1x and p2x (due to the
fact the impurity is a delta potential in the x direction,
and reversely, that it is a delta function in p1y−p2y since
the impurity is independent of position in the y direction.

In what follows we will use this formalism at zero
temperature to calculate the retarded Green’s function
G(p1,p2, E) obtained by the analytical continuation of
the Matsubara Green’s function G(p1,p2, iωn) (i.e. by
setting iωn → E + iδ, with δ → +0).

1D Kitaev chain. We start by considering an infinite
spinless Kitaev chain described by the following tight-
binding Hamiltonian

HTB =
∑
i

−µc†i ci −
(
tc†i ci+1 −∆ci ci+1 + H.c.

)
(4)

where c†i (ci ) are creating (annihilating) operators on the
i-th site, t is the hopping amplitude, µ denotes the chem-
ical potential and ∆ > 0 is the superconducting pairing
amplitude. We set the lattice constant a as well as ~ to
unity. In momentum space the Hamiltonian in Eq. (4)
becomes

H1D
p =

(
−µ/2− t cos p i∆ sin p
−i∆ sin p µ/2 + t cos p

)
. (5)

We introduce a delta-like potential impurity into the
chain, localized at x = 0:

Vimp(x) = Uδ(x)

(
1 0
0 −1

)
≡ Uδ(x)τz. (6)

We solve the problem of the impurity Yu-Shiba-Rusinov
(YSR) states [28–30] exactly using the T-matrix formal-
ism described above (see also Refs. [31–33]). In momen-
tum space the unperturbed retarded Green’s function is

given by G0(p,E) =
[
E + i0−H1D

p

]−1
, and the corre-

sponding real-space Green’s function

G0(x,E) =

∫
dp

2π
G0(p,E)eipx

We take µ = 0 and we compute analytically the real-
space Green’s function at x = 0 which allows us to de-
termine the energy of the YSR states as a function of the
impurity potential:

G0(0, E) =

(
EX0(0) 0

0 EX0(0)

)
(7)

with

X0(0) = − 1√
t2 − E2

1√
∆2 − E2

. (8)

The energies of the impurity bound states can be ob-
tained by calculating the poles of the T-matrix:

1± U 1√
t2 − E2

E√
∆2 − E2

= 0 (9)

This equation yields a pair of spurious solutions outside
the gap, and a pair of YSR-like solutions inside the gap:

E± =

±

√
1

2

[
t2 + ∆2 + U2 −

√
(t2 + ∆2 + U2)

2 − 4t2∆2

]
(10)

When U → 0 these solutions approach the edges of the
gap, i.e. E± → ±∆ (see Fig. 2), whereas when U → ∞
these solutions decay as

E± = ± ∆

U/t
. (11)

We can also obtain the wavefunctions for the YSR
states associated with the impurity using Refs. [31–33]:

Ψ(x) ∝ G0(x,E) · τz ·Ψ(0),

where Ψ(0) = (1 0)T (for E = E+) and Ψ(0) = (0 1)T

(for E = E−) are the null-space vectors of the matrix
I2 − Uτz · G0(0, E).

In the case of an infinite potential the energies of the
bound states E± → ±0. In what follows we consider that
x can only be an integer multiple of the lattice constant a,
i.e. x = na, with n ∈ Z. This is a fair restriction taking
into account that we work within a lattice model. This
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Figure 2. The energies of YSR states given by Eq. (10) plotted
as a function of the impurity strength U (in the units of t, the
hopping parameter). The black dashed line corresponds to
U/t = 1, for which E/t ≈ 0.28. The energies asymptotically
approach zero when U → ∞ marking the metamorphosis of
YSR states into Majorana end states. We have set µ/t = 0,
∆/t = 0.4.

allows us to obtain an exact form for the two zero-energy
wavefunctions:

Ψ1(x) ∝
(

1
− sgnx

)
e−

1
2 ln( 1+∆/t

1−∆/t )|x| sin(
π|x|

2
) (12)

