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We provide a new analytical tool to calculate the energies of Andreev bound states (ABS) in long
imperfect SNS junctions, at present these can only be described by numerical tools. We model an
NS junction as a delta-function “Andreev” impurity, i.e., a localized potential which scatters an
electron into a hole with opposite spin. We show using the scattering matrix formalism that, quite
surprisingly, an “Andreev” impurity is equivalent to an NS junction characterized by both Andreev
reflection and a finite amount of normal scattering. The ABS energies are then calculated using
the T -matrix formalism applied to a system with two Andreev impurities. Our results lie between
those for a perfect long SNS junction limit described by the Andreev approximation (ABS energies
depend linearly on the phase and are independent of the chemical potential) and the particle-in-
the-box limit (bound state energies are independent of the phase and have a linear dependence on
the chemical potential). Moreover, we recover a closed-form expression for the ABS energies by
expanding around the particle-in-the-box limit.

I. INTRODUCTION

The formation of Andreev bound states (ABS)1–5 in
long SNS junctions6–9 has been approached by analytical
tools such as the Bogoliubov–de Gennes equations,10–12

the Andreev approximation,13–15 as well as various other
approaches.16–23 However, taking into account a finite
amount of backscattering at the leads in such junctions
has so far only been possible using numerical tools (see,
e.g., Ref. [24]). For instance there is no analytical de-
scription of the bell-shaped dependence of the ABS in
long junctions on gate-voltage, neither of their non-linear
dependence on the phase.24–26

Here we provide the first fully analytical tool that can
take into account the normal scattering at the leads in
long junctions (in the limit of energies much smaller than
the superconducting gap). When there is no normal scat-
tering at the leads, the physics of the ABS in this limit is
described by the Andreev approximation,13–15 yielding a
linear dependence of the ABS energies on the phase; in
this limit their energies are independent of the chemical
potential. In the opposite limit, when the normal scat-
tering at the leads is very large, we recover the particle-
in-the-box limit, i.e., the normal region is completely iso-
lated and the energies of the bound states correspond
to the quantized levels of a finite-size system; the ener-
gies of these states depend linearly on the gate voltage
and are independent of the SC phase difference. For the
intermediate regime, in which the normal scattering is
finite, we show that the energies of the ABS lie between
the two limits and we obtain a closed-form expression
for these energies by expanding around the particle-in-
the box limit. This expression allows to extract informa-
tion for example about the periodicity and the amplitude
of the ABS oscillations with the chemical potential, the
amplitude of the ABS oscillations with the phase, and

the width of the ABS levels as a function of the scat-
tering strength; such information will be useful in order
to analyze experimental observations of the ABS in long
imperfect SNS junctions, once such observations become
available.

We will first show that we can model an imperfect NS
junction by considering an “Andreev” type impurity: a
delta-function localized potential that scatters an elec-
tron into a hole with opposite spin. This equivalence
is demonstrated using the scattering formalism: we find
that there are regimes of parameters in which the values
of the reflection and Andreev reflection coefficients in the
NS junction can be the same as those generated by an
“Andreev” impurity. In this regime an “Andreev” impu-
rity can thus be a good model for an NS junction char-
acterized by both Andreev reflection and a finite amount
of normal scattering. Our formalism cannot describe the
ideal NS junctions, a finite amount of normal scattering
at the leads is automatically included.

Figure 1. Schematics of the equivalence between ‘Andreev’
impurities and NS junctions.

However, the point of this work is not to model a sole
NS junction, for which many alternative analytical works
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Figure 2. Schematics of an NS junction where we consider E
to be inferior to the SC gap, i.e., the transmission coefficients
t, tA = 0.

exist, but to model an imperfect SNS junction, or equiv-
alently, two imperfect SN junctions situated at a finite
and large distance from each other, for which it is to
our knowledge impossible to obtain fully analytically the
form of the local density of states or the energy depen-
dence of the ABS. We thus model the SNS junction by
considering two “Andreev” impurities situated at a given
distance, as illustrated in Fig. 1. We use the T -matrix
formalism which provides an exact solution for the two-
impurity problem. The resulting Green’s function in the
region between the two impurities corresponds to that of
a normal region in an SNS junction, and thus it allows
us to describe the formation of ABS. We calculate the
resulting dependence of the ABS energies on various pa-
rameters such as the gate voltage, the phase difference
between the two SCs and the normal scattering at the
leads, and we show that it is consistent with previous
findings (see, for instance, the results obtained by nu-
merical diagonalization in Ref. [24]).

In Sec. II we provide the equivalence conditions be-
tween the NS junction and the “Andreev” impurity. In
Sec. III we give the T -matrix formalism necessary to com-
pute the Green’s function and subsequently the local den-
sity of states (LDOS) in the presence of two impurities.
We present our results in Sec. IV, leaving the conclusions
to Sec. V.

