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In this work we provide a new direct and non-numerical technique to obtain the surface Green’s
functions for three-dimensional systems. This technique is based on the ideas presented in Phys.
Rev. B 100, 081106(R), in which we start with an infinite system and model the boundary using a
plane-like infinite-amplitude potential. Such a configuration can be solved exactly using the T-matrix
formalism. We apply our method to calculate the surface Green’s function and the corresponding
Fermi-arc states for Weyl semimetals. We also apply the technique to systems of lower dimensions,
such as Kane-Mele and Chern insulator models, to provide a more efficient and non-numerical
method to describe the formation of edge states.

I. INTRODUCTION

Boundaries of certain condensed matter systems host
unique phenomena. For instance, graphene exhibits zero-
energy zigzag-edge modes,1 and topological insulators ex-
hibit conducting edge or surface states.2–4 In order to
describe boundary effects, several techniques were devel-
oped, including the exact diagonalization of tight-binding
Hamiltonians,5,6 iterative methods to compute boundary
Green’s functions,7–9 solving the Schrödinger equation10

and the bulk-boundary correspondence.11

A new method describing the formation of boundary
modes was recently introduced.12 This method can be
generalized to any dimensions, and in certain situations
it can yield fully analytical results, providing a deeper
physical insight than numerical techniques. The general
idea is as follows: instead of considering a finite sys-
tem with a sharp boundary, we consider an infinite sys-
tem with a strong delta-potential impurity emulating the
shape of the boundary. For example, in order to recover
end, edge or surface boundaries, the impurity potential
should be chosen to be point-like, line-like and plane-like,
respectively. In the limit of an infinite impurity poten-
tial such impurities divide a given system into two inde-
pendent semi-infinite regions. Subsequently we use the
T -matrix formalism13,14 to study the impurity-induced
states which transform into boundary states when the
impurity strength is larger than any energy scale in the
system.

Along the same lines, we present here a direct and
non-numerical technique to calculate the surface Green’s
functions of an arbitrary three-dimensional system. The
boundary can once more be modeled as a plane impurity
potential with an amplitude going to infinity. The corre-
sponding full Green’s functions can be calculated exactly
using the T -matrix formalism. The resulting Green’s
function evaluated on the plane neighboring and parallel
to the impurity plane becomes the surface Green’s func-
tion (see Fig. 1). We apply this technique to calculate the
surface Green’s functions for Weyl semimetals described

𝑉δ(𝑥)
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Figure 1. Schematics of the 3D systems and surface GFs. The
black parallelogram is the impurity plane, while the red ones
show the two created surfaces on the neighboring planes at
x = ±1, one lattice constant away from the impurity plane.

by two different models.15,16 We recover in each case the
corresponding Fermi-arc states.

Moreover, in this work we apply the technique from
Ref. [12] to a new class of systems – topological insu-
lators. In particular we consider a 2D honeycomb lat-
tice described by the Kane–Mele model,2 as well as a 2D
Chern insulator.3 We show that impurity-induced states
in these two models transform into helical or chiral edge
modes, respectively, when the impurity potential is taken
to infinity. While the Kane–Mele model requires per-
forming a numerical integration, the 2D Chern insulator
allows an exact closed-form solution and thus demon-
strates the analytical power of the method.

The paper is organized as follows: in Sec. II we in-
troduce the formalism and the notations. In Sec. III we
present the calculation of the surface Green’s functions
for a Weyl semimetal described by two different mod-
els, and the formation of the corresponding Fermi-arc
states. In section IV and V we focus on two-dimensional
topological insulators described by the Kane–Mele and
Chern-insulator models, respectively, and we obtain the
corresponding edge modes. We leave the conclusions to
Sec. VI.
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II. T -MATRIX FORMALISM FOR SURFACE
GREEN’S FUNCTIONS AND EDGE STATES

Below we consider an infinite system described by a
momentum-space Hamiltonian Hk. The unperturbed
Matsubara Green’s function (GF) can be written as:

G0 (k, iωn) = [iωn −Hk]
−1

, where ωn denote the Mat-
subara frequencies. In the presence of an impurity, the
Green’s function is modified to:

G (k1,k2, iωn) = G0 (k1, iωn) δk1,k2
(1)

+G0 (k1, iωn)T (k1,k2, iωn)G0 (k2, iωn)

where the T -matrix T (k1,k2, iωn) embodies all-order
impurity-scattering processes.14,17 Note that due to the
impurity-induced breaking of translational symmetry,
and consequently of the momentum conservation, the
generalized Green’s function depends no longer on one,
but on two values of momentum. For a delta-function
impurity Vimp (r) ≡ V δ (x), the form of the T -matrix in
1D is momentum independent and is given by:14,18–20

T (iωn) =

[
I− V ·

∫
dkx
Lk

G0 (kx, iωn)

]−1
· V (2)

while in 2D and 3D, for a line and plane impurity respec-
tively, localized at x = 0 and perpendicular to the x axis,
we have:

T (k1y, k2y, iωn) = (3)

= δk1y,k2y

[
I− V ·

∫
dkx
Lk

G0 (kx, k1y, iωn)

]−1
· V

and

T (k1y, k1z, k2y, k2z, iωn) = δk1y,k2yδk1z,k2z×

×
[
I− V ·

∫
dkx
Lk

G0 (kx, k1y, k1z, iωn)