Ψ2(x) ∝
(
− sgnx

1

)
e−

1
2 ln( 1+∆/t

1−∆/t )|x| sin(
π|x|

2
). (13)

We note that by combining states 1 and 2 we get left and
right Majorana bound states, since the factors 1±sgn x

2 en-
sure that the WF ’lives’ either only on the left side or on
the right side of the impurity. The Majorana coherence

length is given by ξ =
[

1
2 ln

(
1+∆/t
1−∆/t

)]−1

, and diverges

as t/∆ when ∆ → 0. Such behavior is expected since
the Majorana bound states become more and more delo-
calized when reducing the value of the superconducting
order parameter.

We confirm these findings numerically by diagonaliz-
ing a 1D Kitaev chain with an impurity using the MatQ
code [34], and by plotting the Majorana polarization
(red line) and the local DOS (black dashed line) for the
impurity-bound states (see Fig. 3). The energy of the
impurity-bound states goes to zero with increasing the
impurity strength, for instance we get E ≈ 0.28 and
E ≈ 0 when setting U/t = 1 and U/t = 100 respectively
(the other parameters are µ/t = 0 and ∆/t = 0.4). The
Majorana polarization [35, 36] differs from the density of
states (DOS) for small impurities (see Fig. 3a) but they
become equal (up to a sign) when the impurity potential
goes to infinity (Fig. 3b). This indicates [35, 36] the
formation of Majorana states at the ends of the two
new systems obtained by cutting the original system in
two disconnected halves. Note the perfect agreement
between the numerical and the analytical techniques:
the one-to-one correspondence for the energies of the

40 60

x

a)U/t=1, E=0.28

40 60

x

b)U/t=100, E=0

Figure 3. The local DOS (black dashed lines) and the Ma-
jorana polarization (red solid lines) plotted as a function of
position for U/t = 1, E/t ≈ 0.28 (left panel), and U/t = 100,
E/t ≈ 0 (right panel). YSR states form for an impurity
strength U/t = 1, whereas for U/t = 100 they morph into
Majorana end states localized on the two sides of the poten-
tial barrier at x = 51. We have considered a chain of 101 sites
and we have set µ/t = 0, ∆/t = 0.4.

bound states between Figs. 2, 3 and Eq. (10), as well as
for the form of the wavefunctions in Eqs. (12) and (13)
versus Fig. 3.

2D Kitaev model. Below we turn to the case of an
infinite 2D system with a delta-like line impurity at x =
0. We start by writing down the real-space tight-binding
Hamiltonian

H2D
TB =

∑
m,n

−µc†m,ncm,n−
[
t
(
c†m+1,ncm,n+c†m,n+1cm,n

)
−

∆ (cm,ncm+1,n − i cm,ncm,n+1) + H.c.
]

(14)

where µ denotes the chemical potential, t is the hopping
parameter, and ∆ > 0 is the pairing amplitude. Op-
erators c†m,n(cm,n) create (annihilate) spinless fermions
on the site (m,n). The corresponding momentum-space
lattice Hamiltonian is given by

H2D
p =

(
εp ∆p

∆∗p −εp

)
, (15)

with εp ≡ −µ/2 − t (cos px + cos py), ∆p = i∆(sin px +
i sin py).

The line impurity can be described by Eq. (6). From
Eq. (3) we see that the poles of the T-matrix, which cor-
respond to the impurity energy levels, are py-dependent
and can be obtained by solving

det

[
I2 − Uτz ·

∫
dpx
2π
G0(px, p1y, E)

]
= 0, (16)

with G0(px, p1y, E) being the unperturbed retarded
Green’s function.

At low energies we can use an approximation of the
Hamiltonian in Eq. (15):

H2D
p ≈

(
ξp iκ(px + ipy)

−iκ(px − ipy) −ξp

)
, (17)
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where ξp ≡ p2

2m0
− p2

F

2m0
with pF denoting the Fermi mo-

mentum, m0 the quasiparticle mass and κ the p-wave
pairing parameter. Such a low-energy description enables
us to obtain in the limit of U → ∞ an exact analytical
solution of the Eq. (16) for the poles of the T-matrix, and
the result is relatively simple

E± = ±κpy (18)

We note that when py → 0, E → 0, which is consistent
with previous findings. These two solutions correspond
to counterpropagating chiral Majorana modes.