II. SCATTERING FORMALISM AND
CONDITIONS OF EQUIVALENCE BETWEEN
THE NS JUNCTION AND THE “ANDREEV”

IMPURITY

For an NS junction the BTK theory8 indicates that the
reflection and Andreev reflection coefficients, resulting
from injecting an electron from the normal side of the
junction (see Fig. 2 for the schematics of the junction),
are given by

|rA|2 =
∆2

E2 + (∆2 − E2)(1 + 2Z2)2
, (1)

|r|2 = 1− |rA|2, (2)

where ∆ is the SC gap, Z is the dimensionless barrier
strength introducing a finite amount of normal reflection
at the interface. We will focus only on energies much
smaller than the gap, thus we have

|rA|2 =
1

(1 + 2Z2)2
, (3)

|r|2 = 1− |rA|2. (4)

For Z = 0 we have a perfect Andreev junction, i.e., rA =
1, while for Z � 1 we have a bad junction with a lot of
normal reflection.

Figure 3. Schematics of an “Andreev” impurity with the in-
coming, reflected and transmitted plane waves.

In order to verify the equivalence between an “An-
dreev” impurity and an NS junction we will calculate
the reflection and transmission coefficients, as well as the
Andreev reflection and transmission for the “Andreev”
impurity, and check in which regime they correspond to
the traditional BTK values mentioned above. Thus, for
a delta-function Andreev impurity (see Fig. 3) we write
down the Schrödinger equation

− ~2

2m

d2ψ

dx2
(x) + Vimp(x)ψ(x) = Eψ(x), (5)

where ψ(x) = (ψe(x), ψh(x))
T

is a two-component wave
function with the upper and lower components standing
for the electron and hole wave functions, respectively.
We assume a quadratic dispersion with m denoting the
quasiparticle mass. Hence, the impurity potential is a
2×2 matrix in the electron-hole space, and can be written
as

Vimp(x) = V δ(x) ≡
(
VN VA
V ∗A −VN

)
δ(x). (6)

In the most general case a normal reflection component
VN 6= 0 should be present, however, we have shown that
it hinders the equivalence, and therefore, hereinafter we
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will set VN = 0. Note that this does not imply that in
the equivalent SN junction there is no normal scattering,
in fact VA alone is generating both an Andreev and a
normal component in the equivalence.

For x 6= 0 the solution of Eq. (5) is just a linear com-
bination of two-component vectors multiplied by right-
moving and left-moving plane waves, eikx and e−ikx, cor-
respondingly, where the wavevector k ≡

√
2mE/~. The

most general solution in the presence of the impurity is

ψL(x) = Are
ikx +Ale

−ikx, x < 0, (7)

ψR(x) = Bre
ikx +Ble

−ikx, x > 0. (8)

We focus on the simple case of an injected electron incom-
ing on the barrier from the left, thus Ar = (1, 0)T, and no
injected electron or hole from the right, i.e., Bl = (0, 0)T.
Hence Al = (r, rA)T, where r is the regular reflection
coefficient, and rA is the Andreev reflection coefficient.
Moreover, Br = (t, tA)T with t being regular transmis-
sion and tA Andreev transmission.

By assuming that the wave function ψ(x) =
ψL(x)Θ(−x) + ψR(x)Θ(x) is continuous at x = 0, we
obtain 1 + r = t, rA = tA. We then write down the con-
tinuity equation for the derivative of the wave function.
The delta-function potential gives rise to a discontinuity
at the origin, proportional to the value of the impurity
potential, in occurence here:

− ~2

2m
[ψ′R(0)− ψ′L(0)] + V ψ(0) = 0, (9)

which yields

− ~2

2m
ik(−Ar +Al +Br −Bl) + V (Ar +Al) = 0. (10)

We note that the solution to this problem is energy-
dependent, but since we are interested in energies very
close to the Fermi level, we can take k to be constant

k = kF , and we denote α ≡ ~2k2F
m . The above equations

yield

r = − |VA|2

α2 + |VA|2
, (11)

rA = −i αV ∗A
α2 + |VA|2

. (12)

In Fig. 4 we plot |r|2 + |rA|2 and |rA|/|r| as a function
of VA, while setting α = 1. This shows that for large
enough Andreev potentials the impurity models the NS
junction asymptotically well, i.e., |r|2+|rA|2 ≈ 1. On the
other hand, we see that with increasing VA the ratio be-
tween the Andreev and the regular reflection is decreas-
ing, e.g., for VA = 3.5 for which |r|2 + |rA|2 ≈ 0.92, we
barely have |rA|/|r| ≈ 0.3. This corresponds to a value of
Z ≈ 1 for the NS junction (see Eq. (3)). While the corre-
sponding junction is definitely far from perfect Andreev
reflection it can still support Andreev bound states, and
we describe their behavior in Sec. IV. This situation de-
scribes probably quite accurately the realistic parameters
for many experimental NS interfaces.
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Figure 4. In dotted red the ratio |rA|/|r| and in blue |r|2 +
|rA|2 as a function of VA (in units of α).