]−1
· V, (4)

respectively, with Lk being a normalization factor. The
limits of integration are given by the boundaries of the
first Brillouin zone, i.e., for a 1D system and for a 2D
square lattice or 3D cubic lattice we integrate from −π to
π (with Lk = 2π), while for a honeycomb lattice with an
impurity along y we integrate from −2π/3 to 2π/3 (Lk =
4π/3) (for a full justification see Appendix A). Note that
Eqs. (3) and (4) are independent of k1x and k2x due to
the fact that the impurity potential is a delta-function
centered at x = 0. Reversely, note that the T-matrix
contains the terms δk1y,k2y (2D) and δk1y,k2yδk1z,k2z (3D),
since the impurity is independent of y in 2D and of y and
z in 3D, and therefore, the momenta in the corresponding
directions are conserved in all scattering processes.

The exact same formalism can be applied for impurities
perpendicular to the other axes of the systems.

In what follows we employ this formalism at zero tem-
perature to calculate the retarded GF G(k1,k2, E) ob-
tained by the analytical continuation of the Matsubara

GF G(k1,k2, iωn) (i.e., by setting iωn → E + iδ, with
δ → 0+).

For a three-dimensional system the surface Green’s
function can be extracted from the perturbed generalized
Green’s function in Eq. (1). This can be related to the
mixed Green’s function in which we keep the momentum
coordinates in the two directions parallel to the impurity
plane (ky and kz), but we perform a Fourier transform to
write down the Green’s function in real space coordinates
in the x direction. Note that for a plane impurity the gen-
eralized Green’s function depends on two different values
of momentum only for the direction perpendicular to the
impurity, in the other two directions we recover a simple
dependence on momentum due to unbroken translational
invariance. Thus we have:

Gs(ky, kz) ≡ G(x = x′ = ±1; ky, ky; kz, kz)

=

∫
dk1x
Lk

∫
dk2x
Lk
G(k1x, k2x; ky, ky; kz, kz)e

ik1xxe−ik2xx
′
.

(5)

We fix x = x′ = ±1 since we are interested in describ-
ing the lattice planes one lattice constant away from the
impurity (see Fig. 1). The boundaries of the two result-
ing semi-infinite systems correspond to the two planes at
x = ±1, and the Green’s functions taken at these two
positions are effectively the surface Green’s functions for
the semi-infinite systems. The physics at x = 0 (impurity
position) is relatively trivial since the infinite-amplitude
impurity potential pushes away all the wave function
weight off the impurity plane. For simplicity we have
omitted writing down explicitly the energy dependence
of the Green’s functions. Note again that translational
invariance holds within the planes parallel to the impu-
rity plane, thus the surface Green’s functions depend only
on one momentum in each of the in-plane directions. Fur-
thermore, in order to obtain the surface physics the value
of the impurity potential in Eq. (4) needs to be set to a
value much larger than all the energy scales in the prob-
lem.

The surface Green’s function allows us to recover the
formation of the surface states such as, for instance, the
Fermi-arc states. Thus, we can study the surface spectral
function

A(ky, kz, E) = − 1

π
Im{tr[Gs (ky, kz, E)]}. (6)

The same analysis can be performed for a two-
dimensional system with a line-impurity to find the line
Green’s functions

Gl(ky) = G(x = x′ = ±1; ky, ky)

=

∫
dk1x
Lk

∫
dk2x
Lk
G(k1x, k2x; ky, ky)eik1xxe−ik2xx

′
.

(7)

and the corresponding edge states given by:

A(ky, E) = − 1

π
Im{tr[Gl (ky, E)]}. (8)
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Alternatively, in order to visualize the impurity-
induced states, as described in Appendix B, we may focus
on the average correction to the spectral function:

δN(ky, E) =

∫
dkx
Lk

δA(kx, ky, E). (9)

where

δA(k, E) = − 1

π
Im{tr[G0 (k)T (k,k)G0 (k)]}. (10)

Above G0 (k) stands for G0 (k, E) and T (k,k) for
T (k,k, E). The integral over kx is performed along the
same interval as the one defined in Eq. (3). This quan-
tity corresponds to the average number of available elec-
tronic states with wavevector (ky, kz), where the average
is performed along the direction perpendicular to the im-
purity. A more detailed description of the significance of
this quantity is provided in Appendix B.

III. WEYL SEMIMETALS

In what follows we consider a Weyl semimetal: there
is a large number of models of various degree of com-
plexity describing such a system. Here we focus only on
the tight-binding models described in Refs. [15] and [16],
which we denote by H1 and H2, respectively. The Bloch
Hamiltonians for these two systems are given by

H1,2 =
∑

k

ψ†(k)H1,2(k)ψ(k), (11)

where ψ(k) = (ckA↑, ckA↓, ckB↑, ckB↓) is a spinor with the
index A/B denoting a generic unspecified orbital compo-
nent, and the ↑ / ↓ the physical spin.