To obtain information about the higher energy bound
states we plot the the average perturbed spectral function
A(p, E) = − 1

π Im{Tr[G(p,p, E)]}. The poles of the spec-
tral function contain both the unperturbed band struc-
ture, as well as the impurity-induced bands. In order to
obtain the energy dispersion of the bound states along
the impurity direction we will take px = 0 and plot
A(0, py, E) as a function of py and E. In Fig. 4 we con-
sider two values of the impurity strength U/t = 1 and
U/t = 100. For a small impurity we note the formation
of a finite-energy dispersive Shiba band (see Fig. 4a),
while for the very large impurity this band touches zero
at py = 0 (see Fig. 4b), marking the separation of the
system in two independent ones and the formation of
chiral Majorana states. Note here that the bands above
the gap correspond to the bulk unperturbed states of the
system, while the subgap band is the impurity-induced
band. Note also the agreement with the low-energy ap-
proximation, close to py = 0 the energy dispersion of the
bound states is indeed described by E± = ±κpy with
κ/t = 0.4.

We compare this with a fully-numerical analysis of the
spectrum of a ribbon, obtained using a full tight-binding
exact diagonalization via the MatQ code, and plotted in
Fig. 5. We note the bulk ribbon bands (denoted in blue),
quantized due to the finite-size of the ribbon in the x di-
rection. For comparison we also give the infinite-system
band structure superposed as dashed yellow lines. We
also note the formation of the Majorana edge states cross-
ing at py = 0 (cf. E± = ±κpy obtained above, denoted in
red). We note the remarkable agreement between the an-
alytical and the numerical techniques, both for the bulk,
and especially for the subgap impurity states.

Conclusions. We have developed an exact formalism,
which provides us with a direct manner to describe the
formation of boundary modes. The technique is based
on calculating the energies and the wavefunctions of the
impurity-induced states in the presence of a point-like
impurity (1D), line-like impurity (2D) or a plane-like im-
purity (3D) using the T-matrix formalism. We should
point out that this formalism does not require making
neither a low-energy approximation, nor any supplemen-
tary assumptions, and for the systems for which the form
of the real-space Green’s function can be derived analyt-
ically it does not even require a numerical integration.

Figure 4. On the left (right) panel we present the average
spectral function of a 2D infinite system in the presence of a
weak (strong) line-like impurity, plotted as a function of the
momentum along the impurity py. For a weak impurity we
take U/t = 1 and we see clearly the formation of a subgap
Shiba band, which for the strong impurity with U/t = 100
morphs into chiral dispersive Majorana modes with energies
E± = ±κpy. We have set µ/t = 0.5, κ/t = 0.4, and the
quasiparticle broadening δ/t = 0.03.

Figure 5. The band structure of a 2D infinite ribbon obtained
via numerical diagonalization of the tight-binding Hamilto-
nian. We note the formation of chiral dispersive Majorana
modes with energies E± = ±κpy, as expected theoretically
for a 2D Kitaev model. Parameters are the same as in Fig. 4,
and the width of the ribbon is 101 sites. The infinite system
(bulk) spectrum is denoted by the dashed yellow lines.

We have checked that our formalism is fully consis-
tent with a full tight-binding numerical approach, which
together with solving directly the Schrödinger equation
with specific boundary conditions were till present the
choice tools to recover the dispersion of boundary modes.
We have applied our method to 1D and 2D Kitaev mod-
els to describe the formation of Majorana states, but we
note that this formalism can be generalized very easily
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to other models supporting end, edge and surface states,
for example in 3D it provides an alternative method to
obtain Fermi-arc states in Weyl semimetals [21].
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