III. T -MATRIX FORMALISM

In order to take into account the cumulated effect of
all-order impurity scattering processes, we employ the T -
matrix formalism. We start with the case of a single im-
purity. Denoting the momentum-space Hamiltonian of a
given system Hk, we define the unperturbed Matsubara
Green’s function (GF) as: G0 (k, iωn) = [iωn −Hk]

−1
,

where ωn denote the Matsubara frequencies. In the pres-
ence of an impurity, the Green’s function is modified to:

G (k1, k2, iωn) = G0 (k1, iωn) δk1,k2 (13)

+G0 (k1, iωn)T (k1, k2, iωn)G0 (k2, iωn) ,

where the T -matrix T (k1, k2, iωn) embodies impurity
scattering processes.27,28 For a delta-function impurity
Vimp (x) = V δ (x), the form of the T -matrix in 1D is
momentum independent and is given by:27,29–31

T (iωn) =

[
I− V ·

∫
dk

2π
G0 (k, iωn)

]−1
· V. (14)

To compute physical quantities such as, e.g., the local
density of states, in what follows we use the retarded GF
G(k1, k2, E) obtained by the analytical continuation of
the Matsubara GF G(k1, k2, iωn) (i.e., by setting iωn →
E + iδ, with δ → 0+). The real space equivalents of
Eqs. (13) and (14) can be written as

G(x, x′, E) = G0(x− x′, E) + G0(x,E)T (E)G0(−x′, E)

and

T (E) = [I− V · G0(x = 0, E)]
−1 · V,

respectively, where G0(x = 0, E) is equivalent to integrat-
ing the Green’s function over all momenta (cf. Eq. (14)).

In the presence of two delta-function impurities with
amplitudes Vi, localized at x = Xi, i ∈ {1, 2}, i.e.,

Vimp (x) = V1δ (x−X1) + V2δ (x−X2) , (15)
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the full T -matrix can be found from the following equa-
tion using the unperturbed retarded Green’s function
real-space form:32,33

Tij = Viδij+ViG0(Xi−X1)T1j+ViG0(Xi−X2)T2j , (16)

where i, j ∈ {1, 2}. For brevity we omit energy-
dependence in all functions. Solving the system of four
equations in Eq. (16), we get:

T11 =
[
I−V1G0(0)−V1G0(X1 −X2)T

(0)
2 G0(X2 −X1)

]−1
V1,

T12 = T
(0)
1 G0(X1 −X2)T22,

T21 = T
(0)
2 G0(X2 −X1)T11,

T22 =
[
I−V2G0(0)−V2G0(X2 −X1)T

(0)
1 G0(X1 −X2)

]−1
V2,

where we defined T
(0)
i ≡ [I− ViG0(0)]

−1
Vi. The poles

of the T -matrix ||Tij || yield the energies of the bound
states in the system. Furthermore, we can also express
the full perturbed Green’s function in terms of the T -
matrix elements:

G(x, x′) = G0(x−x′)+
∑
ij

G0(x−Xi)TijG0(Xj−x′). (17)

The correction to the local density of states due to the
impurities can be expressed as

∆ρ(x) = − 1

π
Im tr

∑
ij

G0(x−Xi)TijG0(Xj−x′)

∣∣∣∣∣
x′=x

.

(18)

IV. RESULTS

The normal part of the junction is described using a
simple lattice Hamiltonian Hk = ξkτz, where τz is the
Pauli matrix acting in the particle-hole subspace, ξk ≡
µ−2t cos ka, where a is the lattice constant, t denotes the
hopping parameter and µ is the chemical potential. The
retarded Green’s function in real space is computed as the
Fourier transform of its momentum-space representation,
and is given by

G0(E, x) =

(
G11(E, x) 0

0 G22(E, x)

)
, (19)

where

G11(E, x) = (20)

−

[
(Et − µt + iδ)− sgn(Et − µt)

√
(Et − µt + iδ)

2−4

] |x|
a

at · sgn(Et − µt) · 2
|x|
a ·
√

(Et − µt + iδ)
2 − 4

G22(E, x) = (21)

+

[
(Et + µt + iδ)− sgn(Et + µt)

√
(Et + µt + iδ)

2 − 4

] |x|
a

at · sgn(Et + µt) · 2
|x|
a ·
√

(Et + µt + iδ)
2 − 4

if E2 + µ2 6= 0, and

G11(E, x) = − i

2at
e+i

π|x|
2a , (22)

G22(E, x) = − i

2at
e−i

π|x|
2a , (23)

for E2
t +µ2

t = 0. The expressions in Eqs. (22) and (23) are
obtained directly from the integral defining the Fourier
transform of the momentum-space Green’s function. In
other words, we first set in the integrand Et = µt = 0
and then we perform the integral over momenta to ob-
tain the real-space formulae. We expressed the energy
and the chemical potential in terms of the hopping am-
plitude, i.e., Et ≡ E/t and µt = µ/t. The positive in-
finitesimal shift of energy, +iδ, δ → +0, corresponds to
an inverse quasiparticle lifetime and is generally related
to the width of the energy levels. Note that since the
expressions above are obtained within the lattice model,
the results are valid only for x = na, where n ∈ Z.