For the model in Ref. [15] written in the basis above
we have

H1(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0

+g0(k)τ0σ0 + βτ2σ2 + α sin kyτ1σ2, (12)

where

g0(k) = 2d(2− cos kx − cos ky)

g1(k) = a sin kx

g2(k) = a sin ky

g3(k) = m+ t cos kz + 2b(2− cos kx − cos ky). (13)

and α, β are real parameters. The 2×2 identity matrices
σ0/τ0 and the Pauli matrices σi/τi, i = 1, 2, 3 act in
the spin and the orbital spaces, correspondingly, and the
multiplication of the σ and τ matrices indicates a tensor
product.

We consider the same values of parameters as those in
Ref. [15], thus we take a) a = b = 1, t = −1, m = 0.5,
d = 0.8, α = β = 0 and b) a = b = 1, t = −1.5,
d = m = 0, β = 0.9, and α = 0.3. The former is charac-
terized by two Weyl points, while the latter by four Weyl
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and ↵, � are real parameters. The 2⇥2 identity matrices
�0/⌧0 and the Pauli matrices �i/⌧i, i = 1, 2, 3 act in
the spin and the orbital spaces, correspondingly, and the
multiplication of the � and ⌧ matrices indicates a tensor
product.

We consider the same values of parameters as those in
Ref. [14], thus we take a) a = b = 1, t = �1, m = 0.5,
d = 0.8, ↵ = � = 0 and b) a = b = 1, t = �1.5,
d = m = 0, � = 0.9, and ↵ = 0.3. The former is charac-
terized by two Weyl points, while the latter by four Weyl

Figure 2. The surface spectral function at E = 0 for the
H1 model with parameters a) a = b = 1, t = �1, m = 0.5,
d = 0.8, ↵ = � = 0 and b) a = b = 1, t = �1.5, d = m = 0,
� = 0.9. To make an exact correspondence with the spinless
results in Ref. [14], in a) the trace is taken only over the spin-
up (first and third) components of the Green’s function. We
clearly see that there is a single Fermi arc emerging in a),
whereas there are two Fermi arcs in b). We set U = 100.

points, and thus we expect to have one and two Fermi
arcs, respectively.

In order to obtain the Fermi-arc surface states we
need to introduce a surface into the system in such a
way that the vector connecting the Weyl nodes has a
nonzero projection onto it. For example, for the above
model we choose to have a plane-like impurity at y = 0,
hence perpendicular to the y direction. The resulting
surface Green’s functions are described by the formalism
in Sec. II, where we consider an impurity V = U�(y)I4,
with U ! 1 (i.e, much larger than all energy scales in
the problem). Note that in Sec. II we describe an impu-
rity at x = 0 and not y = 0, however the y = 0 formal-
ism is obtained by simply interchanging x and y in the
corresponding formulas. The spectral function for the
surface states A(kx, kz, E) = � 1

⇡ Im{tr[Gs (kx, kz, E)]} is
depicted in Fig. 2 for two chosen configurations of pa-
rameters.

We note that the Fermi-arc states calculated using our
method agree exactly with those predicted in Ref. [14].
Moreover, the full surface Green’s function that we have
obtained contains all the information required to describe
these states, such as their spin and orbital distribution,
the full energy dispersion, etc.. For instance, we have for
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these states, such as their spin and orbital distribution,
the full energy dispersion, etc.. For instance, we have for
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Figure 2. The surface spectral function at E = 0 for the
H1 model with parameters a) a = b = 1, t = −1, m = 0.5,
d = 0.8, α = β = 0 and b) a = b = 1, t = −1.5, d = m = 0,
β = 0.9. To make an exact correspondence with the spinless
results in Ref. [15], in a) the trace is taken only over the spin-
up (first and third) components of the Green’s function. We
clearly see that there is a single Fermi arc emerging in a),
whereas there are two Fermi arcs in b). We set U = 100.

points, and thus we expect to have one and two Fermi
arcs, respectively.

In order to obtain the Fermi-arc surface states we
need to introduce a surface into the system in such a
way that the vector connecting the Weyl nodes has a
nonzero projection onto it. For example, for the above
model we choose to have a plane-like impurity at y = 0,
hence perpendicular to the y direction. The resulting
surface Green’s functions are described by the formalism
in Sec. II, where we consider an impurity V = Uδ(y)I4,
with U → ∞ (i.e, much larger than all energy scales in
the problem). Note that in Sec. II we describe an impu-
rity at x = 0 and not y = 0, however the y = 0 formal-
ism is obtained by simply interchanging x and y in the
corresponding formulas. The spectral function for the
surface states A(kx, kz, E) = − 1

π Im{tr[Gs (kx, kz, E)]} is
depicted in Fig. 2 for two chosen configurations of pa-
rameters.

We note that the Fermi-arc states calculated using our
method agree exactly with those predicted in Ref. [15].
Moreover, the full surface Green’s function that we have
obtained contains all the information required to describe
these states, such as their spin and orbital distribution,
the full energy dispersion, etc.. For instance, we have for
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Figure 3. The x and z spin components on the A and B
orbital (left and right columns, respectively) at E = 0 for the
H1 model with parameters a = b = 1, t = 1.5, d = m = 0,
α = 0.3 and β = 0.9.

the different spin and orbital components:

SxA(kx, kz) = − 1

π
Im [Gs12 (kx, kz) + Gs21 (kx, kz)]

SxB(kx, kz) = − 1

π
Im [Gs34 (kx, kz) + Gs43 (kx, kz)]

SyA(kx, kz) = − 1

π
Re [Gs12 (kx, kz)− Gs21 (kx, kz)]

SyB(kx, kz) = − 1

π
Re [Gs34 (kx, kz)− Gs43 (kx, kz)]

SzA(kx, kz) = − 1

π
Im [Gs11 (kx, kz)− Gs22 (kx, kz)]

SzB(kx, kz) = − 1

π
Im [Gs33 (kx, kz)− Gs44 (kx, kz)] ,(14)

where we omit the energy dependence for the sake of
brevity. In Fig. 3 we plot the x and z spin components
of the Fermi-arc states at zero energy, separately calcu-
lated for the A and B orbitals. The parameters chosen
correspond to Fig. 2 b). We do not plot the y component
since it is zero for both orbitals.

The spins of opposite arcs are of opposite signs, as
expected.15

We perform a similar analysis on a different Weyl
semimetal model, introduced in Ref. [16]:

H2(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0 + dτ2σ3

+βτ2σ2 + α sin kyτ1σ2 + λ sin kzτ0σ1 (15)

We consider the same values of parameters as those
in Ref. [16], thus we take a) a = b = 1, t = −1.5, λ =

4

Figure 3. The x and z spin components on the A and B
orbital (left and right columns, respectively) at E = 0 for the
H1 model with parameters a = b = 1, t = 1.5, d = m = 0,
↵ = 0.3 and � = 0.9.

the di↵erent spin and orbital components:

Sx
A(kx, kz) = � 1

⇡
Im [Gs

12 (kx, kz) + Gs
21 (kx, kz)]

Sx
B(kx, kz) = � 1

⇡
Im [Gs

34 (kx, kz) + Gs
43 (kx, kz)]

Sy
A(kx, kz) = � 1

⇡
Re [Gs

12 (kx, kz) � Gs
21 (kx, kz)]

Sy
B(kx, kz) = � 1

⇡
Re [Gs

34 (kx, kz) � Gs
43 (kx, kz)]

Sz
A(kx, kz) = � 1

⇡
Im [Gs

11 (kx, kz) � Gs
22 (kx, kz)]

Sz
B(kx, kz) = � 1

⇡
Im [Gs

33 (kx, kz) � Gs
44 (kx, kz)] ,(14)

where we omit the energy dependence for the sake of
brevity. In Fig. 3 we plot the x and z spin components
of the Fermi-arc states at zero energy, separately calcu-
lated for the A and B orbitals. The parameters chosen
correspond to Fig. 2 b). We do not plot the y component
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Our results agree exactly with those in Ref. [15]. Fur-
thermore, we compute the spin and orbital properties for
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ters in Fig. 4 the spins of the two Fermi arcs are opposite,
same as for the H1 model. The H1 and H2 models di↵er
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a spectrum with bands touching at the Dirac points
situated at the Brillouin zone corners (±4⇡/3

p
3, 0),

(±2⇡/3
p

3, ±2⇡/3). In order to turn graphene into an
insulator we add a next-nearest-neighbor term with a

4

Figure 3. The x and z spin components on the A and B
orbital (left and right columns, respectively) at E = 0 for the
H1 model with parameters a = b = 1, t = 1.5, d = m = 0,
↵ = 0.3 and � = 0.9.

the di↵erent spin and orbital components:

Sx
A(kx, kz) = � 1

⇡
Im [Gs

12 (kx, kz) + Gs
21 (kx, kz)]

Sx
B(kx, kz) = � 1

⇡
Im [Gs

34 (kx, kz) + Gs
43 (kx, kz)]

Sy
A(kx, kz) = � 1

⇡
Re [Gs

12 (kx, kz) � Gs
21 (kx, kz)]

Sy
B(kx, kz) = � 1

⇡
Re [Gs

34 (kx, kz) � Gs
43 (kx, kz)]

Sz
A(kx, kz) = � 1

⇡
Im [Gs

11 (kx, kz) � Gs
22 (kx, kz)]

Sz
B(kx, kz) = � 1

⇡
Im [Gs

33 (kx, kz) � Gs
44 (kx, kz)] ,(14)

where we omit the energy dependence for the sake of
brevity. In Fig. 3 we plot the x and z spin components
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in Ref. [15], thus we take a) a = b = 1, t = �1.5, � =
0.5, d = 0.1, ↵ = 0.3 and � = 0.7 and b) a = b = 1,
t = �1.5, � = 0.5, d = 0.1, ↵ = 0.3 and � = 0.4. These
configurations are characterized by four Weyl points, and
thus one expects two Fermi arcs on the surface, however
Ref. [15] indicates the possible existence of an electron
pocket coming from the bulk bands. We apply the same
techniques as above, and we show in Fig. 4 the resulting
spectral function A(kx, kz, E) for the surface states, for
the two chosen configurations of parameters.

Our results agree exactly with those in Ref. [15]. Fur-
thermore, we compute the spin and orbital properties for
this model (see Fig. 5).

We have also checked that for the first set of parame-
ters in Fig. 4 the spins of the two Fermi arcs are opposite,
same as for the H1 model. The H1 and H2 models di↵er
in this case mainly by a nonzero y component in the H2

model and the asymmetry of the two Fermi arcs in kz.