The results that we present in this section are eval-
uated using this full tight-binding model. However, in
order to test the validity of our approximations, we es-
tablish also a correspondence between the continuum
model (used in Sec. II to make the connection between an
NS junction and an “Andreev impurity”) and the lattice
model. We thus expand ξk in a quadratic form:

ξk = µ− 2t cos ka ≈ ta2k2 + µ− 2t =
~2k2

2m
− ~2k2F

2m
.

This allows us to extract:

t =
~2

2ma2
, α ≡ ~2k2F

m
= 2(2t− µ).

In what follows we use values of the chemical potential
around µ = 1.5 so that α ≈ 1. We also set by default
the hopping parameter t = 1, therefore, making µt and
Et equivalent to µ and E, respectively. The broadening
is hereinafter set to δ = 0.001.

To model the SNS junction we introduce two Andreev
impurities, as in Eq. (6). In order to take into account
the phase difference between the superconductors we re-
place VA → VAe

±iϕ for one of the impurities, choosing
the signs differently for the 12 and 21 components, to pre-
serve the Hermitian character of the Hamiltonian. Using
the notations from Eq. (15), we can thus write:

V1 =

(
0 VA
VA 0

)
and V2 =

(
0 VAe

−iϕ

VAe
+iϕ 0

)
. (24)

Note that since we assume that the energy is much
smaller than the SC gap our results apply to the long
SNS junction limit. As mentioned in Sec. II we focus
on some intermediate value of VA ≈ 3.5 corresponding
to a ratio of Andreev and regular reflection of 0.3, and
we study the formation of Andreev bound states using
the formalism described in Sec. III, the T -matrix for two
delta-function impurities. This yields an exact formula
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Figure 5. The LDOS of an SNS junction as a function of the
coordinate x and the energy E on the horizontal and vertical
axes, respectively. Two Andreev impurities are localized at
x = 0 and x = 200. ABS form in the normal region. The
length of the normal region is L = 200, the chemical potential
is taken to be µ = 1.5, VA = 3.5 and the phase difference
ϕ = 0.

for the perturbed Green’s function of the system (see
Eq. (17)), which allows to extract the local density of
states (see Eq. (18))34. We first plot the latter in Fig. 5
as a function of energy and position, for a fixed value
of the chemical potential. Note the formation of bound
states in the region between the two impurities, i.e., for
x ∈ [0, 200].

In order to compare the behavior of these bound states
with that of previously studied ABS,24–26 we focus on a
given position and we plot in Fig. 6 the dependence of the
LDOS as of function of energy and chemical potential. In
the plots we choose to average the LDOS over a few sites
(i.e., 6 sites) to avoid any fluctuation effects due to the
short wavelength oscillations visible in Fig. 5. Indeed,
we recover the oscillatory bell-shaped dependence of the
ABS energy on the chemical potential (see, e.g., Figs. 4a
and 4d in Ref. [24]).

Furthermore, in Fig. 7 we plot the dependence of the
LDOS as a function of energy and the phase difference
between the two SCs, for a fixed chemical potential. We
note that the amplitude of the phase oscillations, while
not very large, is still significant, marking the presence
of nonzero Andreev reflection and of the corresponding
phase coherence.

In order to understand this observed dependence of
the ABS energies on the phase and chemical potential we
remind the reader that the focus of our work is the study
of long SNS junctions in the imperfect long junction limit.
Also we focus on the limit of small energies with respect
to the gap, E � ∆. In what follows we write down the
solutions for the two extreme limits characterizing this
junction, that have both been studied previously in the
literature. First, for the long perfect SNS junctions (no

Figure 6. LDOS averaged over 6 sites x ∈ [90, 95], plotted as
a function of the chemical potential on the horizontal axis and
energy on the vertical axis. We set L = 200, VA = 3.5 and
µ varies between 1.46 and 1.54, so that α ≈ 1 does not vary
with µ. The phase difference is set to ϕ = 0. The perfect
Andreev limit is denoted by the red dashed lines while the
particle-in-the-box by the blue dotted lines.

Figure 7. LDOS averaged over 6 sites x ∈ [90, 95], plotted
as a function of the phase difference ϕ on the horizontal axis
and energy on the vertical axis. We set L = 200, VA = 3.5
and µ = 1.5. The perfect Andreev limit is denoted by the red
dashed lines while the particle-in-the-box by the blue dotted
lines.

normal backscattering at the leads), the corresponding
results are described by the Andreev approximation. In
this limit the energies of the ABS are linear with the
phase and independent of chemical potential, and they
are given by

E±An = ± ~pF
2mL

[φ− (2n+ 1)π], n ∈ N, (25)
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To the other extreme, in the limit of zero Andreev
scattering and infinite normal scattering at the leads
our setup is equivalent to the particle-in-a-box problem,
which for quadratically-dispersed quasiparticles has the
following well-known solution:

E±Bn = ±
[
~2π2n2

2mL2
− p2F

2m

]
, n ∈ N, (26)

independent of phase, and linear with the chemical po-
tential.