IV. KANE–MELE MODEL

We start with the Kane–Mele model of a topological
insulator on a honeycomb lattice.2 Therefore, we employ
the following tight-binding model:

HTB =
X

hiji, ↵
tc†

i,↵cj,↵ +
X

hhijii, ↵, �

it2⌫ijs
z
↵�c†

i,↵cj,� (16)

where c†
i,↵ creates an electron on the lattice site i, with

spin ↵ =", #. The first term in Eq. (16) is the stan-
dard nearest-neighbor hopping term corresponding to
the tight-binding Hamiltonian of graphene, which yields
a spectrum with bands touching at the Dirac points
situated at the Brillouin zone corners (±4⇡/3
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Figure 4. The surface spectral function at E = 0 for the H2

model with parameters a) a = b = 1, t = −1.5, λ = 0.5,
d = 0.1, α = 0.3 and β = 0.7 and b) a = b = 1, t = −1.5,
λ = 0.5, d = 0.1, α = 0.3 and β = 0.4. We note the emergence
of the two Fermi-arcs, as well as of the bulk electron pocket
in the second configuration.

0.5, d = 0.1, α = 0.3 and β = 0.7 and b) a = b = 1,
t = −1.5, λ = 0.5, d = 0.1, α = 0.3 and β = 0.4. These
configurations are characterized by four Weyl points, and
thus one expects two Fermi arcs on the surface, however
Ref. [16] indicates the possible existence of an electron
pocket coming from the bulk bands. We apply the same
techniques as above, and we show in Fig. 4 the resulting
spectral function A(kx, kz, E) for the surface states, for
the two chosen configurations of parameters.

Our results agree exactly with those in Ref. [16]. Fur-
thermore, we compute the spin and orbital properties for
this model (see Fig. III).

We have also checked that for the first set of parame-
ters in Fig. 4 the spins of the two Fermi arcs are opposite,
same as for the H1 model. The H1 and H2 models differ
in this case mainly by a nonzero y component in the H2

model and the asymmetry of the two Fermi arcs in kz.

IV. KANE–MELE MODEL

We start with the Kane–Mele model of a topological
insulator on a honeycomb lattice.2 Therefore, we employ
the following tight-binding model:

HTB =
∑

〈ij〉, α
tc†i,αcj,α +

∑

〈〈ij〉〉, α, β
it2νijs

z
αβc
†
i,αcj,β (16)

where c†i,α creates an electron on the lattice site i, with

spin α =↑, ↓. The first term in Eq. (16) is the stan-
dard nearest-neighbor hopping term corresponding to
the tight-binding Hamiltonian of graphene, which yields
a spectrum with bands touching at the Dirac points
situated at the Brillouin zone corners (±4π/3

√
3, 0),

(±2π/3
√

3,±2π/3). In order to turn graphene into an
insulator we add a next-nearest-neighbor term with a
spin-dependent amplitude νij = −νji = ±1, defined by
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Figure 5. The spin components at E = 0 computed on the A
and B orbitals (left and right columns, respectively) for the
H2 model with parameters a = b = 1, t = 1.5, d = m = 0,
α = 0.3 and β = 0.9.

the orientation of the hopping direction (see Fig. 6). The
second term opens a bulk gap in the energy spectrum at
the Dirac points.

First, we obtain the boundary modes numerically by
diagonalizing the tight-binding Hamiltonian in Eq. (16)
and considering periodic boundary conditions in the y
direction and open boundary conditions in the x direc-
tion. This corresponds to a ribbon with zigzag edges. For
convenience we set the lattice spacing a to unity. The
corresponding energy spectrum is shown in Fig. 7. Note
the formation of two subgap states (we have verified that
these are actually edge states). The momentum-space
dispersions for the two edge states cross at zero energy
for ky = π/

√
3.

In what follows we reproduce the formation of these
edge states by considering a line impurity in an infinite
system and subsequently taking the impurity potential

Figure 6. Honeycomb lattice with the νij convention.

0 π√
3

2π√
3

ky

−1

0

1

E

Figure 7. Energy spectrum obtained by an exact diagonaliza-
tion of the Hamiltonian in Eq. (16) defined on a strip with
zigzag edges. We set t = 1 and t2 = 0.03. Note the formation
of dispersing topological edge states in the same interval in
which regular zero-energy nondispersing edge states form for
a regular zigzag edge graphene nanoribbon.

to infinity. We can rewrite the tight-binding Hamilto-
nian in Eq. (16) in momentum space. Thus in the ba-
sis (cA↑, cA↓, cB↑, cB↓), where ciσ is an electron operator
with spin σ =↑ / ↓ on the sublattice i = A/B, the Kane-
Mele Hamiltonian is expressed as:

Hk =



hNNN 0 hNN 0

0 −hNNN 0 hNN
h∗NN 0 −hNNN 0

0 h∗NN 0 hNNN


 , (17)

with

hNN = t
[
1 + ei

√
3ky + ei

√
3

2 kye−i
3
2kx
]
, and

hNNN = 2t2

[
2 cos

(
3

2
kx

)
sin

(√
3

2
ky

)
− sin

(√
3ky

)]

being the nearest-neighbor and the next-nearest-neighbor
terms with amplitudes t and t2, respectively. Here ∗ sim-
ply denotes the complex conjugation.

To reproduce the zigzag edge states, we choose an im-
purity potential localized on two adjacent rows of atoms
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Figure 8. The average correction to the spectral function due
to the line impurity, for the same energy range and momen-
tum values as in Fig. 7. Hopping amplitudes are taken to be
t = 1, t2 = 0.03, and we consider U = 1 in the left panel and
U = 100 in the right panel. Note the formation of impurity
states becoming edges states at large values of the impurity
potential.

corresponding to two different sublattices.

V = U




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (18)

(see Appendix D for more details).
In order to visualize the impurity-induced states, in

Fig. 8 we plot the average correction to the spectral func-
tion due to the impurity, as defined in Eq. (9),

δN(ky, E) =

∫
dkx
Lk

δA(kx, ky, E), (19)

for the same range of ky as the one considered in Fig. 7.
For a weak impurity, i.e., U = t = 1, the impurity

states appear as a distinct band at energies concentrated
mostly outside of the gap. We expect that the impu-
rity bound states will evolve into edge states and acquire
the same properties (i.e., the same momentum disper-
sion) as the edge states derived previously using numeri-
cal methods, when the impurity strength U goes to infin-
ity. Indeed, for a stronger impurity potential U = 100,
the impurity-induced spectral function exhibits subgap
states with the same dispersion as the ones derived via

exact diagonalization and depicted in Fig. 7. The agree-
ment between the two methods is remarkable, confirming
the validity of our analytical approach towards finding
the edge states of a simple topological insulator system.

While here we consider only zigzag edges, in Appendix
D we have also considered the case of an impurity
localized only on one row of atoms, which splits the
systems into two subsystems with different edges, one
with a zigzag edge, and one with a bearded edge. We
expect that we will recover two distinct sets of edge
states, and in Appendix D we show that this is indeed
the case.

V. CHERN INSULATOR

Below we consider the simplest lattice model defining
a Chern insulator

Hk = t sin kxσx + t sin kyσy

+B(2−M − cos kx − cos ky)σz (20)

where we set the lattice constant to unity and t = 1.
Here k ≡ (kx, ky) and σ = (σx, σy, σz) are the Pauli
matrices. The subspace in which they act may be very
general and depends on the given model, for example in
a lattice model with two orbitals per site, s and p, the σ
matrices act in the orbital subspace. The above model
yields topologically nontrivial phases for M ∈ (0, 2) ∪
(2, 4) (see Ref. [3]).

In what follows we introduce a line-like impurity at
x = 0 described by the potential Vimp(x) = V δ(x)I, with
V → ∞ and I is the 2 × 2 identity matrix. In this limit
the T -matrix can be written as:

T (ky, iωn) = lim
V→∞


I− V

π∫

−π

dkx
2π

G0(kx, ky, iωn)



−1

V

= −




π∫

−π

dkx
2π

G0(kx, ky, iωn)



−1

(21)

We compute the integral in Eq. (21), setting B = M = 1
for the sake of simplicity. We note that the calculation
can be performed for arbitrary values of B and M . Thus,
we have

π∫

−π

dkx
2π

G0(kx, ky, iωn) =
1

4 sin2 ky
2

1√
(iωn)2 − 1

√
(iωn)2 − 5 + 4 cos ky

×

×
{[

(iωn)2 − 2 cos ky + cos 2ky −
√

(iωn)2 − 1
√

(iωn)2 − 5 + 4 cos ky

]
σz + 4 sin2 ky

2
(iωnσ0 + sin kyσy)

}
.

(22)
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-25
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25

50

Figure 9. The average correction to the spectral function of
the Chern insulator with a line-like impurity potential. The
bulk bands are visible at E = ±1, whereas the edge modes
disperse as E = ± sin ky, when ky ∈ [−π/2, π/2]. We set
B = M = t = 1 and V = 100.

Plugging Eq. (22) into Eq. (21) we obtain the T -matrix,
which in turn defines the perturbed GF given by Eq. (1).
Note that the poles of the T -matrix obtained by taking
iωn → E + iδ, with δ → +0, are given by E = ± sin ky
for ky ∈ [−π/2, π/2], corresponding to two chiral edge
modes (cf. Ref. [21]). For the sake of brevity, we leave
the derivation of the poles of the T -matrix to Appendix
C.

To verify our findings, in Fig. 9 we plot the average
correction to the spectral function defined in Eq. (9) as
a function of E and ky. As expected, on one hand we
can see the bulk states, originating from the poles of the
bare Green’s function i.e., the eigenvalues of the Hamil-
tonian in Eq. (20) which for the values considered here,
B = M = t = 1 and kx = 0 correspond to E = ±1.
More importantly we can identify also the two counter-
propagating chiral edge modes of the Chern insulator
crossing at ky = 0, whose dependence on ky is consistent

with the fully analytical form above. This demonstrates
the strength of our approach to recover fully analytical
results for the edge states of certain models for which
the unperturbed Green’s function in the real space can
be obtained in an analytical closed form.