To make the correspondence with the lattice-model re-
sults we choose m = 0.5, and we express pF in terms of
the chemical potential µ, using the previously introduced
definition of α ≡ p2F /m = 2(2t−µ). Since we have taken
t = 1 we need to set pF =

√
2− µ. Thus we can rewrite

E±An = ± 1√
2L

[φ− (2n+ 1)π] , n ∈ N, (27)

E±Bn = ±
[
π2tn2

L2
− 2t+ µ

]
, n ∈ N, (28)

where t = 1 and L is expressed in units of the lattice
constant a.

The corresponding limits for the bound states in the
junction are depicted in Figs. 6 and 7 by the dashed red
lines (Andreev limit) and the dotted blue lines (particle-
in-a-box limit). Note that our results interpolate between
the two regimes; our approach is unique in the sense that
it is the only analytical approach to capture this transi-
tion between a long SNS junction with perfect contacts
and a perfectly isolated system. Moreover, as we will
show in what follows, by expanding about the particle-
in-the-box limit, we can obtain a fully closed form for
the ABS dependence of energy depicted in Figs. 6 and 7,
valid for all the values of the chemical potential with the
exception of a countable set of points.

We also plot the dependence of the ABS on chemical
potential and phase difference for parameter values that
take us closer to the two ideal limits, for example we take
a smaller |rA|/|r| (for example, take VA = 10) such that
we recover a junction very close to the particle-in-the-box
scenario (see Fig. 8).

Note that in this limit the Andreev reflection goes to
zero and the bell-shaped oscillations transform into al-
most fully-linear crossings (reflecting the linear energy
dependence of the bound states in a quantum dot on
gate voltage, corresponding to Eq. (28) and denoted in
blue). Moreover, the dependence of the ABS energy on
the SC phase difference becomes almost insignificant, as
expected.

On the other hand, we focus on smaller VA values (for
instance, VA = 1), artificially increasing |rA|/|r|, however
the results we obtain are no longer physical and consis-
tent with the NS junction since |rA|2 + |r|2 � 1 (see
Fig. 9). Nevertheless, the main features of the ABS are
generally preserved, and we see that we get closer to the
Andreev limit denoted in red.

Figure 8. LDOS averaged over 6 sites x ∈ [90, 95], plotted as
a function of energy (vertical axis) and on the horizontal axis
the chemical potential (left panel) and the SC phase difference
(right panel). Here we set L = 200, VA = 10. In the left panel
we fix ϕ = 0, whereas in the right panel µ = 1.5. The perfect
Andreev limit is denoted by the dashed red lines while the
particle-in-the-box by the dotted blue lines.

Figure 9. LDOS averaged over 6 sites x ∈ [90, 95], plotted as
a function of energy (vertical axis) and on the horizontal axis
the chemical potential (left panel) and the SC phase difference
(right panel). Here we set VA = 1. The other parameters are
the same as in Fig. 8. The perfect Andreev limit is denoted
by the red dashed lines while the particle-in-the-box by the
blue dotted lines.

Moreover, we can obtain a fully closed form for the
ABS energy levels if we employ the continuum model in-
troduced in Sec. II, namely we consider a system with
quadratic dispersion (see the Appendix) and expand
around the particle-in-the-box-limit. The zeroth order
contribution to the ABS level is thus given by Eq. (28).
Subsequently we calculate the first-order correction to
this solution in terms of the small dimensionless param-
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Figure 10. Energies of the ABS within the continuum model
plotted as a function of the chemical potential. The vertical
green lines mark the values of the chemical potential at which
the analytical perturbative approach becomes invalid due to
singularities in Eq. (29). Here, exactly as in Fig. 6, we have
set VA = 3.5, ϕ = 0 and L = 200. Additionally, we have fixed
m = 0.5. The perfect Andreev limit is denoted by the red
dashed lines while the particle-in-the-box by the blue dotted
lines.

eter (pF /mVA)2:

δE±Bn = ∓2π2n2

ip3FL
3

(
pF
mVA

)2
√

2− π2n2

p2FL
2

(29)

×
1 + (−1)n cosϕ exp

(
ipFL

√
2− π2n2

p2FL
2

)
1− exp

(
2ipFL

√
2− π2n2

p2FL
2

) p2F
2m

.

We are leaving the technical details of the derivation to
the Appendix. This correction to the particle-in-a-box
energies has both real and imaginary parts. The real part
is responsible for the energy shifts, whereas the imaginary
part embodies the energy level broadening.

Eq. (29) where we set pF =
√

2− µ allows us to plot
the energies E±Bn + δE±Bn as a function of the chemical
potential µ (see Fig. 10). There is a very good agree-
ment between these closed-form analytical results for the
continuum model and those presented in Fig. 6 corre-
sponding to a direct evaluation of the T-matrix and the
corresponding LDOS for a full tight-binding model. Note
that our perturbative treatment within the continuum
model does not work for values of the chemical potential
close to the singularities in Eq. (29), which constitute a
countable set of points.