VI. CONCLUSIONS

We have generalized the technique to obtain boundary
modes, introduced in Ref. [12], to calculate the surface
Green’s functions of an arbitrary three-dimensional
system, and we have applied it to calculate the surface
Green’s functions for Weyl semimetals and recovered
the corresponding Fermi-arc states. We have also shown
that the technique in Ref. [12] can be applied to other
topological systems, such as topological insulators.
Furthermore, we have demonstrated that it functions
also for systems with more than one sublattice, and that
this method can be easily employed to study boundary
modes in lower dimensions. In particular, using line-like
impurities, we have applied the formalism to derive the
helical edge states of the Kane–Mele model and the
chiral edge states of a Chern insulator. For the latter we
have shown that using this formalism a full analytical
form can be obtained for the T -matrix, and analytical
expressions for the energies of the edge states can be
recovered.
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Appendix A: Derivation of the T-matrix momentum limits of integration for a honeycomb lattice

While for a square or cubic lattice there is no subtlety concerning the integration limits, for the honeycomb lattice
this is much more subtle. We will start with writing down the form of the contribution of the impurity potential to
the Hamiltonian, such as it has to be written in the continuum. We will start with a row of impurities localized on
A atoms, but the conclusions do not depend on the type of impurity we consider:

δHimp =

∫
drV (r) (A1)

where the integral is performed over the entire space, with

V (r) = Uρ(r),

ρ(r) =
∑

j

δ(r−RA
j )a†jaj (A2)

where the sum is performed over a row of lattice unit cells, each unit cell is denoted by the index j (see Eq. (24)

in Ref. [22]) and Rj = ja
√

3 (see Fig. 9), with the lattice constant a having been set to 1. The a†j and aj operators
describe the formation and annihilation of electrons at site j, they no longer live in the continuum but on the lattice
and as such they are defined as (see Eq. (21) in Ref. [22]):

aj =

∫

k∈BZ
dk e−ik·R

A
j ak (A3)

where
∫
k∈BZ ≡

∫
BZ

d2k
SBZ

with SBZ = 8π2

3
√
3
. In order to use the momentum space T-matrix formalism we need to write

δHimp in momentum space:

δHimp = U

∫
dr
∑

j

δ(r−RA
j )

∫

k∈BZ

∫

k′∈BZ
dkdk′ ei(k−k

′)·RA
j a†kak′

= U
∑

j

∫

k∈BZ

∫

k′∈BZ
dkdk′ ei(k−k

′)·RA
j a†kak′

= U
∑

j

∫

k∈BZ
dkxdky

∫

k′∈BZ
dk′xdk

′
y e

i(ky−k′y)(
√
3j)a†kak′

= U
2π√

3

∑

n

∫

k∈BZ
dkxdky

∫

k′∈BZ
dk′xdk

′
y δ(ky − k′y + n

2π√
3

)a†kak′ (A4)

Since both k and k′ are in the first BZ the only possibilities for n are 0, 1 and −1. It appears that implementing
this constraint is quite subtle, however things get much simpler if we deform the first BZ and instead we consider a
rectangle with − 2π

3
√
3
< ky <

4π
3
√
3

and −2π/3 < kx < 2π/3. This is allowed since ak+Qµν = ak, where Qµν are all the

reciprocal basis vectors (see Ref. [23]; in the tight-binding basis considered here the same relation is valid also for the
B atoms22). Under this construction it is clear that the only possible solution for n is n = 0, and thus we have

δHimp = U

∫ 4π
3
√

3

− 2π
3
√

3

dky

2π/
√

3

∫ 2π/3

−2π/3

dkx
Lk

∫ 2π/3

−2π/3

dk′x
Lk

a†kx,kyak′x,ky (A5)

where Lk = 4π/3.

http://dx.doi.org/10.1088/1367-2630/11/9/095003
http://dx.doi.org/10.1088/1367-2630/11/9/095003
http://dx.doi.org/10.1103/PhysRevB.79.125427
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Appendix B: Significance of a position-averaged spectral function

In 2D, in the presence of a line impurity proportional to δ(x), the correction to the number of available electronic
states at position x and having momentum ky is given by:

δρ(x, ky, E) = − 1

π
Im tr δG(x, x; ky;E) (B1)

Note that since the spatial translational invariance along y is not broken ky is still a good quantum number.
Averaging this over the direction perpendicular to the impurity we obtain:

δN(ky, E) ≡
∫
dx δρ(x, ky, E) = − 1

π
Im tr

∫
dx δG(x, x; ky;E) = − 1

π
Im tr

∫
dxG0(x, ky, E)T (ky, E)G0(−x, ky, E) =

= − 1

π
Im tr

∫
dx

∫
dkx
Lk

dk′x
Lk

eikxxe−ik
′
xx G0(kx, ky, E)T (ky, E)G0(k′x, ky, E) =

= − 1

π
Im tr

∫
dkx
Lk
G0(kx, ky, E)T (ky, E)G0(kx, ky, E) ≡

∫
dkx
Lk

δA(kx, ky, E), (B2)

where Lk and the limits of integration are −π to π with Lk = 2π for a square lattice and −2π/3 to 2π/3 with
Lk = 4π/3 for a honeycomb one. Also

δA(kx, ky, E) ≡ − 1

π
Im tr δG(kx, ky; kx, ky;E) = − 1

π
Im trG0(kx, ky, E)T (ky, E)G0(kx, ky, E) (B3)

is the correction to the perturbed spectral function in momentum space.

Appendix C: T -matrix poles for the Chern insulator

In order to calculate the energies of the bound states, here we calculate analytically the poles of the T -matrix
defined by Eqs. (21-22). The latter can be found from the trace of the T -matrix given by

trT (ky, E + iδ) = −
(E + iδ)

[
(E + iδ)2 − 2 cos ky + cos 2ky +

√
(E + iδ)2 − 1

√
(E + iδ)2 − 5 + 4 cos ky

]

(E + iδ)2 − sin2 ky
, (C1)

where we replaced iωn → E + iδ, with δ → +0. We obtain straightforwardly the zeros of the denominator, namely,
E = ± sin ky. However, to make sure that the latter are poles, we need to verify that they are not zeros of the
numerator. The trivial zero of the numerator is E = 0, we discard it below. Thus, we need to analyze the zeros of
the expression in the square brackets:

(E + iδ)2 − 2 cos ky + cos 2ky +
√

(E + iδ)2 − 1
√

(E + iδ)2 − 5 + 4 cos ky = 0 (C2)

We represent the complex numbers under the square roots in the trigonometric form, and applying the limit δ → +0
we get:

E2 − 2 cos ky + cos 2ky +
√
|E2 − 1| eiφ1(E)

√
|E2 − 5 + 4 cos ky| eiφ2(ky,E) = 0, (C3)

where we defined φ1(E) = π
2 sgnEΘ

(
1− E2

)
, φ2(ky, E) = π

2 sgnEΘ
(
5− 4 cos ky − E2

)
. Since we are searching for

subgap solutions, i.e., |E| < 1, then E2 < 5− 4 cos ky ∀ky ∈ [−π, π]. Thus, we have φ1(E) +φ2(ky, E) = π sgnE and,

therefore, ei[φ1(E)+φ2(ky,E)] = eiπ sgnE = −1. Eq. (C3) then becomes

E2 − 2 cos ky + cos 2ky −
√

1− E2

√
5− 4 cos ky − E2 = 0. (C4)

The equation above is equivalent to solving the system:

(
E2 − sin2 ky

)
sin4 ky

2
= 0 (C5)

E2 − 2 cos ky + cos 2ky > 0 (C6)
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When ky = 0, we get E = ±1 at the edge of the gap, therefore, E = ± sin ky from the first equation. The second
equation then yields:

sin2 ky − cos ky + cos 2ky > 0 ⇒ |ky| ∈
(π

2
, π
]
. (C7)

Thus, the numerator of Eq. (C1) has zeros at E = 0, and E = ± sin ky when |ky| ∈ (π/2, π], and therefore, we
conclude that the trace of the T -matrix has poles at E = ± sin ky only when |ky| 6 π/2. This means that the edge
modes exist only for ky lying in the interval |ky| 6 π/2, and their dispersion is given by E = ± sin ky.

Appendix D: Impurity potentials for the Kane-Mele model

While working with the Kane-Mele model, we considered three different delta-function impurities which we illustrate
in Fig. 10 with the associated matrix representation. We see that in order to reproduce the zigzag edge states of the
Kane-Mele model we must introduce an impurity on both A and B sites (right panel of Fig. 10). If the impurity is
localized only on the A or B sites, it will create both a zigzag edge state and a bearded edge state.

Figure 10. Three different vertical impurity lines on a honeycomb lattice. From left to right: the impurity is localized on
sublattice A, sublattice B or on entire unit cells (A+B). In each case, the impurity creates a “wall” in the system (dashed lines
or shaded area) along with two boundaries. If the impurity is localized on a single sublattice (A or B), it creates one zigzag
edge and one bearded edge. If it is localized on entire unit cells it will create two zigzag edges. The matrix representation in
the insets is given in the basis (cA↑, cA↓, cB↑, cB↓).

The formation of both zigzag and bearded edges can be recovered using our method by applying either of the
potentials given in the left and middle panels of Fig. 10. Fig. 11 shows the energy spectrum obtained by exact
diagonalization of the Hamiltonian on a strip with one zigzag edge and one bearded edge, along with the correction
to the averaged spectral function due to a line impurity localized on either one of the two sublattices. Here we have
enlarged the horizontal axis to ky ∈ [−2π/

√
3; 2π/

√
3] to see the edge states more clearly. We recover the same

dispersion as in the main text for the zigzag edge states and obtain in addition other subgap states which are localized
on the bearded edge. We need however to keep in mind the fact that in this case the two semi-infinite systems are not
fully decoupled since the bulk Hamiltonian of the Kane-Mele model contains spin-flip NNN terms: this leakage effect
needs to be taken into account carefully especially when we consider the spin-properties of the systems, but will not
affect the spectrum below.
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− 2π√
3

− π√
3 0 π√

3
2π√
3

ky

−1

0

1

E

-50

-25

0

25

50

Figure 11. Left panel: energy spectrum obtained by an exact diagonalization of the Hamiltonian in Eq. (16) defined on a
strip with one zigzag edge and one bearded edge. Right panel: the correction to the averaged spectral function due to the line
impurity localized on either of the two sublattices. We consider U = 100. For both plots, hopping amplitudes are taken to be
t = 1, t2 = 0.03
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