A subsequent simplification of Eq. (29) allows us to ex-
tract some other important information about the ABS
level behavior. First, we recall that our approach is valid
at small energies, δE±Bn /µ � 1. Hence we can take

π2n2

p2FL
2 ≈ 1, and

√
2− π2n2

p2FL
2 ≈ 1 in Eq. (29). Thus, we

can extract the periodicity of the Andreev levels to be
δpF · L ≈ 2π and consequently |δµ| = 4π

L

√
2− µ. For

the values considered here (L = 200, µ ≈ 1.5) we see
that this corresponds to δµ = 0.045, which is observed in
both Fig. 6 and Fig. 10. On the other hand, the singu-
larities in Eq. (29) are governed by 2δpFL ≈ 2π, yielding
|δµ| = 0.022 corresponding to the spacing between the
green vertical lines in Fig. 10.

Moreover, Eq. (29) allows us to see that the amplitude
of the phase oscillations, i.e., the coefficient of the cos(ϕ)
term, is proportional to (pF /mVA)2. Indeed, this goes to
zero when there is no Andreev reflection VA → ∞, and
increases with reducing VA. Eqs. (3) and (12) allow to
make a direct correspondence between the amplitude of
these oscillations and the dimensionless barrier strength
Z, namely, it is decreasing roughly as 1/Z4.

Furthermore, the width of the ABS levels can also be
extracted from the imaginary part of Eq. (29), and is thus

equal to 1
pFL

(
pF
mVA

)2
≈ 0.001 for VA = 3.5, consistent

with Figs. 6 and 7. Note that with decreasing VA these
estimates become inaccurate and the higher order terms
become important (see Appendix A), for example, for
VA = 3.5 the next order correction which we neglect here
is of the order of ≈ 16%.

Note that the broadening of the ABS levels is governed
by two physical phenomena. The first is the finite quasi-
particle lifetime, which is quite large in regular systems
making the levels very sharp. We introduce by hand an
artificial broadening, described by the imaginary contri-
bution iδ, with δ = 0.001, into the energy in the Green’s
functions. It is proportional to the inverse quasiparti-
cle lifetime and it is the main factor of level broadening
in regular systems. However, in a setup consisting of
a central region coupled to the leads, there is a second
physical factor responsible for the level broadening, origi-
nating from the coupling to the leads. When the coupling
to the leads is purely Andreev-like, the width of the ABS
is not affected by its size, see Fig. 7 in Ref. [24]. However,
when there is also a normal coupling we expect that the
ABS level width is going to be affected by this normal
coupling, same as the quantum dot levels becoming wider
when the dot is better coupled to the leads; in the perfect
coupling limit such levels can become very wide, while in
the bad coupling limit the levels are very sharp (see for
example Figs. 4a and 4b in Ref. [24] for details). In our
model, it is the parameter VA that determines the barrier
height and thus the coupling to the SC leads. Therefore,
we expect that if the coupling is very small, i.e., VA →∞,
then the energy level broadening is controlled solely by δ
and we obtain the ‘particle in a box solutions’. Indeed,
this is exactly what happens (see Eq. (A13-A15) in Ap-
pendix A), and in this limit the levels are very sharp. On
the other hand, when VA is small we have an additional
broadening due to the normal coupling to the leads and
this is indeed what we observe.

We should note that no alternative simple expression
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for our Eq. (29) providing a closed form for the energies
of the ABS levels as a function of phase difference and
chemical potential, has ever been derived for long SNS
junctions with imperfect contacts. This demonstrates the
strength of our approach to obtain analytical insight into
problems for which there is no other analytical alterna-
tive.

V. CONCLUSIONS

We have shown that by introducing two “Andreev”
impurities into a normal metal and by employing the T -
matrix formalism, we can model a long imperfect SNS
junction and the formation of Andreev bound states.
Most importantly, we have obtained analytical expres-
sions of the local density of states, as well as of the en-
ergies of the ABS on different parameters of the system,
including the chemical potential and the phase difference
between the SCs. In our model the Andreev to normal
scattering ratio can be controlled by varying the Andreev
impurity potential amplitude. We show that our method
interpolates between the Andreev limit corresponding to
a perfect long SNS junction for which the energies of the
ABS are independent of chemical potential and linear
with phase, and the particle-in-the-box limit in which
the energy levels are independent of phase and linear
with chemical potential. One of the most spectacular
results recovered by this technique is a closed-form ex-
pression of the energies of the ABS levels, as well as of
their widths, obtained by a first-order expansion around
the particle-in-the-box limit, as a function of the chemi-
cal potential, the SC phase difference, and the interface
barrier strength, till now only possible by non-analytical
tools such as numerical tight-binding exact diagonaliza-

tion. This makes our method a unique analytical tool to
understand and characterize ABS. Moreover, our tech-
nique can be easily generalized to other more complex
setups, for example, systems with asymmetric leads, or in
which the spin of the electrons also plays a role. We have
checked for example that in our formalism the Zeeman
field only splits the energies of the ABS levels, consistent
with an intuitive understanding. However, more complex
factors such as Rashba spin-orbit coupling would require
a modification of the equations of motion, and of all the
conditions for the equivalence with the Andreev impu-
rity; if successful, such an analysis will be addressed in a
separate work.

Our approach thus provides an easily accessible non-
numerical tool to describe the formation of ABS in long
SNS junctions. While at present ABS have been directly
observed only in short junctions—quantum-dot-type se-
tups for which only a few states can be observed inside
the SC gap—we can expect that longer and cleaner wires
will also be realized in the future, for which models such
as the one presented here will be necessary in order to in-
vestigate the underlying physics. Already some progress
has been made in this direction,15 and some experimen-
tal setups in which a short but non-zero length plays a
role have been examined.35 In order to make contact with
such experiments our approach may eventually need to
be extended to include other factors, such as the presence
of interactions and the spin-splitting of the levels.
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Appendix A: Andreev bound states in the continuum model

We consider a 1D spinless normal metal with two Andreev impurities localised at x = 0 and x = L. We can write
down a simple model in the basis of electrons and holes as follows:

H = Hmet + Vimp(x) ≡ ξpτz + V1δ(x) + V2δ(x− L), where ξp ≡
p2

2m
− p2F

2m
. (A1)

Above pF denotes the Fermi momentum, m is the effective mass of electrons, V1,2 are the amplitudes of the impurity
potentials. The Andreev impurities in this model can be written as

V1 =

(
0 VA
VA 0

)
and V2 =

(
0 VAe

−iϕ

VAe
+iϕ 0

)
, (A2)

where ϕ corresponds to the phase difference between the SCs. Such impurity potentials reflect electrons into holes,
and vice versa. In what follows we study the resulting impurity-induced bound states. We start by computing the
unperturbed retarded Green’s function of the superconductor. In momentum space it is given by:

G0(E, p) ≡ [E −H0(p)]
−1

=
1

E2 − ξ2p

(
E + ξp 0

0 E − ξp

)
(A3)

To solve the problem we need to Fourier-transform the Green’s function to real space as follows

G0(E, x) =

∫
dp

2π
G0(E, p)eipx

Two integrals are sufficient to define the real-space form of the Green’s function:

X±(x) ≡
∫

dp

2π

eipx

E ± ξp + i0
= ±imei

√
p2F∓2mE |x|√
p2F ∓ 2mE

(A4)

The infinitesimal shift in the denominator originates from the definition of the retarded Green’s function. In terms of
the functions defined above the Green’s function in coordinate space becomes

G0(E, x) =

−im
e
i
√
p2
F

+2mE |x|
√
p2F+2mE

0

0 +im e
i
√
p2
F
−2mE |x|

√
p2F−2mE

 (A5)

Now we can proceed to solving the Schrödinger equation for the Hamiltonian in Eq. (A1):

[Hmet + V1δ(x) + V2δ(x− L)] Ψ(x) = EΨ(x) (A6)

In the Fourier space we get:

Ψ(p) = G0(E, p) · V1 ·Ψ(x = 0) + G0(E, p)e−ipL · V2 ·Ψ(x = L) (A7)
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Going back to the real space we have:

Ψ(x) = G0(E, x) · V1 ·Ψ(x = 0) + G0(E, x− L) · V2 ·Ψ(x = L) (A8)

First, we need to find the wave function values at x = 0 and x = L, and then define the full coordinate dependence
using those. Thus, we have a system of equations to solve (in what follows we omit x = 0, L in the argument of the
wave function and just write 0, L):

Ψ(0) = G0(E, 0) · V1 ·Ψ(0) + G0(E,−L) · V2 ·Ψ(L) (A9)

Ψ(L) = G0(E,L) · V1 ·Ψ(0) + G0(E, 0) · V2 ·Ψ(L) (A10)

Or rewritten in a block-matrix form:(
I− G0(E, 0) · V1 −G0(E,−L) · V2
−G0(E,L) · V1 I− G0(E, 0) · V2

)(
Ψ(0)
Ψ(L)

)
= 0 (A11)

In order to ensure that this equation has non-trivial solutions we set the determinant of the block matrix to zero,
which in turn yields the equation for the energies of bound states:

det

(
I− G0(E, 0) · V1 −G0(E,−L) · V2
−G0(E,L) · V1 I− G0(E, 0) · V2

)
=

= 1− 2
m2V 2

A

p2F

1 + cosϕ · eipFL(
√
1−γ+

√
1+γ)√

1− γ2
+
m4V 4

A

p4F

(
1− e2ipFL

√
1−γ
)(

1− e2ipFL
√
1+γ
)

1− γ2
= 0, (A12)

where we have introduced a dimensionless parameter γ = 2mE/p2F ≡ E/EF . The equation above is transcendental,
and in the most general case does not have an analytical solution.

First, we turn to the limit of VA →∞, in which Eq. (A12) is easily solvable:(
1− e2ipFL

√
1±γ±0

)
= 0 ⇒ pFL

√
1± γ±0 = πn ⇒ E±n = ±

[
π2n2

2mL2
− EF

]
, where n ∈ N. (A13)

There is nothing surprising about this result: we have just obtained the energy levels of a particle in a box (since the
limit of infinite potential corresponds to that). What is left is to find the wave functions at x = 0 and x = L in order
to obtain the final expression for the wave function in the limit of VA →∞. This can be done straightforwardly using
Eqs. (A8) while plugging in the energies obtained in Eq. (A13): For electrons we have:

E+
n = +

[
π2n2

2mL2
− EF

]
, Ψ(0) =

(
0
1

)
, Ψ(L) =

(
0

(−1)n+1

)
, Ψ(x) =

(
imL
πn

[
e
iπn|x|
L + (−1)n+1e

iπn|x−L|
L

]
0

)
,

(A14)

whereas for holes we obtain:

E−n = −
[
π2n2

2mL2
− EF

]
, Ψ(0) =

(
1
0

)
, Ψ(L) =

(
(−1)n+1

0

)
, Ψ(x) =

(
0

imL
πn

[
e
iπn|x|
L + (−1)n+1e

iπn|x−L|
L

])
.

(A15)

It is easy to verify that these wave functions correspond to those of a particle in a box.

In order to extract the Fermi energy dependence of Andreev bound state energies, we need to find the first-order
correction to the particle-in-a-box solutions in Eq. (A13). Hence, we rewrite Eq. (A12) in the following form:(

1− e2ipFL
√
1−γ
)(

1− e2ipFL
√
1+γ
)

=
1− γ2

(mVA/pF )
2

[
2

1 + cosϕeipFL(
√
1−γ+

√
1+γ)√

1− γ2
− 1

(mVA/pF )
2

]
. (A16)

For the parameter range we are interested in this equation can be considered perturbatively with pF /mVA being the
small parameter. In the 0-th approximation we have the same solutions as those for a particle in a box (see Eq. (A13)):

γ±0 = ±
[
π2n2

p2FL
2
− 1

]
, n ∈ N (A17)
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In what follows we find the first correction to these two series of solutions. We demonstrate it using γ = γ+0 . First,

we divide Eq. (A16) by
(

1− e2ipFL
√
1−γ
)

, since by our choice of root this factor is never equal to zero:

1− e2ipFL
√
1+γ =

1− γ2

(mVA/pF )
2

1

1− e2ipFL
√
1−γ

[
2

1 + cosϕeipFL(
√
1−γ+

√
1+γ)√

1− γ2
− 1

(mVA/pF )
2

]
(A18)

We substitute the 0-th approximation solution into the right-hand side of the Eq. (A18). The left-hand side we
represent as Taylor series around the point γ = γ+0 up to the first-order correction, i.e.,

1− e2ipFL
√
1+γ ≈ 1− e2ipFL

√
1+γ+

0 +
d(1− e2ipFL

√
1+γ)

dγ

∣∣∣
γ=γ+

0

δγ+ = − ip
2
FL

2

πn
δγ+, (A19)

where δγ+ is the sought-for correction to γ+0 . Computing the derivative and using Eq. (A18) we get:

δγ+ = − πn

ip2FL
2

π2n2

p2FL
2

(
2− π2n2

p2FL
2

)
(mVA/pF )

2

1

1− exp
(

2ipFL
√

2− π2n2

p2FL
2

)
2

1 + (−1)n cosϕ exp
(
ipFL

√
2− π2n2

p2FL
2

)
πn
pFL

√
2− π2n2

p2FL
2

− 1

(mVA/pF )
2


(A20)

Similarly we have:

δγ− = +
πn

ip2FL
2

π2n2

p2FL
2

(
2− π2n2

p2FL
2

)
(mVA/pF )

2

1

1− exp
(

2ipFL
√

2− π2n2

p2FL
2

)
2

1 + (−1)n cosϕ exp
(
ipFL

√
2− π2n2

p2FL
2

)
πn
pFL

√
2− π2n2

p2FL
2

− 1

(mVA/pF )
2


(A21)

Finally, the full solution can be written as

γ± = γ±0 + δγ± (A22)

Note, that γ± are complex, and in order to obtain the energies of the bound states we need to take the real parts
of those expressions, whereas the imaginary parts yield the broadening. It is also worth mentioning that we are
interested in bound states forming close to zero energy, in other words, we consider values of n ∈ N such that

π2n2

p2FL
2
∼ 1.

Applying this condition to the corrections obtained above, we get:

δγ± ∼ ∓ 1

ipFL

1

(mVA/pF )
2

1

1− e2ipFL

{
2
[
1 + (−1)n cosϕeipFL

]
− 1

(mVA/pF )
2

}
(A23)

Note that at values pFL = πq, with q ∈ Z this correction diverges, setting the limits of validity of this perturbative
approach.
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